Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products
Abstract
:1. Literature Search Strategy
2. Simulated Gastrointestinal In-Vitro Digestion Methodologies
3. Olive Oils
3.1. Assessment of the Total Phenolics in Oils and Their Bioaccessibility by Using UV-VIS Methods
3.1.1. Effect of Olive Variety on the Initial Phenolic Composition of VOO
3.1.2. Bioaccessible Fractions
3.1.3. Bioavailable Fractions
3.1.4. Residual Fractions
3.2. Assessment of Phenolic Profiles in Oils and Their Bioaccessibility by LC Methods
4. Table Olives
5. Residues from Olive Oil Production
5.1. Olive Leaves
5.2. Olive Byproducts from Olive Oil Production
5.2.1. Olive Mill Waste Water (OMWW)
5.2.2. Olive Cake (OP)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB-BD | after biosorption-before digestion |
AB-AD | after biosorption-after digestion |
AC | antioxidant capacity |
AP | apical |
Api | apigenin |
BB-AD | before biosorption-after digestion |
BB-BD | before biosorption-before digestion |
BdC | Bella di Cerignola |
BL | basolateral |
CA | caffeic acid |
CAE | caffeic acid equivalents |
CEL | Cellina di Nardò |
COM | comselogoside |
CoQ10 | coenzyme Q10. |
DAD | diode array detection |
DPPH | 2,2′-diphenyl-1-picrylhydrazyl radical |
dw | dry weight |
EFSA | European Food Safety Agency |
ESI | Electrospray ionization |
EU | European Union |
EVOO | extra virgin olive oil |
FaSSGF | fasted-state-simulated gastric fluid |
FaSSIF | fasted-state-simulated intestinal fluid |
FeSSGF | fed-state-simulated gastric fluid |
FeSSIF | fed-state-simulated intestinal fluid |
FD | freeze-drying |
FLD | fluorescence detection |
FW | fresh weight |
GAE | gallic acid equivalents |
HAD | hot air drying |
HPLC | high-performance liquid chromatography |
HR | high resolution |
HTy | hydroxytyrosol |
HTy-Ac | hydroxytyrosol acetate |
IN | inulin |
isoVB | iso verbascoside |
Lig | ligstroside |
LOPP | liquid-enriched olive pomace powder |
Lut | luteolin |
MD | maltodextrin |
MedDiet | Mediterranean diet |
MS | mass spectrometry |
Ole | oleuropein |
OMWW | olive mill waste water |
OP | olive pomace |
OPE | olive pomace extracts |
QqTOF | tandem quadrupole/time-of-flight |
QTOF | quadrupole time-of-flight |
SEC | caffeoyl-6′-secologanoside |
SGD | simulation of gastrointestinal digestion |
SGF | simulated gastric fluid |
SIF | simulated intestinal fluid |
SSF | simulated salivary fluid |
TAGs | triacylglycerides |
TDB | Termite di Bitetto |
TIPC | total individual phenolic content |
TOF | time-of-flight |
TPC | total phenolic content |
Ty | tyrosol |
UHPLC | ultra-high-performance liquid chromatography |
UHR | ultra-high resolution |
US | ultrasound-assisted |
UV-VIS | ultraviolet-visible |
VB | verbascoside |
VOO | virgin olive oil |
WoS | Web of Science |
References
- LIFE Among the Olives. Good Practice in Improving Environmental Performance in the Olive Oil Sector. EU Publications. Available online: https://op.europa.eu/en/publication-detail/-/publication/53cd8cd1-272f-4cb8-b7b5-5c100c267f8f/language-en (accessed on 21 July 2021).
