Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater
Abstract
:1. Introduction
2. Adsorption Isotherms
3. Carbon-Based Nanoadsorbents
3.1. CNTs
3.1.1. Structural and Functional Properties of CNTs
3.1.2. CNTs for Adsorptive Removal of Organic Pollutants
3.1.3. Modification of CNTs
3.1.4. Mechanism of Adsorption of Organic Contaminants onto CNTs
π-π Interactions
Hydrogen Bonding
Electrostatic Interactions
Hydrophobic Interactions
3.2. Gn-Based Nanoadsorbents
3.2.1. GO
3.2.2. Structural and Functional Properties of GO
3.2.3. Mechanisms of the Organic Pollutants Adsorption onto GO
π-π Interactions
Hydrogen Bonding
Electrostatic Interactions
Hydrophobic Interactions
4. MOF-Carbon Composites
4.1. MOF-Based Composites
4.2. MOF-Carbon-Based Composites as Multifunctional and Multipurpose Materials
4.3. Removal of the Toxic Pollutants from Water Using MOF-Based Carbon Composites
4.4. Key Factors, Which Govern Adsorption Performance of MOF-Carbon Composites
4.5. Mechanisms Realized Using MOF-Carbon Composites in the Adsorption Processes Related to the Removal of Organic Pollutants from Water
4.6. MOF-AC Composites
4.7. MOF-GO Composites
4.7.1. Electrostatic Interaction, π-π Stacking Interaction, Hydrogen Bonding and Open Metal Sites Complexation
4.7.2. Lewis Acid-Base Interactions: Role of Metal Centers in the Framework
4.7.3. Multi-Component Systems Including GO, MOF Crystallites, and Other Components
4.8. MOF-CNT Composites
4.8.1. π-π Stacking Interactions and Hydrogen Bonding
4.8.2. Hydrogen Bonding and Zn-O-P Interaction
4.8.3. π-π Stacking Interactions
4.8.4. Three-Component Systems Including CNTs, MOF Crystallites, and Inorganic Matrix: Electrostatic Interactions
4.9. MOF-Biochar Composites: Electrostatic and π–π Stacking Interactions
N | Adsorbent | Composition | Ssp, m2/g | Surface Functional Groups | Adsorbate | Adsorption Conditions | Adsorption Capacity, mg/g | Mechanism of Adsorbent/Adsorbate Interactions | Ref |
---|---|---|---|---|---|---|---|---|---|
1 | HKUST-1-AC | (Cu3(btc)2)-C composite | No data | No data | Crystal Violet | 25 °C, pH = 3 | 133.33 | Electrostatic interactions, ion exchange, H-bonding, soft-soft interactions, dipole-ion interactions | [302] |
Disulfine Blue | 129.87 | ||||||||
Quinoline Yellow | 65.37 | ||||||||
2 | MOF-5-AC | (Zn4O(bdc)3)-AC | No data | No data | Fast Green | 25 °C pH = 3 | 21.230 | Synergetic effect of MOF-5 matrix and AC-matrix | [303] |
Eosin | 20.242 | ||||||||
Quinine Yellow | 18.621 | ||||||||
3 | 14-ZIF-8-C | (Zn-(meIm)2)-C derived from adipic acid | 136.5 | N | Malachite Green | T = 30 °C, pH = 4 | 3056 | Electrostatic interactions, π-π stacking interactions, H-bonding | [305] |
4 | AC-NH2-MIL-101(Cr) | AC-Cr3O(abdc)3 | 1681 | NH2 | p-Nitrophenol | 25 °C, pH = 5 | 18.3 | Electrostatic interactions, π-π stacking interactions, H-bonding, open metal sites (Cr3+) | [307] |
5 | GO-MIL-101(Fe)- | GO10%-Fe3O(bdc)3 | 888.289 (Langmuir) | OH, COOH, COO− | Methyl Orange | 25–65 °C, pH = 3–4 | 186.20 | Electrostatic interactions, π-π stacking interactions, H-bonding, open metal sites (Fe3+) | [316] |
6 | GO-MIL-101(Cr) | GO(3%)-Cr3O(bdc)3 | 3259 | OH, COOH, COO− | Naproxene | pH = 5.4 | 171 | H-bonding (dominating), electrostatic interactions, π-π stacking interactions, open metal sites (Cr3+) | [317] |
Ketoprophene | pH = 7.0 | 140 | |||||||
7 | MIL-68(Al)-GO-2 | AlOHbdc-GO (4.8 wt.%) | 1309 | OH, COOH, aromatic moiety, μ2-OH | Methyl Orange | pH = 8 | 400 | Electrostatic interactions, H-bonding, π-π stacking interactions | [321] |
8 | rGO-NH2-MIL-68(Al) | AlOHabdc-rGO | 1914 | OH, COC, COOH, aromatic moiety, NH2 and μ2-OH | Congo Red | 25 °C, pH = 4 | 473.93 | Electrostatic interactions, H-bonding, π-π stacking interactions | [198] |
9 | NH2-MIL-68(In)-GO-2 | InOHabdc-GO (5 wt.%) | 679.5 | OH, COC (epoxy), COOH, aromatic moiety, NH2, μ2-OH | Rhodamine B | pH = 6 | 267 | π-π stacking interactions (dominating), electrostatic interactions | [323] |
10 | MIL-68(Al)-GO | AlOHbdc-GO in pellet form; MIL-68(Al): GO mass ratio = 10.00 | - | OH, COC, COOH, aromatic moiety, μ2-OH, | Tetracycline hydrochloride | 20–25 °C, pH = 4–9 | 228 | H-bonding, π-π stacking interactions, Al-N covalent bonding | [326] |
11 | rGO-MIL-68(Al) | InOHabdc-15%rGO r = rhamnolipid-functionalized | 761.97 | OH−, COC, COOH, aromatic moiety | p-Nitrophenol | 30 °C, pH = 5 | 332.23 | H-bonding, π-π stacking interactions | [327] |
12 | GO-UiO-66-(OH)2 | GO-Zr6O4(OH)4-bdc-OH2 | 239.5054 (BJH) | OH, COC, COOH | Methylene B | 25 °C, pH = 11 | 96.69 | Electrostatic interactions, H-bonding, π-π stacking interactions, open metal sites (Zr4+) | [315] |
Tetracycline hydrochloride | 37.96 | ||||||||
13 | GO-UiO-66-(COOH)2 | GO (3 wt.%)-Zr6O4(OH)4-bdc-(COOH)2 | 369.96 | OH, COC, COOH, COO | Tetracycline hydrochloride | 30 °C, pH = 3 | 164.91 (Qm) | π-π stacking interactions (dominating), H-bonding, weak electrostatic interactions, open metal sites (Zr4+) | [328] |
14 | UiO-67-GO | Zr6O4(OH)4-bpdc-GO | - | OH, COOH, Zr-OH | Glyphosate | pH = 4 | 482.69 | Surface/inner-complexation or chemical integration (dominating), electrostatic interaction at low pH values | [329] |
15 | ZIF-67-rGO aerogel | Co(2-meIm)2-rGO aerogel | 491 | Aromatic moiety, OH, COOH, N | Crystal Violet | pH = 6 | 1714.2 | Electrostatic interactions, π-π stacking interactions | [331] |
Methyl Orange | 426.3 | ||||||||
16 | ZIF-Ga ZIF-67-GA | Co(2-meIm)2-GA aerogel | No data- | Aromatic moiety, N | Methyl Orange | No data | 550.3 | Electrostatic interactions, π-π stacking interactions | [332] |
Rhodamine B | 380.7 | ||||||||
17 | TMU-23-GO | [Zn2(oba)2(bpfb)]·(DMF)5 GO (10 wt.%)) | No data | Aromatic moiety, NH-, CO | Methylene B | 25 °C | ≥90% of adsorption efficiency | Electrostatic interactions, π-π stacking interactions, acid-base interactions | [335] |
18 | HKUST-1(Ni)-GO | Ni3(btc)2-GO | 69.6 | OH, COOH | Congo Red | 25 °C, pH = 4 | 2489 | Acid-base interactions | [336] |
19 | AG-ZIF-67 | Co(2-meIm)2-AG Alginate-graphene hydrogel | 138.62 | OH, OCO, COOH C=N, C-N, N-N | Tetracycline hydrochloride | 30 °C, pH = 6 | 456.62 | π-π stacking interaction, cation-π bonding | [337] |
20 | HKUST-1-Fe4O3-GO-β-CD | Cu3(btc)2-Fe4O3-GO-β-cyclodextrin | 250.33 | Aromatic moiety, CO, COO−, NH- | Imidacloprid | No data | 3.11 | H-bonding, hydrophobic interactions, electrostatic interactions, π-π stacking interactions | [338] |
Thiamethoxam | 2.88 | ||||||||
Acetamiprid | 2.96 | ||||||||
Nitenpyram | 2.56 | ||||||||
Dinotefuran | 1.77 | ||||||||
Thiacloprid | 2.88 | ||||||||
21 | Fe3O4/MOF(Co, Ni)@GO | Fe3O4-Ni3(BTC)2@GO | 41.473 | O-H, C=O, C=C, C-O, COO− | Methylene B | 65.78 | [339] | ||
Fe3O4-Co3(BTC)2@GO | 70.42 | ||||||||
22 | CNT@MIL-68(Al) | 0.75 wt.%CNT@AlOHbdc | 1407 | Aromatic moiety, COO− | Phenol | 25 °C | 341.1 | π-π stacking interactions, H-bonding | [286] |
3.5% CNT@AlOHbdc | 109.9 | ||||||||
23 | MWCNT-NH2-MIL-53(Fe) | MWCNT-FeOHabdc | 125.50 | Aromatic moiety, COO−, NH2- | Tetracycline hydrochloride | 25 °C, pH = 3 | 368.49 | π-π stacking interactions (dominating), H-bonding, pore filling effect | [341] |
Chlortetracycline hydrochloride | 254.04 | ||||||||
24 | MWCNT-ZIF-8 | MWCNT-Zn(meIm)2 | No data | Humic acids | 25 °C, pH = 5.0 | 55.68 | [342] | ||
25 | ZIF-8@MWCNT120 | Zn(meIm)2@hydroxylated MWCNT | No data | Aromatic moiety, OH, N | Phosphate | 30 °C, pH = 7 | 203.0 (Qm) | H-bonding, Zn-O-P interaction | [343] |
26 | ZIF-8@CNT | 80 wt%Zn(meIm)2@CNT | 830.3 | Aromatic moiety, COOH, OH, COC | Methylene Green | 20 °C, pH = 3.5–7.0 | 2034 | π-π stacking interactions | [344] |
ZIF-8@GO | 80 wt%Zn(meIm)2@GO | 1476.4 | heteroaromatic moiety, OH | 3300 | |||||
27 | SiO2@ZIF-67/CNTs | SiO2@Co(meIm)2-CNTs | 993 | (Hetero)aromatic moiety, COOH | Methyl Orange | 5 °C | 112 | Electrostatic interactions, π-π stacking interactions | [345] |
D-SiO2@ZIF-67/CNTs | 1005 | 194 | |||||||
C-SiO2@ZIF-67/CNTs | 1135 | 324 | |||||||
28 | MIL-53(Fe)/MBC | FeOHabdc-Fe3O4-biochar | 27.49 | Aromatic moiety, COO | Rhodamine B | pH = 6, 25 °C | 55 | Electrostatic interactions, π-π stacking interactions | [346] |
5. Highly Ordered Porous Carbons Derived from MOF Matrices
5.1. Background
5.2. Factors Determining the Adsorption of Organic Pollutants from Water Solutions: Realization of Specific Adsorption Mechanisms for MCs
5.2.1. Hydrogen Bonding, π-π Stacking Interactions, and n-π Interactions
5.2.2. Electrostatic Interactions, Hydrogen Bonding, Pore-Filling Mechanism, π-Electron Polarization and Hydrophobic Interactions
5.2.3. Electrostatic Interactions and Hydrophobic Interactions
5.2.4. Hydrophobic Interactions
5.2.5. Hydrogen Bonding
5.3. Bimetallic MOF Matrices as Precursors for NPC
5.4. Preliminary Modification of MOF Precursors with N-Containing Compounds
Hydrogen Bonding
5.5. Using Inorganic Templates for Advanced Hybrid MCs: Electrostatic Interactions
5.6. Using Wastes for the Preparation of MCs: π-π Stacking Interactions, Cation-π Bonding, Hydrogen Bonding
6. Bioadsorbents
6.1. Biochar
6.2. Biochar from Refuse Biomass
6.3. Defining Mineral and Ash-Rich Biochar
6.4. Factors Determining Adsorption Potential
6.4.1. Highest Treatment Temperature (HTT)
6.4.2. Polarity
6.4.3. Carbonization
6.4.4. Mineral and Ash Fraction (MAF)
6.4.5. pH
6.5. Adsorption Mechanism
7. Conclusions and Future Outlook
- An appropriate choice of synthesis technique including process parameters (temperature, time) along with pretreatment/activation/modification mode may result in a serious improvement of their adsorption performance towards both organic and inorganic pollutants in aqueous media. In several cases, an appropriate temperature regime for calcination of the prepared carbon-based materials may result in a serious improvement of their porosity and hydrophobicity.
- The different strategies for the improvement of the textural (specific surface area, porosity), morphological characteristics as well as pore surface functionality and thereby their adsorption performance are presented. The most effective strategies for this purpose are pore surface modification by oxidation, hydroxylation, grafting appropriate functional groups, doping heteroatoms (N, S, O) or metal species as well as preparation of their functional composites by integration of different kinds of (nano)adsorbents or classical carbon or inorganic solids like silica.
- Appropriate processing, shaping/pelletization, preparation of carbonaceous (nano)adsorbents, e.g., CNTs, GO and MOF-Carbon composites, in the form of aerogel or hydrogels are promising to increase the separability, mechanical strength, and stability of these adsorbents in aqueous media. Additionally, using binding agents, such as sodium and calcium alginates may introduce additional heteroatoms in resulting materials and thereby enrich the possible adsorbate-adsorbent interactions.
- As a rule, these composites show significantly enhanced pollutant uptake and adsorption efficiency (higher than 99%) as compared to pristine composite components and common adsorbents like activated carbons, so this strategy provides the synergetic adsorption performance due to several cooperative effects provided by intrinsic porosity, functionality, and adsorption properties of composite components.
- Using the functional composites of carbon-based nanoadsorbents with other materials allows one to involve both adsorptive removal and other related processes, such as (photo)catalytic degradation in several purification cases. For instance, a combination of adsorption and photodegradation may be recommended for the removal of dyes such as methyl orange from wastewater using selected MOF-carbon composites, such as MOF-MWCNTs and MOF-biochar systems.
- Generally speaking, each type of considered carbon-based nanoadsorbent has several unique properties, which can be further modified, so in each case, an appropriate choice of carbon-based nanomaterial is governed by the needs for specific tasks related to organic pollutant removal.
- Based on existing biochar standards and literature review, mineral and ash rich biochar (MAB) has been defined as those with H/C ≤ 0.7 and Ash/C ≤ 4.1. Mineral and ash fraction along with the highest treatment temperature in pyrolysis are the most influential factors in determining biochar adsorption mechanisms. Valorization of MAB derived from mineral and ash-rich biomasses like urban organic wastes as adsorbents for organic and inorganic pollutants is recommended for further investigation and critical research.