- Castro-Barquero, S.; Lamuela-Raventós, R.M.; Doménech, M.; Estruch, R. Relationship between Mediterranean dietary polyphenol intake and obesity. Nutrients 2018, 10, 1523. [Google Scholar] [CrossRef] [Green Version]
- Navarro González, I.; Periago, M.J.; García Alonso, F.J. Estimación de la ingesta diaria de compuestos fenólicos en la poblacion española. Rev. Esp. Nutr. Hum. Diet. 2017, 2, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Carbonell-Barrachina, A.A.; Hernández, F.; Sendra, E. Impact of gastrointestinal in vitro digestion and deficit irrigation on antioxidant activity and phenolic content bioaccessibility of “Manzanilla” table olives. J. Food Qual. 2020, 2020, 6348194. [Google Scholar] [CrossRef]
- Dinnella, C.; Minichino, P.; D’Andrea, A.M.; Monteleone, E. Bioaccessibility and antioxidant activity stability of phenolic compounds from extra-virgin olive oils during in vitro digestion. J. Agric. Food Chem. 2007, 55, 8423–8429. [Google Scholar] [CrossRef] [PubMed]
- Tortora, G.J.; Derrickson, B. Principios de Anatomía y Fisiología; Editorial Médica Panamericana: Madrid, Spain, 2011. [Google Scholar]
- Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 2021, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.; Golding, M.; Singh, H. Food Structures, Digestion and Health; Elsevier Inc.: New York, NY, USA, 2014. [Google Scholar]
- Rubió, L.; Macià, A.; Castell-Auví, A.; Pinent, M.; Blay, M.T.; Ardévol, A.; Romero, M.P.; Motilva, M.J. Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccessibility and bioavailability assessed by in vitro digestion and cell models. Food Chem. 2014, 149, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Borges, T.H.; Cabrera-Vique, C.; Seiquer, I. Antioxidant properties of chemical extracts and bioaccessible fractions obtained from six Spanish monovarietal extra virgin olive oils: Assays in Caco-2 cells. Food Funct. 2015, 6, 2375–2383. [Google Scholar] [CrossRef]
- Čepo, D.V.; Radić, K.; Šalov, M.; Turčić, P.; Anić, D.; Komar, B. Food (matrix) effects on bioaccessibility and intestinal permeability of major olive antioxidants. Foods 2020, 9, 1831. [Google Scholar] [CrossRef] [PubMed]
- Seiquer, I.; Rueda, A.; Olalla, M.; Cabrera-Vique, C. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem. 2015, 188, 496–503. [Google Scholar] [CrossRef]
- Cabrera-Vique, C.; Bouzas, P.R. Chromium and manganese levels in convenience and fast foods: In vitro study of the dialyzable fraction. Food Chem. 2009, 117, 757–763. [Google Scholar] [CrossRef]
- Seiquer, I.; Delgado-Andrade, C.; Haro, A.; Navarro, M.P. Assessing the effects of severe heat treatment of milk on calcium bioavailability: In vitro and in vivo studies. J. Dairy Sci. 2010, 93, 5635–5643. [Google Scholar] [CrossRef]
- Brandon, E.F.A.; Oomen, A.G.; Rompelberg, C.J.M.; Versantvoort, C.H.M.; Van Engelen, J.G.M.; Sips, A.J.A.M. Consumer product in vitro digestion model: Bioaccessibility of contaminants and its application in risk assessment. Regul. Toxicol. Pharm. 2006, 44, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Borges, T.H.; Pereira, J.A.; Cabrera-Vique, C.; Seiquer, I. Study of the antioxidant potential of Arbequina extra virgin olive oils from Brazil and Spain applying combined models of simulated digestion and cell culture markers. J. Funct. Food. 2017, 37, 209–218. [Google Scholar] [CrossRef]
- Soler, A.; Romero, M.P.; Macià, A.; Saha, S.; Furniss, C.S.; Kroon, P.A.; Motilva, M.J. Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line. Food Chem. 2010, 119, 703–714. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Reboredo-Rodriguez, P.; Olmo-García, L.; Figueiredo-Gonzalez, M.; Gonzalez-Barreiro, C.; Carrasco-Pancorbo, A.; Cancho-Grande, B. Application of INFOGEST standardised method to assess digestive stability and bioaccessibility of the phenolic compounds from Galician extra-virgin olive oil. Changes on their antioxidant capacity and α-glucosidase inhibition. J. Agric. Food Chem. 2021. under review. [Google Scholar]