- Another area of current and future research is appropriate functionalization or integration of biochar with other types of adsorptive materials, like MOF crystallites to enhance their adsorption performance (order, textural and functional properties), lower production costs and create recyclability as soil improvers. Moreover, biochar along with other carbon-based nanoadsorbents considered in this review may be regarded as a multifunctional and multi-purpose material in several ecological applications, such as soil amelioration.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
b | constant of the Langmuir model, L/mg |
BET | Brunnauer-Emmet-Teller theory for the analysis of the surface area |
Ce | concentration of a pollutant in solution at the equilibrium, mg/L |
Ci | thickness constant of the boundary layer |
k1, k2 | adsorption rate constants of pseudo-first and pseudo-second order kinetic models, respectively, g/(mg·min) |
Kd | single-point distribution coefficient, L/g |
Kf | constant of the Freundlich model |
kp | adsorption rate constants of intra-particle diffusion kinetic model, mg/(g·min1/2) |
n | constant of the Freundlich model |
Q0 | constant of the Langmuir model |
qe | amount of an adsorbate adsorbed at the equilibrium per unit mass of the adsorbent, mg/g |
Qm | maximal adsorption capacity calculated from the adsorption isotherm, mg/g |
qt | amount of an adsorbate at a given period of time t, mg/g |
Ssp | Specific surface area, m2/g |
t | contact time, min |
3D-EEM | Three-dimensional excitation-emission matrix |
AAEM | Alkali and alkaline earth metals |
abdc | 2-Aminobenzene-1,4-dicarboxylate |
AC | Activated carbons |
ACE | Acesulfame |
ACP | Acetaminophen |
ADQ | Amodiaquine |
AIDs | Anti-inflammatory drugs |
AOP | Advanced oxidation processes |
AR 18 | Acid Red 18 dye |
APTES | 3-Aminopropyltriethoxysilane |
ASs | Artificial sweeteners |
ATC | Anthracene |
ATZ | Atrazine |
bdc | Benzene-1,4-dicarboxylate |
BET | Brunauer–Emmett–Teller |
bIm | Benzimidazole |
BPA | Bisphenol A |
bpdc | Biphenyldicarboxylate |
bpfb | N,N′-bis-(4-pyridylformamide)-1,4-benzenediamine |
btc | Benzene-1,3,5-tricarboxylate |
BZ | Benzene |
CCM | Constant Capacitance Model |
CEC | Cation exchange capacity |
CD | Cyclodextrine |
CIP | Ciprofloxacin |
CNTs | Carbon nanotubes |
CR | Congo Red dye |
CV | Crystal Violet dye |
CYC | Cyclamate |
DB | Disulfine Blue dye |
dhbdc | Dihydroxybenzene-1,4-dicarboxylate |
DLM | Diffuse Layer Model |
DMF | N,N-Dimethylformamide |
DMZ | Dimetridazole |
DOM | Dissolved organic matter |
EBC | European Biochar Certificate/Commission |
EDA | Electron Donor-Acceptor |
EY | Eosin Y dye |
FG | Fast Green dye |
Gn | Graphene |
GNs | Graphene-based nanomaterials |
GO | Graphene oxide |
H2oba | 4,4′-Oxybisbenzoic acid |
HA | Humic acids |
HTT | Highest treatment temperature |
IBI | International Biochar Initiative |
ILs | Ionic liquids |
KET | Ketoprofen |
LOLIPOP | Localized Orbital Locator Integrated Pi Over Plane |
MAB | Mineral and ash-rich biochar |
MAF | Mineral and ash fraction |
MB | Methylene Blue dye |
MBC | Magnetic biochar |
2-mbIm | 2-Methylbenzimidazole) |
MCs | MOF-derived carbons |
MDCs | MAF-6 derived porous carbons |
meIm | 2-Methylimidazolate |
MIL | Materials of the Institute of Lavoisier, abbreviation for the separate MOF family |
MNZ | Metronidazole |
MOFs | Metal-organic frameworks |
MO | Methyl Orange dye |
MWCNTs | Multi-walled carbon nanotubes |
MZ | Menidazole |
NAP | Naproxene |
NAPH | Naphthalene |
NIABs | Nitroimidazole antibiotics |
NPC | Nanoporous carbon |
OMSs | Open metal sites |
PAC | Powdered activated carbon |
PAE | Phthalic acid esters |
PAHs | Polycyclic aromatic hydrocarbons |
PET | Polyethylene terephthalate |
PCMX | Para-chloro-meta-xylenol |
PMS | Peroxymonosulfate |
PNP | p-Nitrophenol |
POPs | Persistent organic pollutants |
PPCPs | Personal care products |
PRN | Pyrene |
PZC | Point of zero charge |
QY | Quinoline Yellow dye |
rGO | Reduced graphene oxide |
RhB | Rhodamine Blue dye |
SAC | Saccharin |
SAS | Self-adjusted strategy |
SCMs | Surface Complexation Models |
SIB | Ship-in-bottle method |
SMZ | Sulfamethoxazole |
SWCNTs | Single-walled carbon nanotubes |
TC | Tetracycline |
TCH | Tetracycline hydrochloride |
TCS | Triclosan |
TEOS | Tetraethoxysilane |
TLM | Triple Layer Model |
UOW | Urban organic wastes |
Vmicro | Micropore volume, cm3/g |
Vtotal | Total pore volume, cm3/g |
ZIFs | Zeolitic imidazolate frameworks |
ZIF-GA | Zeolitic imidazolate framework-graphene aerogels |
References
- Tarannum, N.; Khan, R. Cost-effective green materials for the removal of pesticides from aqueous medium. In Green Materials for Wastewater Treatment. Environmental Chemistry for a Sustainable World; Naushad, M., Lichtfouse, E., Eds.; Springer Nature AG: Cham, Switzerland, 2020; Volume 38, pp. 99–130. [Google Scholar]
- Song, J.Y.; Bhadra, B.N.; Khan, N.A.; Jhung, S.H. Adsorptive removal of artificial sweeteners from water using porous carbons derived from metal azolate framework-6. Microporous Mesoporous Mater. 2018, 260, 1–8. [Google Scholar] [CrossRef]
- Tehrani, M.S.; Zare-Dorabei, R. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2016, 160, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.S.; Khan, N.A.; Jhung, S.H. Adsorptive removal of methylchlorophenoxypropionic acid from water with a meal-organic framework. Chem. Eng. J. 2015, 270, 22–27. [Google Scholar] [CrossRef]
- Sarker, M.; An, H.J.; Yoo, D.K.; Jhung, S.H. Nitrogen-doped porous carbon from ionic liquid@Al-metal-organic framework: A prominent adsorbent for purification of both aqueous and non-aqueous solutions. Chem. Eng. J. 2018, 338, 107–116. [Google Scholar] [CrossRef]
- Haque, E.; Khan, N.A.; Talapaneni, S.N.; Vinu, A.; Jegal, J.; Jhung, S.H. Adsorption of phenol on mesoporous carbon CMK-3: Effect of textural properties. Bull. Korean Chem. Soc. 2010, 31, 1638–1642. [Google Scholar] [CrossRef] [Green Version]
- Jung, B.K.; Jun, J.W.; Hasan, Z.; Jhung, S.H. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem. Eng. J. 2015, 267, 9–15. [Google Scholar] [CrossRef]
- Khan, N.A.; Jung, B.K.; Hasan, Z.; Jhung, S.H. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks. J. Hazard. Mater. 2015, 282, 194–200. [Google Scholar] [CrossRef]
- Osorio, V.; Larrañaga, A.; Aceña, J.; Pérez, S.; Barceló, D. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Sci. Total Environ. 2016, 540, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Ebele, A.J.; Abdallah, M.A.-E.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Zango, Z.U.; Jumbri, K.; Sambudi, N.S.; Ramli, A.; Abu Bakar, N.; Saad, B.; Rozaini, M.; Isiyaka, H.A.; Jagaba, A.H.; Aldaghri, O.; et al. A critical review on metal-organic frameworks and their composites as advanced materials for adsorption and photocatalytic degradation of emerging organic pollutants from wastewater. Polymers 2020, 12, 2648. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Jhung, S.H. Adsorption of pharmaceuticals and personal care products over metalorganic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption. Chem. Eng. J. 2017, 322, 366–374. [Google Scholar] [CrossRef]
- Roszko, M.; Kamińska, M.; Szymczyk, K.; Piasecka-Joźwiak, K.; Chabøowska, B. Endocrine disrupting potency of organic pollutant mixtures isolated from commercial fish oil evaluated in yeast-based bioassays. PLoS ONE 2018, 13, e0197907. [Google Scholar] [CrossRef] [Green Version]
- Statement on Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: https://unece.org/environment-policyair/protocol-persistent-organic-pollutants-pops (accessed on 1 October 2021).
- Regulation (EU) 2019/1021 of the European Parliament and of the Council of 20 June 2019 on Persistent Organic Pollutants. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1021&from=de (accessed on 1 October 2021).
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef]
- Yacouba, Z.A.; Mendret, J.; Lesage, G.; Zaviska, F.; Brosillon, S. Removal of organic micropollutants from domestic wastewater: The effect of ozone-based advanced oxidation process on nanofiltration. J. Water Process Eng. 2021, 39, 101869. [Google Scholar] [CrossRef]
- Teixeira, S.; Gurke, R.; Eckert, H.; Kühn, K.; Fauler, J.; Cuniberti, G. Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J. Environ. Chem. Eng. 2016, 4, 287–292. [Google Scholar] [CrossRef]
- Hansen, K.M.S.; Spiliotopoulou, A.; Chhetri, R.K.; Casas, M.E.; Bester, K.; Andersen, H.R. Ozonation for source treatment of pharmaceuticals in hospital wastewater—Ozone lifetime and required ozone dose. Chem. Eng. J. 2016, 290, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Nouhi, S.; Kwaambwa, H.M.; Gutfreund, P.; Rennie, A.R. Comparative study of flocculation and adsorption behaviour of water treatment proteins from Moringa peregrina and Moringa oleifera seeds. Sci. Rep. 2019, 9, 17945. [Google Scholar] [CrossRef]
- Yang, G.C.C.; Chen, Y.-C.; Yang, H.-X.; Yen, C.-H. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous, electrocoagulation and electrofiltration process. Chemosphere 2016, 155, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.; Sirkar, K.K.; Pennisi, K.J.; Vaseghi, G.; Derdour, L.; Cohen, B. Novel perfluorinated nanofiltration membranes for isolation of pharmaceutical compounds. Separ. Purif. Technol. 2021, 258, 117944. [Google Scholar] [CrossRef]
- Nas, B.; Dolu, T.; Argun, M.E.; Yel, E.; Ateş, H.; Koyuncu, S. Comparison of advanced biological treatment and nature-based solutions for the treatment of pharmaceutically active compounds (PHACS): A comprehensive study for wastewater and sewage sludge. Sci. Total Environ. 2021, 779, 146344. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.; Chakma, S. Advances in the preparation of hydrogel for wastewater treatment: A concise review. J. Environ. Chem. Eng. 2019, 7, 103295. [Google Scholar] [CrossRef]
- Mansouri, F.; Chouchene, K.; Roche, N.; Ksib, M. Removal of Pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Appl. Sci. 2021, 11, 6659. [Google Scholar] [CrossRef]
- Ghosh, I.; Kar, S.; Chatterjee, T.; Bar, N.; Das, S.K. Adsorptive removal of safranin-O dye from aqueous medium using coconut coir and its acid-treated forms: Adsorption study, scale-up design, MPR and GA-ANN modeling. Sustain. Chem. Pharm. 2021, 19, 100374. [Google Scholar] [CrossRef]
- Wazir, M.B.; Daud, M.; Ali, F.; Al-Harthi, M.A. Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. J. Mol. Liq. 2020, 315, 113775. [Google Scholar] [CrossRef]
- Silva, R.C.F.; Pinto, P.S.; Teixeira, A.P.C. Control of porous size distribution on solvent-free mesoporous carbon and their use as a superadsorbent for 17α-ethinylestradiol removal. Chem. Eng. J. 2021, 407, 127219. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Derome, C.; Buleté, A.; Vulliet, E.; Bressy, A.; Varrault, G.; Chebbo, G.; Rocher, V. Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. J. Environ. Chem. Eng. 2016, 4, 1102–1109. [Google Scholar] [CrossRef] [Green Version]
- Altmann, J.; Massa, L.; Sperlich, A.; Gnirss, R.; Jekel, M. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon. Water Res. 2016, 94, 240–245. [Google Scholar] [CrossRef]
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264, 128455. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Dwivedi, K.; Morone, A.; Chakrabarti, T.; Pandey, R.A. Evaluation and optimization of Fenton pretreatment integrated with granulated activated carbon (GAC) filtration for carbamazepine removal from complex wastewater of pharmaceutical industry. J. Environ. Chem. Eng. 2018, 6, 3681–3689. [Google Scholar] [CrossRef]
- Mohammad, S.G.; Ahmed, S.M. Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media. Int. J. Ind. Chem. 2017, 8, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Albatrni, H.; Qiblawey, H.; Almomani, F.; Adham, S.; Khraisheh, M. Polymeric adsorbents for oil removal from water. Chemosphere 2019, 233, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Sillanpaa, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Roufegarinejadg, L.; Amarowicz, R. Recent advances in the use of walnut (Juglans regia L.) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials. RSC Adv. 2020, 10, 7026–7047. [Google Scholar]
- Zubair, M.; Arshad, M.; Ullah, A. Chitosan-based materials for water and wastewater treatment. In Handbook of Chitin and Chitosan. Volume 3: Chitin and Chitosan based Polymer Materials for Various Applications; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 25; pp. 773–809. [Google Scholar]
- Bhargavi, R.J.; Maheshwari, U.; Gupta, S. Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn(II) and CBG dye from wastewater. Int. J. Ind. Chem. 2015, 6, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.K.; Gupta, N.; Vinit Kumar, V.; Khan, S.A.; Kumar, A. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. Environ. Int. 2018, 111, 80–108. [Google Scholar] [CrossRef]
- Nikkhah, A.A.; Zilouei, H.; Asadinezhad, A.; Keshavarz, A. Removal of oil from water using polyurethane foam modified with nanoclay. Chem. Eng. J. 2015, 262, 278–285. [Google Scholar] [CrossRef]
- Wang, S.; Wang, K.; Dai, C.; Shi, H.; Li, J. Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite. Chem. Eng. J. 2015, 262, 897–903. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef] [PubMed]
- Koehlert, K. Activated Carbon: Fundamentals and New Applications. Available online: https://www.chemengonline.com/activated-carbon-fundamentals-new-applications (accessed on 1 October 2021).
- Stoeckli, F.; Centeno, T.A. On the determination of surface areas in activated carbons. Carbon 2005, 43, 1184–1190. [Google Scholar] [CrossRef] [Green Version]
- Vedenyapina, M.D.; Kurmysheva, A.Y.; Rakishev, A.K.; Kryazhev, Y.G. Activated carbon as sorbents for treatment of pharmaceutical wastewater. Solid Fuel Chem. 2019, 53, 382–394. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, C.; Wang, C.; Zhang, L. Preparation of C@silica core/shell nanoparticles from ZIF-8 for efficient ciprofloxacin adsorption. Chem. Eng. J. 2018, 343, 645–653. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, M.; Wang, Y.; Wei, F. Highly effective adsorption of antibiotics from water by hierarchically porous carbon: Effect of nanoporous geometry. Environ. Pollut. 2021, 274, 116591. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, B.N.; Lee, J.K.; Cho, C.-W.; Jhung, S.H. Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 2018, 343, 225–234. [Google Scholar] [CrossRef]
- Huang, S.; Hu, Q.; Gao, L.; Hao, Q.; Wang, P.; Qin, D. Adsorption characteristics of metal-organic framework MIL-101(Cr) towards sulfamethoxazole and its persulfate oxidation regeneration. RSC Adv. 2018, 8, 27623–27630. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, X.D.; Huang, Y.M. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 2017, 321, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Lata, S.; Samadder, S.R. Removal of arsenic from water using nano adsorbents and challenges: A review. J. Environ. Manag. 2016, 166, 387–406. [Google Scholar] [CrossRef]
- Akpotu, S.O.; Moodley, B. Effect of synthesis conditions on the morphology of mesoporous silica from elephant grass and its application in the adsorption of cationic and anionic dyes. J. Environ. Chem. Eng. 2018, 6, 5341–5350. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Zhang, T.C. Environmental Science and Engineering, Volume 10: Industrial Processing and Nanotechnology; USA Industrial Processes & Nanotechnology; Studium Press LLC.: New Delhi, India, 2017; pp. 49–80. [Google Scholar]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of wastewater using various nanomaterials. A review. Arab. J. Chem. 2016, 12, 4897–4919. [Google Scholar] [CrossRef] [Green Version]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Karakoti, M.; Surana, K.; Dhapola, P.S.; Santhi Bhushan, B.; Ganguly, S.; Singh, P.K.; Abbas, A.; Srivastava, A.; Sahoo, N.G. Graphene Nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Sci. Rep. 2021, 11, 3916. [Google Scholar] [CrossRef]
- Maksoud, M.I.A.A.; Elgarahy, A.M.; Farrell, C.; Al-Muhtaseb, A.H.; Rooney, D.W.; Osman, A.I. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 2020, 403, 213096. [Google Scholar] [CrossRef]
- Boncel, S.; Kyzioł-Komosińska, J.; Krzyzewska, I.; Czupioł, J. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems—A review. Chemosphere 2015, 136, 211–221. [Google Scholar] [CrossRef]
- Lim, C.K.; Bay, H.H.; Neoh, C.H.; Aris, A.; Majid, Z.A.; Ibrahim, Z. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: Isotherm, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 2013, 20, 7243–7255. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.H.; Khan, Z.; Aljundi, I.H. Improved hydrophilicity and anti-fouling properties of polyamide TFN membrane comprising carbide derived carbon. Desalination 2017, 420, 125–135. [Google Scholar] [CrossRef]
- Mudhoo, A.; Sillanpää, M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: A review. Environ. Chem. Lett. 2021, 18, 1145–1168. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Luo, Q.; Huang, X. One-step preparation of functional groups-rich graphene oxide and carbon nanotubes nanocomposite for efficient magnetic solid phase extraction of glucocorticoids in environmental waters. Chem. Eng. J. 2021, 406, 126785. [Google Scholar] [CrossRef]
- Cha, J.; Hasegawa, K.; Lee, J.; Stein, I.Y.; Miura, A.; Noda, S.; Shiomi, J.; Chiashi, S.; Wardle, B.L.; Maruyama, S. Thermal properties of single-walled carbon nanotube forests with various volume fractions. Int. J. Heat Mass Transf. 2021, 171, 121076. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, L.D.; Truong-Huu, T.; Liu, Y.; Romero, T.; Janowska, I.; Begin, D.; Pham-Huu, C. Macroscopic shaping of carbon nanotubes with high specific surface area and full accessibility. Mater. Lett. 2012, 79, 128–131. [Google Scholar] [CrossRef]
- Wang, T.; Kuang, B.; Li, Z.; Lin, Z.; Du, S.; Guo, B. Adsorption characteristics of carbon nanotubes on low concentration erythromycin in water. J. Phys. Conf. Ser. 2021, 2009, 012005. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef]
- You, N.; Wang, X.-F.; Li, J.-Y.; Fan, H.-T.; Shen, H.; Zhang, Q. Synergistic removal of arsanilic acid using adsorption and magnetic separation technique based on Fe3O4@ graphene nanocomposite. J. Ind. Eng. Chem. 2019, 70, 346–354. [Google Scholar] [CrossRef]
- Segovia-Sandoval, S.J.; Pastrana-Martínez, L.M.; Ocampo-Pérez, R.; Morales-Torres, S.; Berber-Mendoza, M.S.; Carrasco-Marín, F. Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: Effect of operating parameters. Sep. Purif. Technol. 2020, 237, 116341. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Bikiaris, D.N.; Mitropoulos, A.C. Graphene composites as dye adsorbents: Review. Chem. Eng. Res. Des. 2017, 129, 75–88. [Google Scholar] [CrossRef]
- Rigueto, C.V.T.; Rosseto, M.; Nazari, M.T.; Ostwald, B.E.P.; Alessandretti, I.; Manera, C.; Piccin, J.S.; Dettmer, A. Adsorption of diclofenac sodium by composite beads prepared from tannery wastes-derived gelatin and carbon nanotubes. J. Environ. Chem. Eng. 2021, 9, 105030. [Google Scholar] [CrossRef]
- Masjoudi, M.; Golgoli, M.; Nejad, Z.G.; Sadeghzadeh, S.; Borghei, S.M. Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere 2021, 263, 128043. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, H.; Ghoshekandi, R.S.; Masjedi, A.; Mahmoodi, Z.; Kazemi, M. A review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions. Int. J. Nano Dimens. 2016, 7, 109. [Google Scholar]
- Petersen, E.J.; Flores-Cervantes, D.X.; Bucheli, T.D.; Elliott, L.C.; Fagan, J.A.; Gogos, A.; Hanna, S.; Kägi, R.; Mansfield, E.; Bustos, A.R.; et al. Quantification of carbon nanotubes in environmental matrices: Current capabilities, case studies, and future prospects. Environ. Sci. Technol. 2016, 50, 4587–4605. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.S.A.; Mubarak, N.M.; Tan, Y.H.; Khalid, M.; Karri, R.R.; Walvekar, R.; Abdullah, E.C.; Nizamuddin, S.; Mazari, S.A. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J. Hazard. Mater. 2021, 413, 125375. [Google Scholar] [CrossRef]
- Singh, R.K.; Patel, K.D.; Kim, J.J.; Kim, T.H.; Kim, J.H.; Shin, U.S.; Lee, E.J.; Knowles, J.C.; Kim, H.W. Multifunctional hybrid nanocarrier: Magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS Appl. Mater. Interfaces 2014, 6, 2201–2208. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, S.; Su, Y.; Wu, D.; Zhao, Y.; Xie, B. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem. Eng. J. 2021, 406, 126804. [Google Scholar] [CrossRef]
- Jagusiak, A.; Goclon, J.; Panczyk, T. Adsorption of Evans blue and Congo red on carbon nanotubes and its influence on the fracture parameters of defective and functionalized carbon nanotubes studied using computational methods. Appl. Surf. Sci. 2021, 539, 148236. [Google Scholar] [CrossRef]
- Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S.W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination 2015, 367, 37–48. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56. [Google Scholar] [CrossRef]
- Barrios, E.; Fox, D.; Li Sip, Y.Y.; Catarata, R.; Calderon, J.E.; Azim, N.; Afrin, S.; Zhang, Z.; Zhai, L. Nanomaterials in advanced, high-performance aerogel composites: A review. Polymers 2019, 11, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, M.D.; Li, N.; De Andrade, M.J.; Fang, S.; Oh, J.; Spinks, G.M.; Kozlov, M.E.; Haines, C.S.; Suh, D.; Foroughi, J.; et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 2012, 338, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Karimifard, S.; Moghaddam, M.R.A. Enhancing the adsorption performance of carbon nanotubes with a multistep functionalization method: Optimization of Reactive Blue 19 removal through response surface methodology. Process Saf. Environ. 2016, 99, 20–29. [Google Scholar] [CrossRef]
- Jia, X.Q.; Li, S.Y.; Miu, H.J.; Yang, T.; Rao, K.; Wu, D.Y.; Cui, B.L.; Ou, J.L.; Zhu, Z.C. Carbon nanomaterials: A new sustainable solution to reduce the emerging environmental pollution of turbomachinery noise and vibration. Front. Chem. 2020, 8, 683. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
- Poudel, R.; Li, W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys. 2018, 7, 7–34. [Google Scholar] [CrossRef]
- Ahmad, J.; Naeem, S.; Ahmad, M.; Usman, A.R.A.; Al-Wabel, M.I. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. J. Environ. Manag. 2019, 246, 214–228. [Google Scholar] [CrossRef]
- Aslam, M.M.-A.; Kuo, H.-W.; Den, W.; Usman, M.; Sultan, M.; Ashraf, H. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability 2021, 13, 5717. [Google Scholar] [CrossRef]
- Robati, D.; Bagheriyan, S.; Rajabi, M.; Moradi, O.; Peyghan, A.A. Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes. Phys. E 2016, 83, 1–6. [Google Scholar] [CrossRef]
- Das, R.; Leo, B.F.; Murphy, F. The Toxic Truth About Carbon Nanotubes in Water Purification: A Perspective View. Nanoscale Res. Lett. 2018, 13, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; He, Y.; Li, H.; Ma, X.; Zhou, L.; He, T.; Li, S. One-step in-situ fabrication of carbon nanotube/stainless steel mesh membrane with excellent anti-fouling properties for effective gravity-driven filtration of oil-in-water emulsions. J. Colloid Interface Sci. 2021, 592, 87–94. [Google Scholar] [CrossRef]
- Hammer, T.; Sachinidou, P.; He, X.; Pan, Z.; Bahk, Y.K. Advanced filtration and lung deposition models of airborne multi-walled carbon nanotubes for inhalation exposure assessment. NanoImpact 2020, 19, 100240. [Google Scholar] [CrossRef]
- Patiño, Y.; Díaz, E.; Ordóñez, S.; Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodríguez- Ramos, I. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere 2015, 136, 174–180. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Wei, X. Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes. Chem. Eng. J. 2018, 333, 66–75. [Google Scholar] [CrossRef]
- Shabaan, O.A.; Jahin, H.S.; Mohamed, G.G. Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arab. J. Chem. 2020, 13, 4797–4810. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Wu, M.; Ge, S.; Jiao, C.; Yan, Z.; Jiang, H.; Zhu, Y.; Dong, B.; Dong, M.; Guo, Z. Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes. Polymer 2020, 200, 122547. [Google Scholar] [CrossRef]
- Yi, L.; Zuo, L.; Wei, C.; Fu, H.; Qu, X.; Zheng, S.; Xu, Z.; Guo, Y.; Li, H.; Zhu, D. Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions. Sci. Total Environ. 2020, 719, 137389. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Shi, W.; Yan, Z.; Zhao, C.; Chen, C.; Miao, L.; Jiang, J. Enhanced and adjustable adsorption of organo-functional groups on Li decorated carbon nanotubes: A first principle study. J. Appl. Phys. 2014, 116, 084308. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, H.; Wang, D.; Song, M.-H.; Cho, C.-W.; Yun, Y.-S. Predicting adsorption of micropollutants on non-functionalized and functionalized multi-walled carbon nanotubes: Experimental study and LFER modeling. J. Hazard. Mater. 2021, 411, 125124. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; He, Y.; Zhou, C.; Su, S.; Lai, B. The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review. Chin. Chem. Lett. 2020, 32, 1626–1636. [Google Scholar] [CrossRef]
- Jung, C.; Son, A.; Her, N.; Zoh, K.D.; Cho, J.; Yoon, Y. Removal of Endocrine Disrupting Compounds, Pharmaceuticals, and Personal Care Products in Water Using Carbon Nanotubes: A Review. J. Ind. Eng. Chem. 2015, 27, 1–11. [Google Scholar] [CrossRef]
- Jimeno, A.; Goyanes, S.; Eceiza, A.; Kortaberria, G.; Mondragon, I.; Corcuera, M.A. Effects of Amine Molecular Structure on Carbon Nanotubes Functionalization. J. Nanosci. Nanotechnol. 2009, 9, 6222–6227. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R.; Dutta, D.; Sarkar, A.; Chattopadhyay, P. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021, 3, 5722–5744. [Google Scholar] [CrossRef]
- Özgen, P.S.O.; Durmaz, H.; Parlak, C.; Alver, Ö.; Bağlayan, Ö. Non-covalent functionalization of single walled carbon nanotubes with pyrene pendant polyester: A DFT supported study. J. Molec. Struct. 2020, 1209, 127943. [Google Scholar]
- Chadar, R.; Afzal, O.; Alqahtani, S.M.; Kesharwani, P. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy. Colloids Sur. B Biointerfaces 2021, 208, 112044. [Google Scholar] [CrossRef]
- Cha, J.; Jin, S.; Shim, J.H.; Park, C.S.; Ryu, H.J.; Hong, S.H. Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater. Des. 2016, 95, 1–8. [Google Scholar] [CrossRef]
- Yu, G.; Wu, W.; Zhao, Q.; Wei, X.; Lu, Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens. Bioelectron. 2015, 68, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Bourkaib, M.C.; Guiavarc’h, Y.; Chevalot, I.; Delaunay, S.; Gleize, J.; Ghanbaja, J.; Valsaque, F.; Berrada, N.; Desforges, A.; Vigolo, B. Non-covalent and covalent immobilization of Candida antarctica lipase B on chemically modified multiwalled carbon nanotubes for a green acylation process in supercritical CO2. Catal. Today 2020, 348, 26–36. [Google Scholar] [CrossRef]
- Ahmad, A.; Razali, M.H.; Mamat, M.; Mehamod, F.S.B.; Amin, K.A.M. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites. Chemosphere 2017, 168, 474–482. [Google Scholar] [CrossRef]
- Bai, X.; Liu, Y.; Yu, L.; Hua, Z. Distribution behavior of superparamagnetic carbon nanotubes in an aqueous system. Sci. Rep. 2016, 6, 32845. [Google Scholar]
- Temnuch, N.; Suwattanamala, A.; Inpaeng, S.; Tedsree, K. Magnetite nanoparticles decorated on multi-walled carbon nanotubes for removal of Cu2+ from aqueous solution. Environ. Technol. 2021, 42, 3572–3580. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, M.; Li, W.; Luo, S.; Wu, Y.; Ma, C.; Liu, S. Adsorption Separation of Cr(VI) from a Water Phase Using Multiwalled Carbon Nanotube-Immobilized Ionic Liquids. ACS Omega 2020, 5, 22827–22839. [Google Scholar] [PubMed]
- Lawala, I.A.; Lawal, M.M.; Akpotu, S.O.; Azeezd, M.A.; Ndungu, P.; Moodley, B. Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs. Ecotoxicol. Environ. Saf. 2018, 161, 542–552. [Google Scholar] [CrossRef]
- Roohi, H.; Khyrkhah, S. Green chemical functionalization of single-wall carbon nanotube with methylimidazolium dicyanamid ionic liquid: A first principle computational exploration. J. Mol. Liq. 2015, 211, 498–505. [Google Scholar] [CrossRef]
- Mirsalari, H.; Maleki, A.; Raissi, H.; Soltanabadi, A. Investigation of the pristine and functionalized carbon nanotubes as a delivery system for the anticancer drug dacarbazine: Drug encapsulation. J. Pharm. Sci. 2020, 110, 2005–2016. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhang, D.; Pan, B.; Peng, J. Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes. Chemosphere 2017, 168, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hwang, Y.S.; Sharma, V.K. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem. Eng. J. 2014, 255, 23–27. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Czech, B.; Oleszczuk, P. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 2016, 149, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.N.; Trinh, P.B.; Burkhardt, C.J.; Schäfer, A.I. Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants. Sep. Purif. Technol. 2021, 264, 118405. [Google Scholar] [CrossRef]
- Díaz-Flores, P.E.; Arcibar-Orozco, J.A.; Perez-Aguilar, N.V.; Rangel-Mendez, J.R.; Ovando Medina, V.M.; Alcalá-Jáuegui, J.A. Adsorption of Organic Compounds onto Multiwall and Nitrogen-Doped Carbon Nanotubes: Insights into the Adsorption Mechanisms. Water Air Soil Pollut. 2017, 228, 133. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Safaei, B.; Jen, T.-C. Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study. J. Mol. Liq. 2021, 322, 114890. [Google Scholar] [CrossRef]
- Niu, H.; Cai, Y. Adsorption and concentration of organic contaminants by carbon nanotubes from environmental samples. In Advances in Nanotechnology and the Environment, 1st ed.; Kim, J., Ed.; Jenny Stanford Publishing: New York, NY, USA, 2011; p. 58. [Google Scholar]
- Zhang, J.; Li, T.; Li, X.; Liu, Y.; Li, N.; Wang, Y.; Li, X. A key role of inner-cation-π interaction in adsorption of Pb(II) on carbon nanotubes: Experimental and DFT studies. J. Hazard. Mater. 2021, 412, 125187. [Google Scholar] [CrossRef]
- Sigmund, G.; Gharasoo, M.; Hüffer, T.; Hofmann, T. Deep learning neural network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materials. Environ. Sci. Technol. 2020, 54, 4583–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Duan, L.; Zhu, D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 2007, 41, 8295–8300. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Larese-Casanova, P. Sorption of carbamazepine by commercial graphene oxides: A comparative study with granular activated carbon and multiwalled carbon nanotubes. J. Colloid Interface Sci. 2014, 426, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Ok, Y.S.; Mohan, D.; Pittman, C.U., Jr.; Dou, X. Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. Environ. Res. 2019, 169, 434–444. [Google Scholar] [CrossRef]
- Deline, A.R.; Frank, B.P.; Smith, C.L.; Sigmon, L.R.; Wallace, A.N.; Gallagher, M.J.; Goodwin, D., Jr. J.; Durkin, D.P.; Fairbrother, D.H. Influence of Oxygen-Containing Functional Groups on the Environmental. Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem. Rev. 2020, 120, 11651–11697. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.; Sharma, N.; Saxena, R. Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surf. Interfaces 2020, 21, 100639. [Google Scholar] [CrossRef]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube—A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sens. Int. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Zhu, J.; Ye, N.; Zhang, X.; Huang, H. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products. Water Res. 2016, 92, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Wong, C.P.P.; Tan, T.L.; Lai, C.W. Functionalized carbon nanotubes for adsorptive removal of water pollutants. Mater. Sci. Eng. B 2018, 236–237, 61–69. [Google Scholar] [CrossRef]