- Boisen, S.; Eggum, B.O. Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutr. Res. Rev. 1991, 4, 141–162. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In vitro human digestion models for food applications. Food Chem. 2011, 125, 1–12. [Google Scholar]
- Coles, L.T.; Moughan, P.J.; Darragh, A.J. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim. Food Sci. Technol. 2005, 123–124, 421–444. [Google Scholar] [CrossRef]
- Kimura, H.; Futami, Y.; Tarui, S.; Shinomiya, T. Activation of human pancreatic lipase activity by calcium and bile salt. J. Biochem. 1982, 92, 243–251. [Google Scholar] [CrossRef]
- Fatouros, D.G.; Mullertz, A. In vitro lipid digestion models in design of drug delivery systems for enhancing oral bioavailability. Expert Opin. Drug Metab. 2008, 4, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Hoffman, A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J. Control. Release 2008, 129, 1–10. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Sarriá, B.; Madrona, A.; Espartero, J.L.; Escuderos, M.E.; Bravo, L.; Mateos, R. Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers. Int. J. Food Sci. Nutr. 2012, 63, 703–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antuono, I.; Bruno, A.; Linsalata, V.; Minervini, F.; Garbetta, A.; Tufariello, M.; Mita, G.; Logrieco, A.F.; Bleve, G.; Cardinali, A. Fermented Apulian table olives: Effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility. Food Chem. 2018, 248, 137–145. [Google Scholar] [CrossRef] [PubMed]
- D’Antuono, I.; Garbetta, A.; Ciasca, B.; Linsalata, V.; Minervini, F.; Lattanzio, V.M.T.; Logrieco, A.F.; Cardinali, A. Biophenols from table olive cv bella di cerignola: Chemical characterization, bioaccessibility, and intestinal absorption. J. Agric. Food Chem. 2016, 64, 5671–5678. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Poyatos, M.P.; Ruiz-Medina, A.; Llorent-Martínez, E.J. Phytochemical profile, mineral content, and antioxidant activity of Olea europaea L. cv. Cornezuelo table olives. Influence of in vitro simulated gastrointestinal digestion. Food Chem. 2019, 297, 124933. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Flórez, A.; Pereira-Caro, G.; Sánchez-Quezada, C.; Moreno-Rojas, J.M.; Gaforio, J.J.; Jimenez, A.; Beltrán, G. Effect of olive cultivar on bioaccessibility and antioxidant activity of phenolic fraction of virgin olive oil. Eur. J. Nutr. 2018, 57, 1925–1946. [Google Scholar] [CrossRef]
- Borges, T.H.; Serna, A.; López, L.C.; Lara, L.; Nieto, R.; Seiquer, I. Composition and antioxidant properties of Spanish extra virgin olive oil regarding cultivar, harvest year and crop stage. Antioxidants 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocchetti, G.; Senizza, B.; Giuberti, G.; Montesano, D.; Trevisan, M.; Lucini, L. Metabolomic study to evaluate the transformations of extra-virgin olive oil’s antioxidant phytochemicals during in vitro gastrointestinal digestion. Antioxidants 2020, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Navajas-Porras, B.; Pérez-Burillo, S.; Morales-Pérez, J.; Rufián-Henares, J.A.; Pastoriza, S. Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chem. 2020, 325, 126926. [Google Scholar] [CrossRef] [PubMed]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Carreres, J.E.; Micol, V.; García-Pérez, J.V. Influence of olive leaf processing on the bioaccessibility of bioactive polyphenols. J. Agric. Food Chem. 2014, 62, 6190–6198. [Google Scholar] [CrossRef] [PubMed]