- Veclani, D.; Melchior, A. Adsorption of ciprofloxacin on carbon nanotubes: Insights from molecular dynamics simulations. J. Mol. Liq. 2020, 298, 111977. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, Z.; Sun, Z.; Zhu, H. Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes. Pol. J. Environ. Stud. 2017, 26, 87–95. [Google Scholar] [CrossRef]
- Ghaedi, A.M.; Ghaedi, M.; Pouranfard, A.R.; Ansari, A.; Avazzadeh, Z.; Vafaei, A.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Adsorption of Triamterene on multi-walled and single-walled carbon nanotubes: Artificial neural network modeling and genetic algorithm. Optimization. J. Mol. Liq. 2016, 216, 654–665. [Google Scholar] [CrossRef]
- Busch, A.E.; Suessbrich, H.; Kunzelmann, K.; Hipper, A.; Greger, R.; Waldegger, S.; Mutschler, E.; Lindemann, B.; Lang, F. Blockade of epithelial Na+ channels by triamterenes—Underlying mechanisms and molecular basis. Pflug. Arch. 1996, 432, 760–766. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Huang, H.; Cho, H.-H. Carbon nanotube composite membranes formicrofiltration of pharmaceuticals and personal care products: Capabilities and potential mechanisms. J. Membr. Sci. 2015, 479, 165–174. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, X.; Zhu, L.; Chen, B. Synergistic effects of 2D graphene oxide nanosheets and 1D carbon nanotubes in the constructed 3D carbon aerogel for high performance pollutant removal. Chem. Eng. J. 2017, 314, 336–346. [Google Scholar] [CrossRef]
- Yu, F.; Sun, S.; Han, S.; Zheng, J.; Ma, J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J. 2016, 285, 588–595. [Google Scholar] [CrossRef]
- Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere 2014, 95, 150–155. [Google Scholar] [CrossRef]
- Gil, A.; Santamaría, L.; Korili, S.A. Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloid Interface Sci. Commun. 2018, 22, 25–28. [Google Scholar] [CrossRef]
- Toński, M.; Paszkiewicz, M.; Dołżonek, J.; Flejszar, M.; Bielicka-Giełdoń, A.; Stepnowski, P.; Białk-Bielińska, A. Regeneration and reuse of the carbon nanotubes for the adsorption of selected anticancer drugs from water matrices. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126355. [Google Scholar] [CrossRef]
- Kozbial, A.; Zhou, F.; Li, Z.; Liu, H.; Li, L. Are graphitic surfaces hydrophobic? Acc. Chem. Res. 2016, 49, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, L.; Liang, M.; Sun, W. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem. Eng. J. 2015, 279, 363–371. [Google Scholar] [CrossRef]
- Ding, H.; Li, X.; Wang, J.; Zhang, X.; Chen, C. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes. J. Environ. Sci. 2016, 43, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Apul, O.G.; Karanfil, T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Res. 2015, 68, 34–55. [Google Scholar] [CrossRef]
- Al-Khateeb, L.A.; Al-zahrani, M.A.; El Hamd, M.A.; El-Maghrabey, M.; Dahas, F.A.; El-Shaheny, R. High-temperature liquid chromatography for evaluation of the efficiency of multiwalled carbon nanotubes as nano extraction beds for removal of acidic drugs fro. from wastewater. Greenness profiling and comprehensive kinetics and thermodynamics studies. J. Chromatogr. A 2021, 1639, 461891. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Sillanpää, M. Optimizing the removal of pharmaceutical drugs Carbamazepine and Dorzolamide from aqueous solutions using mesoporous activated carbons and multi-walled carbon nanotubes. J. Mol. Liq. 2017, 238, 379–388. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Peres, J.A.; Gil-Álvarez, V.; Ovejero, G.; García, J. Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chem. Eng. J. 2017, 320, 319–329. [Google Scholar] [CrossRef]
- Toński, M.; Dołżonek, J.; Paszkiewicz, M.; Wojsławski, J.; Stepnowski, P.; Białk-Bielińska, A. Preliminary evaluation of the application of carbon nanotubes as potential adsorbents for the elimination of selected anticancer drugs from water matrices. Chemosphere 2018, 201, 32–40. [Google Scholar] [CrossRef]
- Zhang, J.; Zhai, J.; Zheng, H.; Li, X.; Wang, Y.; Li, X.; Xing, B. Adsorption, desorption and coadsorption behaviors of sulfamerazine, Pb(II) and benzoic acid on carbon nanotubes and nano-silica. Sci. Total Environ. 2020, 738, 139685. [Google Scholar] [CrossRef] [PubMed]
- Lavin-Lopez, M.P.; Paton-Carrero, A.; Sanchez-Silva, L.; Valverde, J.L.; Romero, A. Influence of the reduction strategy in the synthesis of reduced graphene oxide. Adv. Powder Technol. 2017, 28, 3195–3203. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, T.S.; Thampi, K.R.; Tayade, R.J. Visible light driven redox-mediator-free dual semiconductor photocatalytic systems for pollutant degradation and the ambiguity in applying Z-scheme concept. Appl. Catal. B Environ. 2018, 227, 296–311. [Google Scholar] [CrossRef]
- Yun, X.-W.; Tang, B.; Xiong, Z.-Y.; Wang, X.-G. Understanding self-assembly, colloidal behavior and rheological properties of graphene derivatives for high-performance supercapacitor fabrication. Chin. J. Polym. Sci. 2020, 38, 423–434. [Google Scholar] [CrossRef]
- Chuaa, C.K.; Pumera, M. The reduction of graphene oxide with hydrazine: Elucidating its reductive capability based on a reaction-model approach. Chem. Commun. 2016, 52, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yin, R.; Zeng, L.; Zhu, M. A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ. Pollut. 2019, 253, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Priya, B.; Raizada, P.; Singh, N.; Thakur, P.; Singh, P. Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan. J. Colloid Interface Sci. 2016, 479, 271–283. [Google Scholar] [CrossRef]
- Song, Z.; Ma, Y.L.; Li, C.E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Sci. Total Environ. 2019, 651, 580–590. [Google Scholar] [CrossRef]
- Rong, X.; Qiu, F.; Qin, J.; Zhao, H.; Yan, J.; Yang, D. A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. J. Ind. Eng. Chem. 2015, 26, 354–363. [Google Scholar] [CrossRef]
- Saleh, T.A.; Fadillah, G. Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. Trends Anal. Chem. 2019, 120, 115660. [Google Scholar] [CrossRef]
- Hegab, H.M.; Zou, L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Membr. Sci. 2015, 484, 95–106. [Google Scholar] [CrossRef]
- Croitoru, A.-M.; Ficai, A.; Ficai, D.; Trusca, R.; Dolete, G.; Andronescu, E.; Turculet, S.C. Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. Materials 2020, 13, 1687. [Google Scholar] [CrossRef] [Green Version]
- Bei, H.P.; Yang, Y.; Zhang, Q.; Tian, Y.; Luo, X.; Yang, M.; Zhao, X. Graphene-based nanocomposites for neural tissue engineering. Molecules 2019, 24, 658. [Google Scholar] [CrossRef] [Green Version]
- Dideikin, A.T.; Vul, A.Y. Graphene oxide and derivatives: The place in graphene family. Front. Phys. 2019, 6, 149. [Google Scholar] [CrossRef]
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 2019, 98, 163–180. [Google Scholar] [CrossRef]
- Lawal, A.T. Graphene-based nanocomposites and their applications. A review. Biosens. Bioelectron. 2019, 141, 111384. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, T.; Varghese, J.; Kiran, S.; Bhargavan, S.; Jayasree, P.; Suvekbala, V.; Alaganandam, K.; Ragupathy, L. Cytotoxicity of formulated graphene and its natural rubber nanocomposite thin film in human vaginal. epithelial cells: An influence of noncovalent interaction. ACS Biomater. Sci. Eng. 2020, 6, 2007–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navalón, S.; Herance, J.R.; Álvaroa, M.; García, H. General aspects in the use of graphenes in catalysis. Mater. Horiz. 2018, 5, 363–378. [Google Scholar] [CrossRef]
- Sulleiro, M.V.; Quiroga, S.; Peña, D.; Pérez, D.; Guitián, E.; Criado, A.; Prato, M. Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 2018, 54, 2086–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, P.; Khataee, A.; Soltani, R.D.C.; Bhatnagar, A. A review on carbon-based materials for heterogeneous sonocatalysis: Fundamentals, properties and applications. Ultrason. Sonochem. 2019, 58, 10468. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Y.; Zhang, X.; Liao, W. Environmental transformation of graphene oxide in the aquatic environment. Chemosphere 2021, 262, 127885. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Wu, H.; Chen, H.; Xu, G.; Li, C. Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon 2020, 158, 568–579. [Google Scholar] [CrossRef]
- Gupta, S.; Banu, R.; Ameta, C.; Ameta, R.; Punjabi, P.B. Emerging trends in the syntheses of heterocycles using graphene-based carbocatalysts: An update. Top. Curr. Chem. 2019, 377, 13. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, M.; Hai, A.; Banat, F.; Haija, M.A. Application and prospects of carbon nanostructured materials in water treatment: A review. J. Water Proc. Eng. 2020, 33, 100996. [Google Scholar] [CrossRef]
- Yan, L.; Liu, Y.; Zhang, Y.; Liu, S.; Wang, C.; Chen, W.; Liu, C.; Chen, Z.; Zhang, Y. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2020, 297, 122381. [Google Scholar] [CrossRef] [PubMed]
- Minale, M.; Gu, Z.; Guadie, A.; Kabtamu, D.M.; Li, Y.; Wang, X. Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: A review. J. Environ. Manag. 2020, 276, 111310. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Kim, Y.M.; Kim, K.H.; Wang, D.; Su, C.; Yoon, Y. Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: A mini review. Chemosphere 2019, 221, 392–402. [Google Scholar] [CrossRef]
- Feng, J.; Ding, H.; Yang, G.; Wang, R.; Li, S.; Liao, J.; Li, Z.; Chen, D. Preparation of black-pearl reduced graphene oxide-sodium alginate hydrogel microspheres for adsorbing organic pollutants. J. Colloid Interface Sci. 2017, 508, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Le, A.T.; Pung, S.Y.; Stevens, L.; Neate, N.; Hou, X.; Grant, D.; Xu, F. Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites. Mater. Chem. Phys. 2021, 260, 124117. [Google Scholar] [CrossRef]
- Ganesan, V.; Louis, C.; Damodaran, S.P. Graphene oxide-mesoporous iron oxide nanohybrid: An efficient reusable nanoadsorbent for the removal of organic dyes from wastewater. Mater. Res. Express 2019, 6, 0850f8. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Oveisi, M.; Asadi, E. Synthesis of NENU metal-organic framework graphene oxide nanocomposites and their pollutant removal ability from water using ultrasound. J. Clean. Prod. 2019, 211, 198–212. [Google Scholar] [CrossRef]
- Chen, F.; Li, S.; Chen, Q.; Zheng, X.; Liu, P. 3D graphene aerogels-supported Ag and Ag@Ag3PO4 heterostructure for the efficient adsorption-photocatalysis capture of different dye pollutants in water. Mater. Res. Bull. 2018, 105, 334–341. [Google Scholar] [CrossRef]
- Wei, M.; Chai, H.; Cao, Y.; Jia, D. Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue. J. Colloid Interface Sci. 2018, 524, 297–305. [Google Scholar] [CrossRef]
- Jothinathan, L.; Hu, J. Kinetic evaluation of graphene oxide based heterogenous catalytic ozonation for the removal of ibuprofen. Water Res. 2018, 134, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. J. Colloid Interface Sci. 2017, 507, 250–259. [Google Scholar] [CrossRef]
- Serrano, M.; Chatzimitakos, T.; Gallego, M.; Stalikas, C.D. 1-Butyl-3-aminopropyl imidazolium-functionalized graphene oxide as a nanoadsorbent for the simultaneous extraction of steroids and β-blockers via dispersive solid–phase microextraction. J. Chromatogr. A 2016, 1436, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, Q.; Shen, L.; Li, R.; Tan, C.; Chen, T.; Liu, H.; Liu, Y.; Cai, Z.; Liu, G.; et al. Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products. Chemosphere 2019, 216, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Flores, N.; Sharif, F.; Yasri, N.; Brillas, E.; Sir, I.; Roberts, E.P.L. Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes. Chemosphere 2018, 201, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Gao, Y.; Zhu, K.; Wang, Q.; Wakeel, M.; Wahid, A.; Alharbi, N.S.; Chen, C. Investigation of the adsorption mechanisms of Pb(II) and 1-naphthol by β-cyclodextrin modified graphene oxide nanosheets from aqueous solution. J. Colloid Interface Sci. 2018, 530, 154–162. [Google Scholar] [CrossRef]
- Chen, A.; Bian, Z.; Xu, J.; Xin, X.; Wang, H. Simultaneous removal of Cr (VI) and phenol contaminants using Z-scheme bismuth oxyiodide/reduced graphene oxide/bismuthsulfide system under visible-light irradiation. Chemosphere 2017, 188, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, C.; Liu, S.; Yang, S. Superhydrophobic and superoleophilic grapheme aerogel for adsorption of oil pollutants from water. RSC Adv. 2019, 9, 8569–8574. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, Z.; Morad, A.; Taghi, M.; Reza, A. N-doped reduced graphene oxide aerogel for the selective adsorption of oil pollutants from water: Isotherm and kinetic study. J. Ind. Eng. Chem. 2018, 61, 416–426. [Google Scholar] [CrossRef]
- Sarno, M.; Casa, M.; Cirillo, C.; Ciambelli, P. Complete removal of persistent pesticide using reduced graphene oxide-silver nanocomposite. Chem. Eng. Trans. 2017, 60, 151–156. [Google Scholar]
- Wu, Z.; Yuan, X.; Zhong, H.; Wang, H.; Jiang, L.; Zeng, G.; Wang, H.; Liu, Z.; Li, Y. Highly efficient adsorption of Congo red in single and binary water with cationic dyes by reduced graphene oxide decorated NH2-MIL-68(Al). J. Mol. Liq. 2017, 247, 215–229. [Google Scholar] [CrossRef]
- Liu, M.; Xu, J.; Cheng, B.; Ho, W.; Yu, J. Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet-graphene oxide composites. Appl. Surf. Sci. 2015, 332, 121–129. [Google Scholar] [CrossRef]
- Du, Q.; Sun, J.; Li, Y.; Yang, X.; Wang, X.; Wang, Z.; Xia, L. Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 2014, 245, 99–106. [Google Scholar] [CrossRef]
- Khan, A.; Wang, J.; Li, J.; Wang, X.; Chen, Z.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review. Environ. Sci. Pollut. Res. 2017, 24, 7938–7958. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Chen, L.; Que, C.; Yang, K.; Deng, F.; Deng, X.; Shi, G.; Xu, G.; Wu, M. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by p-p interactions. Sci. Rep. 2016, 6, 31920. [Google Scholar] [CrossRef] [Green Version]
- Li, M.F.; Liu, Y.G.; Liu, S.B.; Zeng, G.M.; Hu, X.J.; Tan, X.F.; Jiang, L.H.; Liu, N.; Wen, J.; Liu, X.H. Performance of magnetic grapheme oxide/diethylenetriaminepentaacetic acid nanocomposite for the tetracycline and ciprofloxacin adsorption in sin. single and binary systems. J. Colloid Interface Sci. 2018, 521, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Fan, B.; Xiong, Y.; Jin, C.; Sun, Q.; Sheng, C. 3D assembly based on 2D structure of cellulose nanofibril/graphene oxide hybrid aerogel for adsorptive removal of antibiotics in water. Sci. Rep. 2017, 7, 45914. [Google Scholar] [CrossRef] [Green Version]
- Arabkhani, P.; Javadian, H.; Asfaram, A.; Ateia, M. Decorating graphene oxide with zeolitic imidazolate framework (ZIF-8) and pseudo-boehmite offers ultra-high adsorption capacity of diclofenac in hospital effluents. Chemosphere 2021, 271, 129610. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Ma, J.; Bi, D. Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ. Sci. Pollut. Res. 2015, 22, 4715–4724. [Google Scholar] [CrossRef]
- Yadav, S.; Goel, N.; Kumar, V.; Tikoo, K.; Singhal, S. Removal of fluoroquinolone from aqueous solution using graphene oxide: Experimental and computational elucidation. Environ. Sci. Pollut. Res. 2018, 25, 2942–2957. [Google Scholar] [CrossRef]
- Liu, F.F.; Zhao, J.; Wang, S.; Xing, B. Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environ. Pollut. 2016, 210, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Dong, S.; Sun, Y.; Gao, B.; Du, W.; Xu, H.; Wu, J. Graphene oxide facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media. J. Hazard. Mater. 2018, 348, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Yu, F.; Wang, R.; Ma, Y.; Wu, Y. Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater. Chemosphere 2018, 200, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Apul, O.G.; Karanfil, T. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Res. 2015, 79, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Wang, X.; Ai, Y.; Tan, X.; Hayat, T.; Hu, W.; Wang, X. Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides. J. Mater. Chem. A 2016, 4, 5654–5662. [Google Scholar] [CrossRef]
- Hernandez, B.; Pflüger, F.; Kruglik, S.G.; Cohen, R.; Ghomi, M. Protonationedeprotonation and structural dynamics of antidiabetic drug metformin. J. Pharm. Biomed. 2015, 114, 42–48. [Google Scholar] [CrossRef]
- Ivanković, K.; Kern, M.; Rožman, M. Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. J. Hazard. Mater. 2021, 414, 125554. [Google Scholar] [CrossRef]
- Hounfodji, J.W.; Kanhounnon, W.G.; Kpotin, G.; Atohoun, G.S.; Lainé, J.; Foucaud, Y.; Badawi, M. Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem. Eng. J. 2021, 407, 127176. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, Y.-G.; Liu, S.-b.; Zeng, G.-M.; Jiang, L.-H.; Tan, X.-F.; Zhou, L.; Zeng, W.; Li, T.-T.; Yang, C.-P. Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 2017, 179, 20–28. [Google Scholar] [CrossRef]
- Balasubramani, K.; Sivarajasekar, N.; Naushad, M. Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling. J. Mol. Liq. 2020, 301, 112426. [Google Scholar] [CrossRef]
- Wang, F.; Ma, S.; Si, Y.; Dong, L.; Wang, X.; Yao, J.; Chen, H.; Yi, Z.; Yao, W.; Xing, B. Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon 2017, 114, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Gao, B.; Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 2015, 282, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Shan, D.; Deng, S.; Li, J.; Wang, H.; He, C.; Cagnetta, G.; Wang, B.; Wang, Y.; Huang, J.; Yu, G. Preparation of porous graphene oxide by chemically intercalating a rigid molecule for enhanced removal of typical pharmaceuticals. Carbon 2017, 119, 101–109. [Google Scholar] [CrossRef]
- Bloom, J.W.; Wheeler, S.E. Taking the aromaticity out of aromatic interactions. Angew. Chem. Int. Ed. 2011, 50, 7847–7849. [Google Scholar] [CrossRef]
- Gonthier, J.F.; Steinmann, S.N.; Roch, L.; Ruggi, A.; Luisier, N.; Severin, K.; Corminboeuf, C. Corminboeuf π-Depletion as a criterion to predict π-stacking ability. Chem. Commun. 2012, 48, 9239–9241. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhao, Y.; Shan, S.; Yang, X.; Liu, D.; Cui, F.; Xing, B. Theoretical insight into the adsorption of aromatic compounds on graphene oxide. Environ. Sci. Nano 2018, 5, 2357–2367. [Google Scholar] [CrossRef]
- Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, USA, 1997; p. 303. [Google Scholar]
- Hiew, B.Y.Z.; Lee, L.Y.; Lai, K.C.; Gan, S.; Thangalazhy-Gopakumar, S.; Pan, G.-T.; Yang, T.C.-K. Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and ther. modynamic studies. Environ. Res. 2019, 168, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Odelius, K.; Rajarao, G.K.; Hakkarainen, M. Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem. Eng. J. 2018, 346, 557–566. [Google Scholar] [CrossRef]
- Salaa, F.; Bendenia, S.; Lecomte-Nana, G.L.; Khelifa, A. Enhanced removal of diclofenac by an organohalloysite intercalated via a novel route: Performance and mechanism. Chem. Eng. J. 2020, 396, 125226. [Google Scholar] [CrossRef]
- Nam, S.-W.; Jung, C.; Li, H.; Yu, M.; Flora, J.R.V.; Boateng, L.K.; Her, N.; Zoh, K.-D.; Yoon, Y. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere 2015, 136, 20–26. [Google Scholar] [CrossRef]
- Samah, N.A.; Sanchez-Martin, M.-J.; Sebastian, R.M.; Valiente, M.; Lopez-Mesas, M. Molecularly imprinted polymer for the removal of diclofenac from water: Synthesis and characterization. Sci. Total Environ. 2018, 631-632, 1534–1543. [Google Scholar] [CrossRef]
- Amaly, N.; Istamboulie, G.; El-Moghazy, A.Y.; Noguer, T. Reusable molecularly imprinted polymeric nanospheres for diclofenac removal from water samples. J. Chem. Res. 2021, 45, 102–110. [Google Scholar] [CrossRef]
- Khalil, A.M.E.; Memon, F.A.; Tabish, T.A.; Salmon, D.; Zhang, S.; Butler, D. Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chem. Eng. J. 2020, 398, 125440. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Koltsakidou, A.; Nanaki, S.G.; Bikiaris, D.N.; Lambropoulou, D.A. Removal of beta-blockers from aqueous media by adsorption onto graphene oxide. Sci. Total Environ. 2015, 537, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Al-Khateeb, L.A.; Almotiry, S.; Salam, M.A. Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J. 2014, 248, 191–199. [Google Scholar] [CrossRef]
- Rostamian, R.; Behnejad, H. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Ecotoxicol. Environ. Saf. 2018, 147, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wang, J.; Chen, B. Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid. Environ. Pollut. 2018, 232, 505–513. [Google Scholar] [CrossRef]
- He, R.; Li, Y.; Xiang, P.; Li, C.; Zhou, C.; Zhang, S.; Cui, X.; Ma, L.Q. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere 2016, 150, 528–535. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Lv, J.; Liu, W.; Sun, S.; Guo, C.; Xu, J. Distribution, source apportionment, and health risk assessment of phthalate esters in indoor dust samples across China. Environ. Sci. Eur. 2021, 33, 19. [Google Scholar] [CrossRef]
- Litts, B.S.; Eddy, M.K.; Zaretzky, P.M.; Ferguson, N.N.; Dichiara, A.B.; Rogers, R.E. Construction of a carbon nanomaterial-based nanocomposite aerogel for the removal of organic compounds from water. ACS Appl. Nano Mater. 2018, 1, 4127–4134. [Google Scholar] [CrossRef]
- Abdul, G.; Zhu, X.; Chen, B. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem. Eng. J. 2017, 31, 9–20. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, K.; Yang, B.; Chen, T.; Li, D.; Wu, H.; Wei, J.; Wu, X. Adsorption of dibutyl phthalate in aqueous solution by mesoporous calcium silicate grafted nonwoven polypropylene. Chem. Eng. J. 2016, 306, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Hiew, B.Y.Z.; Lee, L.Y.; Lee, X.J.; Gan, S.; Thangalazhy-Gopakumar, S.; Lim, S.S.; Pan, G.-T.; Yang, T.C.-K. Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2019, 98, 150–162. [Google Scholar] [CrossRef]
- Agarwal, S.; Sadeghi, N.; Tyagi, I.; Gupta, V.K.; Fakhri, A. Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J. Colloid Interface Sci. 2016, 478, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, H.T.; Yang, X.; Dong, A.J.; Zhang, H.; Wang, J.; Liu, G.Y.; Zhai, X.C. A simple and sensitive electrochemical sensor for new neonicotinoid insecticide Paichongding in grain samples based on β-cyclodextrin-graphene modified glassy carbon electrode. Sens. Actuators B Chem. 2016, 229, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Nodeh, H.R.; Ibrahim, W.A.W.; Kamboh, M.A.; Sanagi, M.M. New magnetic graphene-based inorganiceorganic sol-gel hybrid nanocomposite for simultaneous analysis of polar and non-polar organophosphorus pesticides from water samples using solid-phase extraction. Chemosphere 2017, 166, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Jhung, S.H. Composites of metal-organic frameworks: Preparation and application in adsorption. Mater. Today 2014, 17, 136–146. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Diercks, C.S.; Kalmutzki, M.J.; Diercks, N.J.; Yaghi, O.M. Conceptual advances from werner complexes to metal-organic frameworks. ACS Cent. Sci. 2018, 4, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Song, S.; Lim, J.H.; Kim, H.S.; Phan, B.T.; Ha, K.-T.; Park, S.; Park, K.H. Application of various metal-organic frameworks (MOFs) as catalysts for air and water pollution environmental remediation. Catalysts 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, A.; Pombeiro, A.J.L. Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications. Coord. Chem. Rev. 2019, 395, 86–129. [Google Scholar] [CrossRef]
- Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214. [Google Scholar] [CrossRef]
- Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M.B.; Ji, S.-W.; Jeon, B.-H. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 2019, 380, 330–352. [Google Scholar] [CrossRef]
- Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 2018, 20, 132–142. [Google Scholar] [CrossRef]
- Xu, W.; Yaghi, O.M. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent. Sci. 2020, 6, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, H.; Ma, Q.; Mo, K.; Mao, H.; Feldhoff, A.; Cao, X.; Li, Y.; Pan, F.; Jiang, Z. A MOF glass membrane for gas separation. Angew. Chem. Int. Ed. 2020, 59, 4365–4369. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Saifutdinov, B.R.; Chernyshev, V.V.; Vergun, V.V.; Kapustin, G.I.; Kurnysheva, Y.P.; Ilyin, M.M.; Kustov, L.M. Impact of the preparation on the performance of the microporous HKUST-1 metal-organic framework in the liquid-phase separation of aromatic compounds. Molecules 2020, 25, 2648. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Multifunctional metal–organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126–157. [Google Scholar] [CrossRef] [PubMed]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaeva, V.I.; Eliseev, O.L.; Chernyshev, V.V.; Bondarenko, T.N.; Vergun, V.V.; Kapustin, G.I.; Lapidus, A.L.; Kustov, L.M. Palladium nanoparticles embedded in MOF matrices: Catalytic activity and structural stability in iodobenzene methoxycarbonylation. Polyhedron 2019, 158, 55–64. [Google Scholar] [CrossRef]
- Gargiulo, N.; Peluso, A.; Caputo, D. MOF-Based Adsorbents for Atmospheric Emission Control: A Review. Processes 2020, 8, 613. [Google Scholar] [CrossRef]
- Viltres, H.; López, Y.C.; Gupta, N.K.; Leyva, C.; Paz, R.; Gupta, A.; Sengupta, A. Functional metal-organic frameworks for metal removal from aqueous solutions. Sep. Purif. Rev. 2020, 1–22. [Google Scholar] [CrossRef]
- Begum, S.; Hassan, Z.; Bräse, S.; Wöll, C.; Tsotsalas, M. Metal-organic framework-templated biomaterials: Recent progress in synthesis, functionalization, and applications. Acc. Chem. Res. 2019, 52, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, B.N.; Seo, P.W.; Khan, N.A.; Jhung, S.H. Hydrophobic cobalt-ethylimidazolate frameworks: Phase-pure syntheses and possible application in cleaning of contaminated water. Inorg. Chem. 2016, 55, 11362–11371. [Google Scholar] [CrossRef]
- Popp, T.M.O.; Plantz, A.Z.; Yaghi, O.M.; Reimer, J.A. Precise control of molecular self-diffusion in isoreticular and multivariate metal-organic frameworks. Chem. Phys. Chem. 2020, 21, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Bobbitt, N.S.; Mendonca, M.L.; Howarth, A.J.; Islamoglu, T.; Hupp, J.T.; Farha, O.K.; Snurr, R.Q. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 2017, 46, 3357–3385. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, L.; Shi, J.; Li, J.; Zhang, X.; Feng, M. Metal-organic frameworks/carbon-based materials for environmental remediation: State-of-the-art mini-review. J. Environ. Manag. 2019, 232, 964–977. [Google Scholar] [CrossRef]
- Singh, S.; Kaushal, S.; Kaur, J.; Kaur, G.; Mittal, S.K.; Singh, P.P. CaFu MOF as an efficient adsorbent for simultaneous removal of imidacloprid pesticide and cadmium ions from wastewater. Chemosphere 2021, 272, 129648. [Google Scholar] [CrossRef]
- Yang, J.-M.; Ying, R.-J.; Han, C.-X.; Hu, Q.-T.; Xu, H.-M.; Li, J.-H.; Wang, Q.; Zhang, W. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: Effects of Ce(iii) doping. Dalton Trans. 2018, 47, 3913–3920. [Google Scholar] [CrossRef]
- Hasan, Z.; Khan, N.A.; Jhung, S.H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks. Chem. Eng. J. 2016, 284, 1406–1413. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Tajahmadi, S.; Rezakazemi, M.; Sehat, A.A.; Molavi, H.; Aminabhavi, T.M.; Arjmand, M. Aluminum-based metal-organic frameworks for adsorptive removal of anti-cancer (methotrexate) drug from aqueous solutions. J. Environ. Manag. 2021, 277, 111448. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Vedenyapina, M.D.; Kulaishin, S.A.; Lobova, A.A.; Chernyshev, V.V.; Kapustin, G.I.; Tkachenko, O.P.; Vergun, V.V.; Arkhipov, D.A.; Nissenbaum, V.D.; et al. Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Trans. 2019, 48, 15091–15104. [Google Scholar] [CrossRef] [PubMed]
- Isaeva, V.I.; Kulaishin, S.A.; Vedenyapina, M.D.; Chernyshev, V.V.; Kapustin, G.I.; Vergun, V.V.; Kustov, L.M. Influence of the porous structure and functionality of the MIL type metal-organic frameworks and carbon matrices on the adsorption of 2,4-dichlorophenoxyacetic acid. Russ. Chem. Bull. 2021, 70, 67–74. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Taha, M.; Abdel-Gawad, H.; Hegazi, B. Amino-functionalized Al-MIL-53 for dimethoate pesticide removal from wastewater and their intermolecular interactions. J. Mol. Liq. 2021, 327, 114852. [Google Scholar] [CrossRef]
- Kong, J.; Zhu, F.; Huang, W.; He, H.; Hui, J.; Sun, C.; Xian, Q.; Yang, S. Sol-gel based metal-organic framework zeolite imidazolate framework-8 fibers for solid-phase microextraction of nitro polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in water samples. J. Chromatogr. A 2019, 1603, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Mon, M.; Bruno, R.; Ferrando-Soria, J.; Armentano, D.; Pardo, E. Metal-organic framework technologies for water remediation: Towards a sustainable ecosystem. J. Mater. Chem. A 2018, 6, 4912–4947. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Hassan, A.A.; Nabeel, F.; Bharagava, R.N.; Ferreira, L.F.R.; Tran, H.N.; Iqbal, H.M.N. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as Adsorbents. Environ. Res. 2020, 185, 109436. [Google Scholar] [CrossRef]
- Huang, L.; Shen, R.; Shuai, Q. Adsorptive removal of pharmaceuticals from water using metal-organic frameworks: A review. J. Environ. Manag. 2021, 277, 111389. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Z.; Yu, G.; Wu, H.; Chen, H.; Zhou, L.; Zhang, Y.; Su, Y.; Tan, S.; Yang, L.; et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere 2021, 272, 129501. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Cho, K.H.; Khan, N.A.; Hong, D.-Y.; Jhung, S.H. Liquid-phase adsorption of aromatics over a metal-organic framework and activated carbon: Effects of hydrophobicity/hydrophilicity of adsorbents and solvent polarity. J. Phys. Chem. C 2015, 119, 26620–26627. [Google Scholar] [CrossRef]
- Samokhvalov, A. Adsorption on mesoporous metal-organic frameworks in solution: Aromatic and heterocyclic compounds. Chem. Eur. J. 2015, 21, 16726–16742. [Google Scholar] [CrossRef]
- Seo, P.W.; Ji, S.; Sung, J. Adsorptive removal of hazardous organics from water with metal-organic frameworks. J. Korean Ind. Eng. Chem. 2016, 27, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Hasan, Z.; Jhung, S.H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244–245, 444–456. [Google Scholar] [CrossRef]
- Ramanayaka, S.; Vithanage, M.; Sarmah, A.; An, T.; Kim, K.-H.; Ok, Y.S. Performance of metal-organic frameworks for the adsorptive removal of potentially toxic elements in a water system: A critical review. RSC Adv. 2019, 9, 34359–34376. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, Y.; Shao, P.; Yang, L.; Sun, Y.; Yang, Y.; Cui, F.; Wang, W. Modulation of coordinative unsaturation degree and valence state for cerium-based adsorbent to boost phosphate adsorption. Chem. Eng. J. 2020, 394, 124912. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Zhang, J.; Tang, L.; Luo, L.; Zeng, G. Iron containing metal-organic frameworks: Structure, synthesis, and applications in environmental remediation. ACS Appl. Mater. Interfaces 2017, 9, 20255–20275. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Xiao, Y.; Tong, M.; Huang, H.; Liu, D.; Wang, L.; Zhong, C. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution. Chem. Eng. J. 2015, 275, 134–141. [Google Scholar] [CrossRef]
- Kumara, P.; Anand, B.; Tsang, Y.F.; Kim, K.-H.; Khullard, S.; Wang, B. Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenge. Environ. Res. 2019, 176, 108488. [Google Scholar] [CrossRef]
- Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF stability: Approaches and Applications. Chem. Sci. 2019, 10, 10209–10230. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic framework composites and their electrochemical applications. J. Mater. Chem. A. 2019, 7, 7301–7327. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Qi, X.-L.; Wang, D.-Y. Recent progress on metal-organic framework and its derivatives as novel fire retardants to polymeric materials. Nano-Micro Lett. 2020, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.L.; Xu, Q. Metal-Organic Framework Composites. Chem. Soc. Rev. 2014, 43, 5468–5512. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, B.; Huang, Y. Constructing nanosheet-like MOF on the carbon fiber surfaces for improving the interfacial properties of carbo fiber/epoxy composites. Appl. Surf. Sci. 2020, 514, 145870. [Google Scholar] [CrossRef]
- Liu, X.-W.; Sun, T.-J.; Hu, J.-L.; Wang, S.-D. Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A 2016, 4, 3584–3616. [Google Scholar] [CrossRef]
- McHugh, L.N.; Terracina, A.; Wheatley, P.S.; Buscarino, G.; Smith, M.; Morris, R.E. Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams. Angew. Chem. Int. Ed. 2019, 58, 11747–11751. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Lv, Z.; Song, F.; Zhong, Q. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J. Ind. Eng. Chem. 2015, 27, 102–107. [Google Scholar] [CrossRef]
- Ahmed, I.; Jhung, S.H. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding. J. Hazard. Mater. 2016, 314, 318–325. [Google Scholar] [CrossRef]
- Bayazit, Ş.S.; Yildiz, M.; Aşçi, Y.S.; Şahin, M.; Bener, M.; Eğlence, S.; Salam, M.A. Rapid adsorptive removal of naphthalene from water using graphene nanoplatelet/MIL-101 (Cr) nanocomposite. J. Alloy. Compd. 2017, 701, 740–749. [Google Scholar] [CrossRef]
- Xiong, W.; Zeng, G.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Liu, Y.; Hu, L.; Wan, J.; Zhou, C.; et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Sci. Total Environ. 2018, 627, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Xiao, X.; Duan, S.; Liu, J.; He, J.; Lei, J.; Wang, L. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water. Chem. Eng. Sci. 2018, 331, 64–74. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, X.; Liu, Z.; Zhang, Y.; Wang, J.; Lin, H.; Xu, D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. J. Mater. Sci. 2018, 53, 10772–10783. [Google Scholar] [CrossRef]
- Hasanzadeha, M.; Simchia, A.; Far, H.S. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 2021, 81, 405–414. [Google Scholar] [CrossRef]
- Azad, F.N.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Pezeshkpour, V. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrason. Sonochem. 2016, 31, 383–393. [Google Scholar] [CrossRef]
- Askari, H.; Ghaedi, M.; Dashtian, K.; Azghandi, M.H.A. Rapid and high-capacity ultrasonic assisted adsorption of ternary toxic anionic dyes onto MOF-5-activated carbon: Artificial neural networks, partial least squares, desirability function and isotherm and kinetic study. Ultrason. Sonochem. 2017, 37, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Marco-Lozar, J.P.; Juan-Juan, J.; Suárez-García, F.; Cazorla-Amorós, D.; Linares-Solano, A. MOF-5 and activated carbons as adsorbents for gas storage. Int. J. Hydrog. Energy 2012, 37, 2370–2381. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Hu, X.; Feng, R.; Zhou, M.; Han, D. In situ growth of ZIF-8 onto porous carbons as an efficient adsorbent for malachite green removal. J. Porous Mater. 2020, 27, 1109–1117. [Google Scholar] [CrossRef]
- Yoon, S.; Calvo, J.J.; So, M.C. Removal of Acid Orange 7 from Aqueous Solution by Metal-Organic Frameworks. Crystals 2019, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Aldawsari, A.M.; Alsohaimi, I.H.; Hassan, H.M.A.; Berber, M.R.; Abdalla, Z.E.A.; Hassan, I.; Saleh, E.A.M.; Hameed, B.H. Activated carbon/MOFs composite: AC/NH2-MIL-101(Cr), synthesis and application in high performance adsorption of p-nitrophenol. J. Saudi Chem. Soc. 2020, 24, 693–703. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Seo, P.W.; Jhung, S.H. Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem. Eng. J. 2016, 301, 27–34. [Google Scholar] [CrossRef]
- Gadipelli, S.; Guo, Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Jayaramulu, K.; Datta, K.K.R.; Rösler, C.; Petr, M.; Otyepka, M.; Zboril, R.; Fischer, R.A. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation. Angew. Chem. Int. Ed. 2016, 55, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Al-Naddaf, Q.; Al-Mansour, M.; Thakkar, H.; Rezaei, F. MOF-GO hybrid nanocomposite adsorbents for methane storage. Ind. Eng. Chem. Res. 2018, 57, 17470–17479. [Google Scholar] [CrossRef]
- Jia, M.; Feng, Y.; Liu, S.; Qiu, J.; Yao, J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. J. Membr. Sci. 2017, 539, 172–177. [Google Scholar] [CrossRef]