- Martín-Vertedor, D.; Garrido, M.; Pariente, J.A.; Espino, J.; Delgado-Adámez, J. Bioavailability of bioactive molecules from olive leaf extracts and its functional value. Phyther. Res. 2016, 30, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Jilani, J.; Cilla, A.; Barberá, R.; Hamdi, M. Improved bioaccessibility and antioxidant capacity of olive leaf (Olea europaea L.) polyphenols through biosorption on Saccharomyces cerevisiae. Ind. Crops Prod. 2016, 84, 131–138. [Google Scholar] [CrossRef]
- Rocha-Pimienta, J.; Martín-Vertedor, D.; Ramírez, R.; Delgado-Adámez, J. Pro-/antioxidant and antibacterial activity of olive leaf extracts according to bioavailability of phenolic compounds. Emir. J. Food Agric. 2020, 32, 479–487. [Google Scholar]
- Cedola, A.; Palermo, C.; Centonze, D.; Nobile, M.A.D.; Conte, A. Characterization and bio-accessibility evaluation of olive leaf extract-enriched “Taralli”. Foods 2020, 9, 1268. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, A.; Linsalata, V.; Lattanzio, V.; Ferruzzi, M.G. Verbascosides from olive mil wastewater: Assessment of their bioaccessibility and intestinal uptake using an in vitro digestion/Caco-2 model system. J. Food Sci. 2011, 76, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.B.; Oliveira, A.; Campos, D.; Nunes, J.; Vicente, A.A.; Pintado, M. Simulated digestion of an olive pomace watersoluble ingredient: Relationship between the bioaccessibility of compounds and their potential health benefits. Food Funct. 2020, 11, 2238–2254. [Google Scholar] [CrossRef] [PubMed]
- Reboredo-Rodríguez, P.; Figueiredo-González, M.; González-Barreiro, C.; Simal-Gándara, J.; Salvador, M.D.; Cancho-Grande, B.; Fregapane, G. State of the art on functional virgin olive oils enriched with bioactive compounds and their properties. Int. J. Mol. Sci. 2017, 18, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serreli, G.; Deiana, M. Biological relevance of extra virgin olive oil polyphenols metabolites. Antioxidants 2018, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Bozdogan Konuskan, D.; Mungan, B. Effects of variety, maturation and growing region on chemical properties, fatty acid and sterol compositions of virgin olive oils. J. Am. Oil Chem. Soc. 2016, 93, 1499–1508. [Google Scholar] [CrossRef]
- Bakhouche, A.; Lozano-Sánchez, J.; Bengana, M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Time course of Algerian Azeradj extra-virgin olive oil quality during olive ripening. Eur. J. Lipid Sci. Technol. 2015, 117, 389–397. [Google Scholar] [CrossRef]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2014, 3, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; Official Journal of the European Union: Luxembourg, 2006.
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. Factors Affecting Extra-Virgin Olive Oil Composition (Book Chapter). Hortic. Rev. 2011, 38, 83–147. [Google Scholar]
- Romero, N.; Saavedra, J.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of agroclimatic parameters on phenolic and volatile compounds of Chilean virgin olive oils and characterization based on geographical origin, cultivar and ripening stage. J. Sci. Food Agric. 2016, 96, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Mailer, R.J.; Ayton, J.; Graham, K. The influence of growing region, cultivar and harvest timing on the diversity of Australian olive oil. J. Am. Oil Chem. Soc. 2010, 8, 877–884. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteau methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Salvador, M.D.; Aranda, F.; Fregapane, G. Influence of fruit ripening on ‘Cornicabra’ virgin olive oil quality: A study of four successive crop seasons. Food Chem. 2001, 73, 45–53. [Google Scholar] [CrossRef]
- García-González, D.L.; Tena, N.; Aparicio, R. Quality characterization of the new virgin olive oil var. Sikitita by phenols and volatile compounds. J. Agric. Food Chem. 2010, 58, 8357–8364. [Google Scholar] [CrossRef]
- Cerretani, L.; Bendini, A. Chapter 67-Rapid assays to evaluate the antioxidant capacity of phenols in virgin olive oil. In Olives and Olive Oil in Health and Disease Prevention; Academic Press: London, UK, 2010; pp. 625–635. [Google Scholar]
- Martin, D.A.; Bolling, B.W. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct. 2015, 6, 1773–1786. [Google Scholar] [CrossRef] [Green Version]
- Cardona, F.; Andres-La Cueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuno, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, G.; Clifford, M.N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem. Pharmacol. 2017, 139, 24–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.; Paiva-Martins, F.; Corona, G.; Debnam, E.S.; Oruna-Concha, J.M.; Vauzour, D.; Gordon, M.H.; Spencer, J.P.E. Absorption and metabolism of olive oil secoiridoids in the small intestine. Br. J. Nutr. 2011, 105, 1607–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; Brenes, M.; García, P.; Garrido, A. Hydroxytyrosol 4-β-D-glucoside, an important phenolic compound in olive fruits and derived products. J. Agric. Food Chem. 2002, 50, 3835–3839. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table olives: An overview on effects of processing on nutritional and sensory quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, C.; Brenes, M.; Yousfi, K.; García, P.; García, A.; Garrido, A. Effect of cultivar and processing method on the contents of polyphenols in table olives. J. Agric. Food Chem. 2004, 52, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Barbosa, S.; Silva, M.; Monteiro, D.; Pinheiro, V.; Mourão, J.L.; Fernandes, J.; Rocha, S.; Belo, L.; Santos-Silva, A. The effect of olive leaf supplementation on the constituents of blood and oxidative stability of red blood cells. J. Funct. Food. 2014, 9, 271–279. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Lorente, J.; Ortuño, A.; Del Río, J.A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Silva, S.; Gomes, L.; Leitao, F.; Coelho, A.V.; Boas, L.V. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci. Technol. Int. 2006, 12, 385–395. [Google Scholar] [CrossRef]
- Pereira, J.A.; Pereira, A.P.; Ferreira, I.C.; Valentão, P.; Andrade, P.B.; Seabra, R.; Bento, A. Table olives from Portugal: Phenolic compounds, antioxidant potential, and antimicrobial activity. J. Agric. Food Chem. 2006, 54, 8425–8431. [Google Scholar] [CrossRef]
- Meirinhos, J.; Silva, B.M.; Valentão, P.; Seabra, R.M.; Pereira, J.A.; Dias, A.; Andrade, P.B.; Ferreres, F. Analysis and quantification of flavonoidic compounds from Portuguese olive (Oleae europaea L.) leaf cultivars. Nat. Prod. Res. 2005, 19, 189–195. [Google Scholar] [CrossRef]
- Delgado-Adámez, J.; Franco, M.N.; Ayuso, M.C.; Martín-Vertedor, D. Oxidative stability, phenolic compounds and antioxidant potential of a virgin olive oil enriched with natural bioactive compounds. J. Oleo Sci. 2014, 63, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, E.; Gómez-Caravaca, A.M.; Giménez, B.; Cebrián, R.; Maqueda, M.; Parada, J.; Martínez-Férez, A.; Segura-Carretero, A.; Robert, P. Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem. 2020, 310, 125976. [Google Scholar] [CrossRef] [PubMed]
- González, E.; Gómez-Caravaca, A.M.; Giménez, B.; Cebrián, R.; Maqueda, M.; Martínez-Férez, A.; Segura-Carretero, A.; Robert, P. Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chem. 2019, 279, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Baldioli, M.; Selvaggini, R.; Macchioni, A.; Montedoro, G.F. Phenolic compounds of olive fruit: One- and two dimensional nuclear magnetic resonance characterization of nuzhenide and its distribution in the constitutive parts of fruit. J. Agric. Food Chem. 1999, 47, 12–18. [Google Scholar] [CrossRef]