- Ma, J.; Guo, X.; Ying, Y.; Liu, D.; Zhong, C. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J. 2017, 313, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Muschi, M.; Serre, C. Progress and challenges of graphene oxide/metal-organic composites. Coord. Chem. Rev. 2019, 387, 262–272. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, M.; Liu, H.; Zhu, Y.; Wang, D.; Yan, M. Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial UiO-66-(OH)2/GO. Appl. Surf. Sci. 2020, 525, 146614. [Google Scholar] [CrossRef]
- Liu, Z.; He, W.; Zhang, Q.; Shapour, H.; Bakhtari, M.F. Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega 2021, 6, 4597–4608. [Google Scholar] [CrossRef]
- Sarker, M.; Song, J.Y.; Jhung, S.H. Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem. Eng. J. 2018, 335, 74–81. [Google Scholar] [CrossRef]
- Hasan, Z.; Choi, E.-J.; Jhung, S.H. Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups. Chem. Eng. J. 2013, 219, 537–544. [Google Scholar] [CrossRef]
- Seo, P.W.; Bhadra, B.N.; Ahmed, I.; Khan, N.A.; Jhung, S.H. Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: Remarkable adsorbents with hydrogen-bonding abilities. Sci. Rep. 2016, 6, 34462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea-Cachero, A.; Sánchez-Laínez, J.; Zornoza, B.; Romero-Pascual, E.; Téllez, C.; Coronas, J. Nanosheets of MIL-53(Al) applied in membranes with improved CO2/N2 and CO2/CH4 selectivities. Dalton Trans. 2019, 48, 3392–3403. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-c.; Yu, L.-l.; Xiao, F.-f.; You, X.; Yang, C.; Cheng, J.-h. Synthesis of aluminum-based MOF/graphite oxide composite and enhanced removal of methyl orange. J. Alloy. Compd. 2017, 724, 625–632. [Google Scholar] [CrossRef]
- Barthelet, K.; Marrot, J.; Ferey, G.; Riou, D. VIII(OH){O2C–C6H4–CO2}.(HO2C–C6H4–CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: Reticular synthesis with infinite inorganic building blocks? Chem. Commun. 2004, 5, 520–521. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, S.; Cheng, J.; Chen, Y. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution. J. Alloy. Compd. 2016, 687, 804–812. [Google Scholar] [CrossRef]
- Liang, R.; Shen, L.; Jing, F.; Wu, W.; Qin, N.; Lin, R.; Wu, L. NH2-mediated indium metal-organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Appl. Catal. B Environ. 2015, 162, 245–251. [Google Scholar] [CrossRef]
- Liu, X.-M.; Xie, L.-H.; Wu, Y. Recent advances in the shaping of metal-organic frameworks. Inorg. Chem. Front. 2020, 7, 2840–2866. [Google Scholar] [CrossRef]
- Yu, L.-L.; Cao, W.; Wu, S.-C.; Yang, C.; Cheng, J.-H. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: Preparation, characteristic, adsorption performance and mechanism. Ecotox. Environ. Saf. 2018, 164, 289–296. [Google Scholar] [CrossRef]
- Wu, Z.; Yuan, X.; Zhong, H.; Wang, H.; Zeng, G.; Chen, X.; Wang, H.; Zhang, L.; Shao, J. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite. Sci. Rep. 2016, 6, 25638–25651. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wu, J.; Zhu, M.; Zheng, Y.-Z.; Tao, X. Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2-GO metal-organic framework composites. J. Solid State Chem. 2020, 284, 121200. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, W.; Liu, F.; Yue, X.; Liu, Y.; Yang, M.; Li, Z.; Wang, J. Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem. Eng. J. 2017, 313, 19–26. [Google Scholar] [CrossRef]
- Zhu, X.; Li, B.; Yang, J.; Li, Y.; Zhao, W.; Shi, J.; Gu, J. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS. Appl. Mater. Int. 2015, 7, 223–231. [Google Scholar] [CrossRef]
- Yang, Q.; Lu, R.; Ren, S.S.; Chen, C.; Chen, Z.; Yang, X. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chem. Eng. J. 2018, 348, 202–211. [Google Scholar] [CrossRef]
- Hou, P.; Xinga, G.; Han, D.; Wang, H.; Yu, C.; Li, Y. Preparation of zeolite imidazolate framework/graphene hybrid aerogels and their application as highly efficient adsorbent. J. Solid State Chem. 2018, 265, 184–192. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, W.; Xie, Z.; Tan, Y.; Song, Y.; Zheng, Q. Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π-π interactions. J. Mater. Chem. A 2016, 4, 12126–12135. [Google Scholar] [CrossRef]
- Alsmail, N.H.; Suyetin, M.; Yan, Y.; Cabot, R.; Krap, C.P.; Lü, J.; Easun, T.L.; Bichoutskaia, E.; Lewis, W.; Blake, A.J.; et al. Analysis of high and selective uptake of CO2 in an oxamide-containing {Cu2(OOCR)4}-based metal–organic framework. Chem. Eur. J. 2014, 20, 7317–7324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanhaeia, M.; Mahjouba, A.R.; Safarifard, V. Sonochemical synthesis of amide-functionalized metal-organic framework/graphene oxide nanocomposite for the adsorption of methylene blue from aqueous solution. Ultrason. Sonochem. 2018, 41, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Chen, D.; Wei, F.; Chen, N.; Liang, Z.; Luo, Y. Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrason. Sonochem. 2017, 39, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhuang, Y.; Han, K.; Shi, B. Enhanced tetracycline adsorption using alginate-graphene-ZIF-67 aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2020, 588, 124360. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Xu, D.; Huang, X.; Xu, X.; Zheng, S.; Zhang, Y.; Lin, H. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr. Polym. 2017, 175, 584–591. [Google Scholar] [CrossRef]
- Ventura, K.; Arrieta, R.A.; Marcos-Hernández, M.; Jabbari, V.; Powell, C.D.; Turley, R.; Lounsbury, A.W.; Zimmerman, J.B.; Gardea-Torresdey, J.; Wong, M.S.; et al. Superparamagnetic MOF@GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents. Sci. Total Environ. 2020, 738, 139213. [Google Scholar] [CrossRef]
- Hadi, P.; Yeung, K.Y.; Barford, J.; An, K.J.; Mckay, G. Significance of microporosity on the interaction of phenol with porous graphitic carbon. Chem. Eng. J. 2015, 269, 20–26. [Google Scholar] [CrossRef]
- Xiong, W.; Zeng, Z.; Li, X.; Zeng, G.; Xiao, R.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Hu, L.; et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere 2018, 210, 1061–1069. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Duan, Q.; Li, X.; Tan, X.; Alsaedi, A.; Hayat, T.; Chen, C. Mutual effects behind the simultaneous U(VI) and humic acid adsorption by hierarchical MWCNT/ZIF-8 composites. J. Mol. Liq. 2019, 288, 110971. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Qi, Z.; Zhang, L.; Zhang, Y.; Huang, H.; Peng, Y. Designing ZIF-8/hydroxylated MWCNT nanocomposites for phosphate adsorption from water: Capability and mechanism. Chem. Eng. J. 2020, 394, 124992. [Google Scholar] [CrossRef]
- Abdi, J.; Vossoughi, M.; Mahmoodi, N.M.; Alemzadeh, I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 2017, 326, 1145–1158. [Google Scholar] [CrossRef]
- Sun, H.; Ju, C.; Zhao, Y.; Wang, C.; Peng, X.; Wu, Y. Preparation of SiO2@ZIF-67-CNTs and research on its adsorption performance at low-temperature. Colloids Surf. A 2020, 603, 125205. [Google Scholar] [CrossRef]
- Navarathna, C.M.; Dewage, N.B.; Karunanayake, A.G.; Farmer, E.L.; Perez, F.; Hassan, E.B.; Mlsna, T.E.; Pittman, C.U., Jr. Rhodamine b adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/Magnetic Magnetite/Biochar composites. J. Inorg. Organomet. Polym. 2020, 30, 214–229. [Google Scholar] [CrossRef]
- He, Y.; Shang, J.; Zhao, Q.; Gu, Q.; Xie, K.; Li, G.; Singh, R.; Xiao, P.; Weble, P.A. A comparative study on conversion of porous and non-porous metal-organic frameworks (MOFs) into carbon-based composites for carbon dioxide capture. Polyhedron 2016, 120, 30–35. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, R.; Qiu, T.; Zou, R.; Xu, Q. Metal organic framework derived materials for electrochemical energy applications. EnergyChem 2019, 1, 100001. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.-L.; Zou, R.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef] [Green Version]
- Mubarak, N.; Ihsan-Ul-Haq, M.; Huang, H.; Cui, J.; Yao, S.; Susca, A.; Wu, J.; Wang, M.; Zhang, X.; Huang, B.; et al. Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. J. Mater. Chem. A 2020, 8, 10269–10282. [Google Scholar] [CrossRef]
- Christensen, D.B.; Mortensen, R.L.; Kramer, S.; Kegnaes, S. Study of CoCu Alloy Nanoparticles Supported on MOF-Derived Carbon for Hydrosilylation of Ketones. Catal. Lett. 2020, 50, 1537–1545. [Google Scholar] [CrossRef]
- Li, W.; Zhang, A.; Jiang, X.; Chen, C.; Liu, Z.; Song, C.; Guo, X. Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size. ACS Sustain. Chem. Eng. 2017, 5, 7824–7831. [Google Scholar] [CrossRef]
- Wang, C.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J.; Yamauchi, Y. New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. Chem 2020, 6, 19–40. [Google Scholar] [CrossRef]
- Shen, Q.; Li, X.; Li, R.; Wu, Y. Application of metal-organic framework materials and derived porous carbon materials in catalytic hydrogenation. ACS Sustain. Chem. Eng. 2020, 8, 17608–17621. [Google Scholar] [CrossRef]
- Wang, L.; Tang, P.; Liu, J.; Geng, A.; Song, C.; Zhong, Q.; Xu, L.; Gan, L. Multifunctional ZnO-porous carbon composites derived from MOF-74(Zn) with ultrafast pollutant adsorption capacity and supercapacitance properties. J. Colloid Interface Sci. 2019, 554, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Bhadraa, B.N.; Song, J.Y.; Lee, S.-K.; Hwang, Y.K.; Jhung, S.H. Adsorptive removal of aromatic hydrocarbons from water over metalazolate framework-6-derived carbons. J. Hazard. Mater. 2018, 344, 1069–1077. [Google Scholar] [CrossRef]
- Li, X.; Yuan, H.; Quan, X.; Chen, S.; You, S. Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks. J. Environ. Sci. 2018, 63, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.V.; Nguyen, D.T.C.; Nguyen, T.T.; Le, H.T.N.; Van Nguyen, C.; Nguyen, T.D. Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: Rapid synthesis and uptake application in antibiotics remediation. J. Water Proc. Eng. 2020, 36, 101319. [Google Scholar] [CrossRef]
- Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, P.; Xu, J.; Han, J.; Wang, D.; Hao, C.; Alanagh, H.R.; Long, C.; Shi, X.; Tang, Z. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: The calcining temperature effect and the mechanism. Nanoscale 2019, 11, 4911–4917. [Google Scholar] [CrossRef]
- Shi, X.; Gong, J.; Kierzek, K.; Michalkiewicz, B.; Zhang, S.; Chu, P.K.; Chen, X.; Tang, T.; Mijowska, E. Multifunctional nitrogen-doped nanoporous carbons derived from metal–organic frameworks for efficient CO2 storage and high-performance lithium-ion batteries. New J. Chem. 2019, 43, 10405–10412. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Lee, H.-w.; Yi, C.; Cheng, C.; Zhao, X.; Yang, M. Ultrasmall Metal–Organic Framework Zn-MOF-74 Nanodots: Size-Controlled Synthesis and Application for Highly Selective Colorimetric Sensing of Iron(III) in Aqueous Solution. ACS Appl. Nano Mater. 2018, 1, 3747–3753. [Google Scholar] [CrossRef]
- Cendrowski, K.; Opała, K.; Mijowska, E. Carbonized lanthanum-based metal-organic framework with parallel arranged channels for azo-dye adsorption. Nanomaterials 2020, 10, 1053. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, X.; Hu, X.; Feng, R.; Zhou, M. Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water. Chem. Eng. J. 2019, 375, 122003. [Google Scholar] [CrossRef]
- Pan, Y.; Ding, Q.; Li, B.; Wang, X.; Liu, Y.; Chen, J.; Ke, F.; Liu, J. Self-adjusted bimetallic zeolitic-imidazolate framework-derived hierarchical magnetic carbon composites as efficient adsorbent for optimizing drug contaminant removal. Chemosphere 2021, 263, 128101. [Google Scholar] [CrossRef] [PubMed]
- Sarker, M.; Shin, S.; Jhung, S.H. Adsorptive removal of nitroimidazole antibiotics from water using porous carbons derived from melamine-loaded MAF-6. J. Hazard. Mater. 2019, 378, 120761. [Google Scholar] [CrossRef]
- Ahmed, I.; Panja, T.; Khan, N.A.; Sarker, M.; Yu, J.-S.; Jhung, S.H. Nitrogen-doped porous carbons from ionic liquids@MOF: Remarkable adsorbents for both aqueous and non-aqueous media. ACS Appl. Mater. Interfaces 2017, 9, 10276–10285. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Singha, S.; Sarkar, U. Adsorption of para chloro meta xylenol (PCMX) in composite adsorbent beds: Parameter estimation using nonlinear least square technique. Chem. Eng. J. 2009, 152, 361–366. [Google Scholar] [CrossRef]
- Saha, S.; Sarkar, U.; Mondal, S. Modelling the transient behaviour of a fixed bed considering both intra and inter-pellet diffusion for adsorption of parachloro-metaxylenol (PCMX). Desalin. Water Treat. 2012, 37, 277–287. [Google Scholar] [CrossRef]
- Jung, K.-W.; Kim, J.-H.; Choi, J.-W. Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride. Compos. Part B 2020, 187, 107867. [Google Scholar]
- Zhu, G.; Lin, J.; Yuan, Q.; Wang, X.; Zhao, Z.; Hursthouse, A.S.; Wang, Z.; Li, Q. A biochar supported magnetic metal organic framework for the removal of trivalent antimony. Chemosphere 2021, 282, 131068. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, S.; Xi, C.; Su, H.; Chen, Z. A new nanocomposite assembled with metal organic framework and magnetic biochar derived from pomelo peels: A highly efficient adsorbent for ketamine in wastewater. J. Environ. Chem. Eng. 2021, 9, 106207. [Google Scholar] [CrossRef]
- Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents: Review. Sep. Purif. Methods 2011, 29, 189–232. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manag. 2010, 91, 1915–1929. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Yahya, M.A.; Al-Shannag, M. On the performance of bioadsorption processes for heavy metal ions removal by low-cost agricultural and natural by-products bioadsorbent: A review. Desalin. Water Treat. 2017, 85, 339–357. [Google Scholar] [CrossRef]
- Feng, Y.; Dionysiou, D.D.; Wu, Y.; Zhou, H.; Xue, L.; He, S.; Yang, L. Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: Adsorption process and disposal methodology of depleted bioadsorbents. Bioresour. Technol. 2013, 138, 191–197. [Google Scholar] [CrossRef]
- Zanella, O.; Tessaro, I.C.; Féris, L.A. Desorption- and Decomposition-Based Techniques for the Regeneration of Activated Carbon. Chem. Eng. Technol. 2014, 37, 1447–1459. [Google Scholar] [CrossRef]
- McQuillan, R.V.; Stevens, G.W.; Mumford, K.A. The electrochemical regeneration of granular activated carbons: A review. J. Hazard. Mater. 2018, 355, 34–49. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Microwave-assisted regeneration of activated carbon. Bioresour. Technol. 2012, 119, 234–240. [Google Scholar] [CrossRef]
- Zhang, H. Regeneration of exhausted activated carbon by electrochemical method. Chem. Eng. J. 2002, 85, 81–85. [Google Scholar] [CrossRef]
- Sheintuch, M. Comparison of catalytic processes with other regeneration methods of activated carbon. Catal. Today 1999, 53, 73–80. [Google Scholar] [CrossRef]
- Badescu, I.S.; Bulgariu, D.; Ahmad, I.; Bulgariu, L. Valorisation possibilities of exhausted biosorbents loaded with metal ions—A review. J. Environ. Manag. 2018, 224, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Weil, R.R. The Soil Underfoot—Infinite Possibilities for a Finite Resource; CRC Press: Boca Raton, FL, USA, 2016; Volume 80, pp. 803–804. [Google Scholar]
- Tindall, R. Sacred Soil: Biochar and the Regeneration of the Earth; North Atlantic Books: Berkeley, CA, USA, 2017. [Google Scholar]
- Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K. Biochar production, activation and adsorptive applications: A review. Environ. Chem. Lett. 2021, 19, 2237–2259. [Google Scholar] [CrossRef]
- Tay, T.; Ucar, S.; Karagöz, S. Preparation and characterization of activated carbon from waste biomass. J. Hazard. Mater. 2009, 165, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, S.-A.; Meknati, A.; Lima, E.C.; Dotto, G.L.; Mendoza-Castillo, D.I.; Anastopoulos, I.; Alakhras, F.; Unuabonah, E.I.; Singh, P.; Hosseini-Bandegharaei, A. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J. Environ. Manag. 2019, 236, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, M.; Manikandan, R.; Park, S.; Kim, B.C.; Cho, W.-J.; Yu, K.H.; Raj, C.J. Pinecone biomass-derived activated carbon: The potential electrode material for the development of symmetric and asymmetric supercapacitors. Int. J. Energy Res. 2020, 44, 8591–8605. [Google Scholar] [CrossRef]
- Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Schadeck Netto, M.; Oliveira, M.L.S.; Seliem, M.K.; Luiz Dotto, G.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chem. Eng. J. 2020, 388, 124263. [Google Scholar] [CrossRef]
- Gratuito, M.K.B.; Panyathanmaporn, T.; Chumnanklang, R.A.; Sirinuntawittaya, N.; Dutta, A. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresour. Technol. 2008, 99, 4887–4895. [Google Scholar] [CrossRef]
- Wang, T.; Tan, S.; Liang, C. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon 2009, 47, 1880–1883. [Google Scholar] [CrossRef]
- Niazi, N.K.; Murtaza, B.; Bibi, I.; Shahid, M.; White, J.C.; Nawaz, M.F.; Bashir, S.; Shakoor, M.B.; Choppala, G.; Murtaza, G.; et al. Removal and Recovery of Metals by Biosorbents and Biochars Derived From Biowastes. In Environmental Materials and Waste: Resource Recovery and Pollution Prevention; Academic Press: Cambridge, MA, USA, 2016; pp. 149–177. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Panwar, N.L.; Pawar, A. Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Taweekun, J.; Mofijur, M.; Rasul, M.G.; Mahlia, T.M.I.; Ashrafur, S.M. An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef] [Green Version]
- Quicker, P.; Weber, K. (Eds.) Biokohle: Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten, 1st ed.; Springer: Wiesbaden, Germany, 2016. [Google Scholar] [CrossRef]
- EBC. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; European Biochar Foundation (EBC): Arbaz, Switzerland, 2012. [Google Scholar]
- Nair, R.R.; Mondal, M.M.; Weichgrebe, D. Biochar from co-pyrolysis of urban organic wastes-investigation of carbon sink potential using ATR-FTIR and TGA. Biomass Convers. Biorefinery 2020, 10, 1–16. [Google Scholar] [CrossRef]
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil (IBI Biochar Standards); IBI: Binghamton, NY, USA, 2015. [Google Scholar]
- EBC. Positive List of Permissible Biomasses for the Production of Biochar. Available online: https://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf (accessed on 1 October 2021).