- Visioli, F.; Romani, A.; Mulinacci, N.; Zarini, S.; Conte, D.; Vincieri, F.F.; Galli, C. Antioxidant and other biological activities of olive mill waste waters. J. Agric. Food Chem. 1999, 47, 3397–3401. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Galli, C.; Plasmati, E.; Viappiani, S.; Hernandez, A.; Colombo, C.; Sala, A. Olive phenol hydroxytyrosol prevents passive smoking-induced oxidative stress. Circulation 2000, 102, 2169–2171. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Wolfram, R.; Richard, D.; Abdullah, M.I.C.B.; Crea, R. Olive phenolics increase glutathione levels in healthy volunteers. J. Agric. Food Chem. 2009, 57, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, A.; Cicco, N.; Linsalata, V.; Minervini, F.; Pati, S.; Pieralice, M.; Tursi, N.; Lattanzio, V. Biological activity of higher molecular weight phenolics from olive mill wastewater. J. Agric. Food Chem. 2010, 58, 8585–8590. [Google Scholar] [CrossRef] [PubMed]
- Funes, L.; Fernández-Arroyo, S.; Laporta, O.; Pons, A.; Roche, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Micol, V. Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract. Food Chem. 2009, 117, 589–598. [Google Scholar] [CrossRef]
- Funes, L.; Laporta, O.; Cerdán-Calero, M.; Micol, V. Effects of verbascoside, a phenylpropanoid glucoside from lemon verbena, on phospholipid model membranes. Chem. Phys. Lipids 2010, 163, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Artajo, L.S.; Romero, M.P.; Suárez, M.; Motilva, M.J. Partition of phenolic compounds during the virgin olive oil industrial extraction procés. Eur. Food Res. Technol. 2007, 225, 617–625. [Google Scholar] [CrossRef]
Oral Digestion | Gastric Digestion | Intestinal Digestion | References | |
---|---|---|---|---|
Phenolic Standards | ||||
Hydroxytyrosol, hydroxytyrosol acetate, and alkyl hydroxytyrosyl ethers | not performed | - Phenolic standards (10 mL), ranging from 177 to 254 µM. - pH = 2 by adding HCl 35%, v/v. - addition of porcine pepsin solution (4 mg, 13,040 units). - incubation at 37 °C for 2 h in a shaking water bath. | - addition of 2 mL of pancreatin (4 mg/mL) from porcine pancreas and porcine bile salts extract (12 mg/mL). - pH = 7.5 by adding NaOH 6 M. - incubation at 37 °C for 2 h in a shaking water bath. - inactivation of enzymes by adding HCl (35%, v/v). | [27] |
Olive Fruits | ||||
O. europaea var. Bella di Cerignola, Termite di Bitetto and Cellina di Nardò | - Olives depitted (6 g). - artificial saliva (6 mL containing 0.2 mg α-amylase/g olives, 0.4 mg mucin/g olives, 0.3 mg uric acid/g olives, and 3 mg urea/g olives). - incubation at 37 °C and rotated head-over-heels (55 rpm) for 10 min. | - addition of porcine pepsin solution (2 mL, 6.3 mg/g olives in HCl 0.1 M). - pH = 3.0 by adding HCl 1.0 M. - incubation at 37 °C for 1 h in head-over-heels (55 rpm). - addition of 0.9% saline solution. | - pH = 6.5 by adding NaHCO3 1.0 M. - addition of intestinal enzymes (2.0 mL containing 10 mg pancreatin/g olives, 5 mg lipase/g olives in NaHCO3 0.1 M), and porcine bile salts (3 mL, 12 mg/g olives in NaHCO3 0.1 M). - addition of 0.9% saline solution. - incubation at 37 °C for 2 h in head-over-heels (55 rpm). - acidification with 2% aqueous acetic acid (1:1). | [28] |