- Xiao, X.; Chen, Z.; Chen, B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci. Rep. 2016, 6, 22644. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; McNamara, P.J.; Mayer, B.K. Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environ. Sci. Water Res. Technol. 2019, 5, 821–838. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Z.; Shi, R.; Tang, J.; Lv, L.; Wang, J.; Fan, Y. Thermal oxidation activation of hydrochar for tetracycline adsorption: The role of oxygen concentration and temperature. Bioresour. Technol. 2020, 306, 123096. [Google Scholar] [CrossRef] [PubMed]
- Smider, B.; Singh, B. Agronomic performance of a high ash biochar in two contrasting soils. Agric. Ecosyst. Environ. 2014, 191, 99–107. [Google Scholar] [CrossRef]
- Haddad, K.; Jeguirim, M.; Jellali, S.; Thevenin, N.; Ruidavets, L.; Limousy, L. Biochar production from Cypress sawdust and olive mill wastewater: Agronomic approach. Sci. Total Environ. 2021, 752, 141713. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Z.; Ali, S.; Rizwan, M.; Zaheer, I.E.; Malik, A.; Riaz, M.A.; Shahid, M.R.; Rehman, M.Z.u.; Al-Wabel, M.I. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar. Arab. J. Geosci. 2018, 11, 448. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 2020, 18, 3273–3294. [Google Scholar] [CrossRef]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. Biochar efficiency in pesticides sorption as a function of production variables—A review. Environ. Sci. Pollut. Res. Int. 2015, 22, 13824–13841. [Google Scholar] [CrossRef]
- Zhang, H.; Voroney, R.P.; Price, G.W. Effects of Temperature and Activation on Biochar Chemical Properties and Their Impact on Ammonium, Nitrate, and Phosphate Sorption. J. Environ. Qual. 2017, 46, 889–896. [Google Scholar] [CrossRef]
- Qiu, B.; Duan, F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2019, 571, 86–93. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.K.; Jung, J.; Hyun, S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour. Technol. 2013, 148, 196–201. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Da Silva, E.B.; De Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Han, J.; Chu, K.H.; Al-Hamadani, Y.A.J.; Her, N.; Heo, J.; Yoon, Y. Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: Experiment and modeling. J. Ind. Eng. C Hem. 2017, 48, 186–193. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Huang, H.; Yao, W.; Li, R.; Ali, A.; Du, J.; Guo, D.; Xiao, R.; Guo, Z.; Zhang, Z.; Awasthi, M.K. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresour. Technol. 2018, 249, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, D.; Liu, X.; Meng, J.; Tang, C.; Xu, J. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard. Mater. 2018, 348, 10–19. [Google Scholar] [CrossRef]
- Saadat, S.; Raei, E.; Talebbeydokhti, N. Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar: Comparative study of various modifying cations and RSM based optimization of pyrolysis parameters. J. Environ. Manag. 2018, 225, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, N.; Luo, Y.; Zhang, H.; Su, L.; Oh, K.; Cheng, H. Efficient Removal of Cu(II), Zn(II), and Cd(II) from Aqueous Solutions by a Mineral-Rich Biochar Derived from a Spent Mushroom (Agaricus bisporus) Substrate. Materials 2020, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shao, J.; Jin, Q.; Zhang, X.; Yang, H.; Chen, Y.; Zhang, S.; Chen, H. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar. Sci. Total Environ. 2020, 716, 137016. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Yao, F.X.; Arbestain, M.C.; Virgel, S.; Blanco, F.; Arostegui, J.; Macia-Agullo, J.A.; Macias, F. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere 2010, 80, 724–732. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Anand, A.; Kaushal, P. Production, activation, and applications of biochar in recent times. Biochar 2020, 2, 253–285. [Google Scholar] [CrossRef]
- Mandal, S.; Sarkar, B.; Igalavithana, A.D.; Ok, Y.S.; Yang, X.; Lombi, E.; Bolan, N. Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties. Bioresour. Technol. 2017, 246, 160–167. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Chen, W.; Yang, H.; Chen, H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour. Technol. 2017, 246, 101–109. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgul, G.; Frost, H.; Moreno-Jimenez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Koltowski, M.; Charmas, B.; Skubiszewska-Zieba, J.; Oleszczuk, P. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicol. Environ. Saf. 2017, 136, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, N.A.; Yusup, S. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem. Eng. J. 2017, 314, 277–290. [Google Scholar] [CrossRef]
- Ren, X.; Wang, F.; Zhang, P.; Guo, J.; Sun, H. Aging effect of minerals on biochar properties and sorption capacities for atrazine and phenanthrene. Chemosphere 2018, 206, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Yuan, X.; Sun, H. Dynamic changes in atrazine and phenanthrene sorption behaviors during the aging of biochar in soils. Environ. Sci. Pollut. Res. Int. 2018, 25, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhou, Z.; Han, R.; Meng, R.; Wang, H.; Lu, W. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism. Chemosphere 2015, 134, 286–293. [Google Scholar] [CrossRef]
- Jung, K.W.; Kim, K.; Jeong, T.U.; Ahn, K.H. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour. Technol. 2016, 200, 1024–1028. [Google Scholar] [CrossRef]
- Jin, H.; Capareda, S.; Chang, Z.; Gao, J.; Xu, Y.; Zhang, J. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresour. Technol. 2014, 169, 622–629. [Google Scholar] [CrossRef]
- Schmidt, H.-P. 55 Uses of Biochar. Ithaka J. 2013, 1, 286–289. [Google Scholar]
- Senthilkumar, R.; Prasad, D.M. Sorption of Heavy Metals onto Biochar. In Applications of Biochar for Environmental Safety; IntechOpen: London, UK, 2020. [Google Scholar]
- Inyang, M.; Dickenson, E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Calisto, V.; Ferreira, C.I.; Santos, S.M.; Gil, M.V.; Otero, M.; Esteves, V.I. Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. Bioresour. Technol. 2014, 166, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chena, B.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhang, L.; Wu, Y. ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor. Electrochim. Acta 2016, 213, 260–269. [Google Scholar] [CrossRef]
- Netherway, P.; Reichman, S.M.; Laidlaw, M.; Scheckel, K.; Pingitore, N.; Gasco, G.; Mendez, A.; Surapaneni, A.; Paz-Ferreiro, J. Phosphorus-Rich Biochars Can Transform Lead in an Urban Contaminated Soil. J. Environ. Qual. 2019, 48, 1091–1099. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kipkemoi Kirui, W.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef]
- Kalderis, D.; Kayan, B.; Akay, S.; Kulaksız, E.; Gözmen, B. Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: Process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste. J. Environ. Chem. Eng. 2017, 5, 2222–2231. [Google Scholar] [CrossRef]
- Wiśniewski, D.; Gołaszewski, J.; Białowiec, A. The pyrolysis and gasification of digestate from agricultural biogas plant/Piroliza i gazyfikacja pofermentu z biogazowni rolniczych. Arch. Environ. Protect. 2015, 41, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, S.; Chen, K.; Wang, T.; Mei, M.; Li, J. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties. Bioresour. Technol. 2020, 302, 122841. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Lin, R.; Shi, Q.; Xu, S. Evaluation of the Bioavailability of Heavy Metals and Phosphorus in Biochar Derived from Manure and Manure Digestate. Water Air Soil Pollut. 2020, 231, 553. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Yu, H.; Li, Y.; Yuan, Q.; Xiao, H.; Li, F.; Pan, B. Using sewage sludge with high ash content for biochar production and Cu(II) sorption. Sci. Total Environ. 2020, 713, 136663. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnętrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liang, X.; He, M.; Liu, Y.; Tian, G.; Shi, J. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 2016, 142, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; Melo, I.; Melo, L.C.A.; Magriotis, Z.M.; Sanchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [Green Version]
- Sarfraz, R.; Li, S.; Yang, W.; Zhou, B.; Xing, S. Assessment of Physicochemical and Nutritional Characteristics of Waste Mushroom Substrate Biochar under Various Pyrolysis Temperatures and Times. Sustainability 2019, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, N.A.d.; Costa, L.M.d.; Melo, L.C.A.; Siebeneichlerd, E.A.; Tronto, J. Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Rev. Ciênc. Agron. 2017, 48. [Google Scholar] [CrossRef]
- Murray, J.; Keith, A.; Singh, B. The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy. Soil Biol. Biochem. 2015, 89, 217–225. [Google Scholar] [CrossRef]
- Xie, S.; Yu, G.; Li, C.; Li, J.; Wang, G.; Dai, S.; Wang, Y. Treatment of high-ash industrial sludge for producing improved char with low heavy metal toxicity. J. Anal. Appl. Pyrol. 2020, 150, 104866. [Google Scholar] [CrossRef]
- Ghani, W.A.W.A.K.; Mohd, A.; Da Silva, G.; Bachmann, R.T.; Taufiq-Yap, Y.H.; Rashid, U.; Al-Muhtaseb, A.a.H. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Ind. Crop. Prod. 2013, 44, 18–24. [Google Scholar] [CrossRef]
- Abdullah, H.; Wu, H. Biochar as a Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions. Energy Fuels 2009, 23, 4174–4181. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Lee, S.E.; Lee, Y.H.; Tsang, D.C.W.; Rinklebe, J.; Kwon, E.E.; Ok, Y.S. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 2017, 174, 593–603. [Google Scholar] [CrossRef]
- Griffin, D.E.; Wang, D.; Parikh, S.J.; Scow, K.M. Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agric. Ecosyst. Environ. 2017, 236, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Karaosmanoǧlu, F.; Işıḡıgür-Ergüdenler, A.; Sever, A. Biochar from the Straw-Stalk of Rapeseed Plant. Energy Fuels 2000, 14, 336–339. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Lv, S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Hernandez-Mena, L.; Pecora, A.; Beraldo, A. Slow Pyrolysis of Bamboo Biomass: Analysis of Biochar Properties. Chem. Eng. Transact. 2014, 37, 115–120. [Google Scholar]
- Jeong, C.Y.; Dodla, S.K.; Wang, J.J. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere 2016, 142, 4–13. [Google Scholar] [CrossRef]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.N.; CalderÓN, F.C.; Acosta-MartÍNez, V.; Mikha, M.M.; Benjamin, J.; Rutherford, D.W.; Rostad, C.E. Switchgrass Biochar Effects on Plant Biomass and Microbial Dynamics in Two Soils from Different Regions. Pedosphere 2015, 25, 329–342. [Google Scholar] [CrossRef]
- Oginni, O.; Singh, K. Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars. J. Environ. Chem. Eng. 2020, 8, 104169. [Google Scholar] [CrossRef]
- Hina, K.; Hedley, M.; Camps-Arbestain, M.; Hanly, J. Comparison of Pine Bark, Biochar and Zeolite as Sorbents for NH4+-N Removal from Water. CLEAN—Soil Air Water 2015, 43, 86–91. [Google Scholar] [CrossRef]
- Puglla, E.P.; Guaya, D.; Tituana, C.; Osorio, F.; García-Ruiz, M.J. Biochar from Agricultural by-Products for the Removal of Lead and Cadmium from Drinking Water. Water 2020, 12, 2933. [Google Scholar] [CrossRef]
- Salam, A.; Bashir, S.; Khan, I.; Hu, H. Biochar production and characterization as a measure for effective rapeseed residue and rice straw management: An integrated spectroscopic examination. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Cheng, C.K.; Rasit, N.; Ooi, C.K.; Ma, N.L.; Ng, J.H.; Lam, W.H.; Chong, C.T.; Chase, H.A. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J. Environ. Manag. 2018, 213, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Akay, S. Pre-treatment of landfill leachate by biochar for the reduction of chemical oxygen demand: The effect of treatment time, temperature and biochar dose. J. Iran. Chem. Soc. 2021, 18, 1729–1739. [Google Scholar] [CrossRef]
- Xu, X.; Schierz, A.; Xu, N.; Cao, X. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon. J. Colloid Interface Sci. 2016, 463, 55–60. [Google Scholar] [CrossRef]
- Paranavithana, G.N.; Kawamoto, K.; Inoue, Y.; Saito, T.; Vithanage, M.; Kalpage, C.S.; Herath, G.B.B. Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environ. Earth Sci. 2016, 75, 484. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, S.M.; Wu, R.R.; Zhang, L.; Wang, P.; Xiao, R.B. Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars. Environ. Pollut. 2021, 275, 116485. [Google Scholar] [CrossRef]
- Li, J.; Yu, G.; Pan, L.; Li, C.; You, F.; Wang, Y. Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste. Environ. Sci. Pollut. Res. Int. 2020, 27, 22806–22817. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, R.; Zhao, B.; Fan, G.; Li, H.; Xu, X.; Zhang, M. Preparation of Porous Biochars by the Co-Pyrolysis of Municipal Sewage Sludge and Hazelnut Shells and the Mechanism of the Nano-Zinc Oxide Composite and Cu(II) Adsorption Kinetics. Sustainability 2020, 12, 8668. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Krauskopf, K.B.; Bird, D.K. Introduction to Geochemistry; McGraw-Hill: New York, NY, USA, 1967; Volume 721. [Google Scholar]
- Harvey, O.R.; Herbert, B.E.; Rhue, R.D.; Kuo, L.-J. Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry. Environ. Sci. Technol. 2011, 45, 5550–5556. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Ding, W.; Pullammanappallil, P.; Zimmerman, A.; Cao, X. Enhanced Lead Sorption by Biochar Derived from Anaerobically Digested Sugarcane Bagasse. Sep. Sci. Technol. 2011, 46, 1950–1956. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Ma, L.Q.; Li, Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 2011, 190, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Zimmerman, A.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Crabtree, R.H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mohan, D.; Pittman, C.U.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P.H.; Alexandre-Franco, M.F.; Gómez-Serrano, V.; Gong, H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 2007, 310, 57–73. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.-S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 2009, 167, 933–939. [Google Scholar] [CrossRef]
- Rosales, E.; Meijide, J.; Pazos, M.; Sanromán, M.A. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresour. Technol. 2017, 246, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sun, L.; Asadullah, M.; Belhaj, D. Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds. J. Hazard. Mater. 2018, 360, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Sposito, G. On the surface complexation model of the oxide-aqueous solution interface. J. Colloid Interface Sci. 1983, 91, 329–340. [Google Scholar] [CrossRef]
- Thomas, F.; Bottero, J.Y.; Cases, J.M. An experimental study of the adsorption mechanisms of aqueous organic acids on porous aluminas 2. Electrochemical modelling of salicylate adsorption. Colloids Surf. 1989, 37, 281–294. [Google Scholar] [CrossRef]
- Chaukura, N.; Murimba, E.C.; Gwenzi, W. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge. Appl. Water Sci. 2017, 7, 2175–2186. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Lang, Y. Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. J. Taiwan Inst. Chem. Eng. 2018, 88, 152–160. [Google Scholar] [CrossRef]
- Chemerys, V.; Baltrėnaitė-Gedienė, E. Pine-derived Biochar as Option for Adsorption of Cu, Zn, Cr, Pb, Ni and Decreasing of BOD5 in Landfill Leachate. Moksl.-Liet. Ateitis 2017, 9, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Wathukarage, A.; Herath, I.; Iqbal, M.; Vithanage, M. Mechanistic understanding of crystal violet dye sorption by woody biochar: Implications for wastewater treatment. Environ. Geochem. Health 2019, 41, 1647–1661. [Google Scholar] [CrossRef]
- Zazycki, M.A.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 2018, 171, 57–65. [Google Scholar] [CrossRef]
- Zhu, N.; Yan, T.; Qiao, J.; Cao, H. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere 2016, 164, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Mourgela, R.-N.; Regkouzas, P.; Pellera, F.-M.; Diamadopoulos, E. Ni(II) Adsorption on Biochars Produced from Different Types of Biomass. Water Air Soil Pollut. 2020, 231, 206. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Li, Y.; Liu, Y.; Chen, Y.; Li, H.; Li, L.; Xu, F.; Jiang, H.; Chen, L. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms. Bioresour. Technol. 2021, 321, 124413. [Google Scholar] [CrossRef] [PubMed]
- Ngambia, A.; Ifthikar, J.; Shahib, I.I.; Jawad, A.; Shahzad, A.; Zhao, M.; Wang, J.; Chen, Z.; Chen, Z. Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg(II) composite. Sci. Total Environ. 2019, 691, 306–321. [Google Scholar] [CrossRef] [PubMed]
N | Adsorbent | Name/Modification | Ssp (BET), m2/g | Surface Functional Groups | Adsorbate | Adsorption Conditions | Adsorption Capacity, mg/g | Mechanism of Adsorbent-Adsorbate Interaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | MWCNT | H-MWCNT/hydroxylated | 360 | –OH, –CO–, –COOH, –NH–, –C– N– | Acetaminophen | 25 °C pH = 7 | 8.8 | H-bonding | [135] |
MWCNT/pristine | 283 | –OH, –CO–, –COOH | 5.3 | ||||||
A-MWCNT/aminated | 178 | –OH, –CO–, –COOH, –NH–, –C–N– | 5.3 | ||||||
L-MWCNT/thin-walled | 153 | –OH, –CO–, –COOH, –NH–, –C–N– | 4.6 | ||||||
HP-MWCNT/high-purity | 114 | –OH, –CO–, –COOH, –NH– | 4.5 | ||||||
2 | MWCNT | MWCNT/pristine | 410 | No data | Ketaprofen | 25 °C pH = 2 | 2.3 | Hydrophobic interaction, π- π stacking interactions, n-π interactions | [151] |
Naproxen | 2.5 | ||||||||
Diclofenac | 4.8 | ||||||||
Ibuprofen | 1.96 | ||||||||
3 | SWCNT | HCl and HNO3 | 700 | No data | Triamethren | 25 °C pH = 7 | 87.72 | Electrostatic interactions | [139] |
MWCNT | 270 | 12.64 | |||||||
4 | MWCNT | Pristine | 13 | No data | Caffeine | 25 °C pH = 7 | 4.18 | Electrostatic interactions, π-π stacking interactions | [122] |
Diclofenac | 7.26 | ||||||||
5 | MWCNT | CNTs-2.0%O/oxidized | 471 | No data | Ciprofloxacin | 150.6 | Electrostatic interactions, π-π stacking interactions | [143] | |
CNTs-3.2%O/oxidized | 381 | 25 °C | 178.9 | ||||||
CNTs-4.7%O/oxidized | 382 | pH = 4 | 206.0 | ||||||
CNTs-5.9%O/oxidized | 327 | 181.2 | |||||||
6 | SWCNT | pristine | 541 | No data | Ciprofloxacin | 4 °C pH = 4.0–6.1, | 112.36 | Electrostatic interactions, hydrophobic interactions | [144] |
MWCNT | MWNT MG/graphitized | 117 | 36.76 | ||||||
MWNT MC/carboxylated | 164 | 35.34 | |||||||
MWNT MH/hydroxylated | 228 | 45 °C pH = 4.0–6.1 | 43.48 | ||||||
7 | MWCNT | MWCNT/pristine | 233 | No data | Carbamazepine | 45 °C pH = 6 T 45 °C | 224 | Hydrophobic interactions, π-π stacking interactions | [152] |
Dorzolamide | pH = 4 | 78 | |||||||
8 | MWCNT | MWCNT/carboxylated | 160 | No data | Norfloxacin | 15 °C pH = 7 | 87.0 | Hydrophobic interactions; H-bonding, electrostatic interactions, π-π stacking interactions | [136] |
9 | MWCNT | MWCNT/pristine | 207 | No data | Carbamazepine | 30 °C pH = 6.5 | 39.5 | [153] | |
10 | MWCNT | CNTs 1/pristine, outer diameter, nm, <8 | 500 | Cyclophosphamide | 20–25 °C pH = 4–9 | 27.27 | Electrostatic interactions, hydrophobic interactions | [154] | |
Ifosfamide | 18.19 | ||||||||
5-Fluorouracil | 11.63 | ||||||||
CNTs 5/pristine, outer diameter, nm, 50–80 | 60 | Cyclophosphamide | 3.77 | ||||||
Ifosfamide | 2.56 | ||||||||
5-Fluorouracil | 2.23 | ||||||||
MWCNTs-COOH | 60 | Cyclophosphamide | 1.83 | ||||||
Ifosfamide | 1.73 | ||||||||
5-Fluorouracil | 2.30 | ||||||||
Helical MWCNTs | >30 | Cyclophosphamide | 1.23 | ||||||
Ifosfamide | 0.76 | ||||||||
5-Fluorouracil | 0.56 | ||||||||
11 | MWCNT | OH-CNTs/Hydroxylated | 86 | –OH, C=O | Sulfamethoxazole | [155] | |||
G-CNTs/Graphitized | 81 | ||||||||
12 | MWCNT | MWCNT-10/pristine, outer diameter, nm, < 10 | 382 | C=O, C–O, –OH | Sulfamethoxazole | 25 °C pH = 3 | 71.8 | π-π stacking interactions, n-π interactions, hydrophobic interaction, H-bonding, π-H bonding | [121] |
Ibuprofen | 94.1 | ||||||||
Diclofenac | 209.7 | ||||||||
Carbamazepine | 243.1 | ||||||||
Aligned-MWCNT/outer diameter, nm, 10–50 | 182 | Sulfamethoxazole | 37.9 | ||||||
Ibuprofen | 41.2 | ||||||||
Diclofenac | 124.0 | ||||||||
Carbamazepine | 111.6 | ||||||||
S-MWCNT-2040/outer diameter, nm, 20–40 | 85 | Sulfamethoxazole | 8.2 | ||||||
Ibuprofen | 13.0 | ||||||||
Diclofenac | 59.7 | ||||||||
Carbamazepine | 53.2 | ||||||||
L-MWCNT-2040/outer diameter, nm, 20–40 | 119 | Sulfamethoxazole | 22.7 | ||||||
Ibuprofen | 17.2 | ||||||||
Diclofenac | 53.8 | ||||||||
Carbamazepine | 44.7 | ||||||||
L-MWCNT-60100/outer diameter, nm, 60–100 | 58 | Sulfamethoxazole | 16.3 | ||||||
Ibuprofen | 11.9 | ||||||||
Diclofenac | 35.7 | ||||||||
Carbamazepine | 26.5 | ||||||||
13 | SWCNT | Pristine | 625 | 2-Chlorophenol | 25 °C, pH = 4.8 | 24.9 | Hydrophobic interactions π-π stacking interactions, cation-π interaction | [149] | |
SWCNT-OH | 526 | ||||||||
SWCNT-COOH | 552 | ||||||||
14 | MWCNT | MWCNT-COOH/(PD15L1-5-COOH, Nanolab, up to 7% functionalized) | 112 | Carbamazepine | pH = 7.2 | 110 | π-π stacking interactions | [130] | |
15 | MWCNT | Pristine | 350 | –C–H, –C–O, –C=O, –O-H | Triclosan | 20 °C, pH = 6 | H-bonding, π-π stacking interactions, electrostatic interactions | [138] | |
Diclofenac |
N | Adsorbent | Name/Modification | Ssp (BET), m2/g | Surface Functional Groups | Adsorbate | Adsorption Conditions | Adsorption Capacity, mg/g | Mechanism of Adsorbent-Adsorbate Interaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | GO | GO/Pristine | 15.0 | –OH, C=O, C–O, –COOH | Carbamazepine | 25 °C pH = 6 | 76.3 μmol/g | [220] | |
Sulfamethoxazole | 32.2 μmol/g | ||||||||
Sulfadiazine | 104.8 μmol/g | ||||||||
Ibuprofen | 61.2 μmol/g | ||||||||
Paracetamol | 21.9 μmol/g | ||||||||
Phenacetin | 25.2 μmol/g | ||||||||
GO-DFB20/Connecting GO sheets with decafluorobiphenyl (DFB) | 27.7 | Carbamazepine | 340.5 μmol/g | ||||||
Sulfamethoxazole | 428.3 μmol/g | π-π stacking interactions, hydrophobic interactions | |||||||
Sulfadiazine | 214.7 μmol/g | ||||||||
Ibuprofen | 224.3 μmol/g | ||||||||
Paracetamol | 350.6 μmol/g | π-π stacking interactions | |||||||
Phenacetin | 316.1 μmol/g | ||||||||
2 | rGO | rGOA/Aerogel | 132 | O–H, C–O, –COOH | Diclofenac | 30 °C, pH = 4; | 596.71 | H-bonding, π-π interaction | [225] |
3 | GO | GO was prepared from the natural graphite powder | 109 | C–O, C=O, | Metformin | 15 °C, pH = 6 | 96.75 | π-π interaction, H-bonding | [216] |
4 | GO | Synthesized using natural graphite flakes | 34 | O–H, C=O, O=C–O, C–O–C, C–O | Dimethyl phthalate | 25 °C pH = 7 | 62.26 | Hydrophobic interactions, π-π stacking interactions | [235] |
Diethyl phthalate | 58.97 | ||||||||
DBP | 84.13 | ||||||||
rGO | Obtained by reducing GO with hydrazine hydrate | 305 | O–H, C=O, O=C–O, C–O | Dimethyl phthalate | 146.9 | ||||
Diethyl phthalate | 127.2 | ||||||||
DBP | 385.35 | ||||||||
5 | rGO | Obtained by reducing GO with hydrazine hydrate | 670 | C–O, C=O, C=C, C–H, O–H | Atenolol | pH = 2 | 71.81 | Electrostatic interactions, H-bonding, π-π stacking interactions | [231] |
Ciprofloxacin | 370.11 | ||||||||
Carbamazepine | 154.251 | ||||||||
Diclofenac | 75.801 | ||||||||
Ibuprofen | 47.85 | ||||||||
Gemfibrozil | 109.710 | ||||||||
6 | GO | GO was prepared from the graphite powder | C–H, C=C, C–O, O–H | Diclofenac | 40 °C pH = 6 | 653.91 | H-bonding; π−π stacking interactions | [241] | |
7 | GO | C/commercial xGnp-C-750, XG Sciences, Inc. | 771 | Carbamazepine | pH = 7.2 | 215 | π-π stacking interactions | [130] | |
M/commercial xGnp-M-25, XG Sciences, Inc. | 74 | 24 | |||||||
A/commercial N006-010-P, Angstron Materials, Inc. | 15 | 16 | |||||||
8 | GO | GO prepared from the graphite powder | O–H, C=O, C=C, C–O | Atenolol | 25 °C pH = 2 | 116 | Electrostatic interactions, H-bonding; π-π stacking interactions | [232] | |
Propranolol | 67 | ||||||||
9 | GO | GO prepared from the graphite flakes | 187 | O–H, C=C, C–H, C–O | Metformin | 30 °C pH = 6.5 | 122.61 | π-π stacking interactions | [217] |
10 | GO | 123 | Tetracycline | 24 °C pH = 6 | 80.980 | Electrostatic interactions, π-π stacking interactions | [234] | ||
Doxycycline | 116.5099 | ||||||||
Ciprofloxacin | 156.7634 | ||||||||
11 | GO | Commercial ACS Material, Medford, MA, USA | –OH, –COOH, C–O–C | Ciprofloxacin | pH = 5 | 379 | Electrostatic interactions | [219] | |
Sulfamethoxazole | 240 | π-π stacking interaction | |||||||
12 | GO | GO prepared from the graphite powder | C–C, C–O, C=O, O–C=O | Salicylic acid | 25 °C pH = 7 | 33.64 | π-π stacking interactions | [223] |
N | Adsorbent | Ssp (BET), m2/g, | Surface Functional Groups | Adsorbate | Adsorption Conditions | Adsorption Capacity, mg/g | Mechanism of Adsorbent/Adsorbate Interactions | Ref |
---|---|---|---|---|---|---|---|---|
1 | Cu/Cu2O/CuO@C | 80 | O–H, CO, COO−, C–OOH, aromatic moiety | Ciprofloxacin, | pH = 7 | 67.5 | H-bonding, π-π stacking interactions, n-π interactions | [358] |
Tetracycline | pH = 6 | 112.5 | ||||||
Chloramphenicol | No data | 37.2 | ||||||
2 | NPC-700 | 750 | C=N, N–H, aromatic moiety | Ciprofloxacin | 30 °C, pH = 6 | 416.7 | Electrostatic interactions, hydrophobic interactions | [52] |
3 | NPC | 1731 | OH, C=C, C–O–C, aromatic moiety | Sulfamethoxazole | pH = 5.8 | 625 | Pore-filling, electrostatic interactions, π-electron polarization, H-bonding | [357] |
Bisphenol A | pH = 6.3 | 757 | ||||||
Methyl Orange | pH = 6.0 | 872 | ||||||
4 | ZnO-C1000 | 782.971 | COOH, ZnO–C, aromatic moiety | Rhodamine B | pH = 3–13 | ~100% removal efficiency | No data | [355] |
5 | BMDC-12 h | 1449 | N–, OH, CO, COO−, COOH, | Bisphenol A | pH = 3 | 714 | H-bonding (dominating), π-π stacking interactions | [50] |
6 | CMOF-La | 408 | C=C, C–H, aromatic moiety | Acid Red 18 | 20 °C, pH = 5–7 | 47.35 | Electrostatic interactions (dominating), hydrophobic interactions, π-π stacking interactions | [363] |
7 | cal-ZIF-67/AC | 833 | Co, N–, aromatic moiety | Rhodamine B | 30 °C | 46.2 | No data | [364] |
8 | MDC-24 | 1906 | Zn, N, O, aromatic moiety | pH = 7 | Hydrophobic interactions | [356] | ||
Naphthalene | 237 | |||||||
Anthracene | 284 | |||||||
Pyrene | 307 | |||||||
9 | MDC-6 h | 1525 | N, OH, lactonic, COOH, aromatic moiety | Saccharin | pH = 3 | 93 | H-bonding (dominating), π-π stacking interactions | [2] |
10 | Co@NC-1/4-900 | 514 | aromatic moiety | Amodiaquine | 25 °C, 30 °C, 40 °C pH = 5.4 | 890.23 | Complexation with Co NPs adsorption sites, H-bonding, π-π stacking interactions | [365] |
11 | 0.25CDM@M-6 | 1762 | N, C–N, C=O, C=C, C–OH, OH, COOH | Dimetridazole | 25 °C pH = 7 | 621 | H-bonding | [366] |
Metronidazole | 702 | |||||||
12 | MDC-1000 | 1802 | C–N, C=N, N-6, N-5, N-Q | Atrazine | 25 °C | 168 | H-bonding | [367] |
IMDC IMDC-1000 (12%) | 1421 | 208 | ||||||
13 | CDAlPCP | 2357 | N, COOH, COO−, OH, C=C, C–OH, C=O, C–N, N-6, N-5, N-Q | para-Chloro-meta-xylenol | pH = 8 | 228 | H-bonding (dominating), hydrophobic interactions and π-π stacking interactions | [5] |
CDIL@AlPCP 0.5wt.%IL@AlPCP | 2084 | para-Chloro-meta-xylenol, triclosan | 338 326 | |||||
14 | ZIF-8 derived carbon C@silica | 594.4 | Si–O–C, C=N, N–H, OH | Ciprofloxacin | 30 °C, pH = 6 | 516.8 1575 (in the presence of Cu2+) | Electrostatic interactions | [48] |
15 | α-Fe/Fe3C | 194.11 | COOH, OH, aromatic moiety | Tetracycline hydrochloride | pH = 6, T = 25 °C | 158.9 | π-π stacking interactions, cation-π bonding, H-bonding | [370] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaeva, V.I.; Vedenyapina, M.D.; Kurmysheva, A.Y.; Weichgrebe, D.; Nair, R.R.; Nguyen, N.P.T.; Kustov, L.M. Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021, 26, 6628. https://doi.org/10.3390/molecules26216628
Isaeva VI, Vedenyapina MD, Kurmysheva AY, Weichgrebe D, Nair RR, Nguyen NPT, Kustov LM. Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules. 2021; 26(21):6628. https://doi.org/10.3390/molecules26216628
Chicago/Turabian StyleIsaeva, Vera I., Marina D. Vedenyapina, Alexandra Yu. Kurmysheva, Dirk Weichgrebe, Rahul Ramesh Nair, Ngoc Phuong Thanh Nguyen, and Leonid M. Kustov. 2021. "Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater" Molecules 26, no. 21: 6628. https://doi.org/10.3390/molecules26216628
APA StyleIsaeva, V. I., Vedenyapina, M. D., Kurmysheva, A. Y., Weichgrebe, D., Nair, R. R., Nguyen, N. P. T., & Kustov, L. M. (2021). Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules, 26(21), 6628. https://doi.org/10.3390/molecules26216628