O. europaea var. Bella di Cerignola | - Flesh olives (6 g). - artificial saliva (6 mL containing 10.6 g α-amylase/g olives, 5% mucin (w/v), 3% uric acid (w/v), and 40% urea (w/v)). - incubation at 37 °C and rotated head over heels (55 rpm) for 10 min. | - addition of porcine pepsin solution (2 mL, 20 mg/mL in HCl 0.1 M). - pH = 3.0 by adding HCl 0.1 M. - incubation at 37 °C for 1 h in a covered shaking water bath (85 rpm). - addition of 0.9% saline solution. | - pH = 6.5 by adding NaHCO3 1.0 M. - addition of intestinal enzymes (2.0 mL containing 30 mg/mL pancreatin, 15 mg/mL lipase in NaHCO3 0.1 M), and porcine bile salts (3 mL, 120 mg/mL bile extract in NaHCO3 0.1 M). - addition of 0.9% saline solution. - incubation at 37 °C for 2 h in a shaking water bath. - acidification with 2% aqueous acetic acid (1:1). | [29] |
O. europaea var. Cornezuelo | - Lyophilized olives (2 g). - artificial saliva (4 mL containing 2.12 g α-amylase/mL, 1 mg mucin/mL, and 0.4 mg urea/mL). - incubation at 37 °C and agitation for 5 min. | - addition of gastric juice (10 mL containing 5 mg pepsin /mL, 6 mg mucin /mL, and 0.18 mg urea/mL). - pH = 1.30. - incubation at 37 °C for 2 h in a shaking water bath. | - pH = 8.1 by adding NaHCO3 1.0 M. - addition of duodenal juice (10 mL containing 18.04 mg pancreatin/mL, 3 mg lipase/mL, and 0.2 mg urea/mL) and bile juice (4 mL containing 24.02 mg bile salts/mL and 0.52 mg urea/mL). - incubation at 37 °C for 2 h in a shaking water bath. - samples were frozen at −80 °C to stop reaction. | [30] |
O. europaea var. Manzanilla | - Table olives (10 g). - artificial saliva (containing α-amylase (1500 U/mL)). - incubation at 37 °C and agitation for 10 min. | - addition of gastric juice containing pepsin (2500 U/mL). - pH = 3.0 by adding HCl 6 M. - incubation at 37 °C for 1 h in a shaking water bath. | - addition of duodenal juice (pancreatin (800 U/mL) and bile salts (160 mM)). - pH = 7.0 by adding NaOH, 1 M. - incubation at 37 °C for 2 h in a shaking water bath. - the liquid soluble fraction was centrifuged at 10,000 rpm for 10 min at 4 °C for later analysis. | [4] |
Olive Oils | ||||
O. europaea var. Oliarola del Bradano, Maiatica, Coratina | not performed | - Olive oil samples (10 g) were diluted with distilled water (1:8, w/v). - pH = 2.0 by adding HCl 6 N. - addition of pepsin solution (3 mL of a pepsin solution (160 mg/mL) from pig gastric mucosa in HCl 0.1 N). - addition of distilled water to reach a final volume of 100 mL. - incubation at 37 °C for 2 h in a shaking water bath. | - pH = 5 by adding NaHCO3 0.9 N. - addition of pancreatin/bile solution (24.5 mL containing pancreatin (4 mg/mL) and bile (25 mg/mL) in NaHCO3 0.1 M). - pH = 7.0 by adding NaHCO3 0.1 M. - The mixture was stirred at 37 °C for 2 h. | [5] |
O. europaea var. Arbequina, Cornicabra, Manzanilla, Hojiblanca, Picual, Picudo | not performed | - Olive oil samples (4 g) mixed with Milli-Q water (1:10, w/v). - pH = 2.0 by adding HCl 6 N. - addition of 0.313 mL of pepsin/0.1 N HCl (160 mg pepsin per mL). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. | - pH = 6 by adding NaHCO3 1 M. - addition of pancreatin/bile salts solution (2.5 mL, containing pancreatin (4 mg/mL) and bile salts (2.5 mg/mL) in NaHCO3 0.1 M). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. - inactivation of enzymes by heat treatment (4 min, 100 °C). | [10] |
O. europaea var. Picual | not performed | - Olive oil samples (1 g) mixed with bi-distilled deionized water (9 mL). - pH = 2.0 by adding HCl 1 N. - addition of 0.05 g of pepsin/g sample (0.8 g of pepsin dissolved in 5 mL of HCl 0.1 M). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. | - pH = 7.5 by adding NaHCO3 1 M. - addition of pancreatin and bile salts mixture (2.5 mL, containing 0.1 g of pancreatin and 62.5 mg of bile salts dissolved in 25 mL of NaHCO3 0.1 M). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. - inactivation of enzymes by heat treatment (4 min, 100 °C). | [12] |
O. europaea var. Arbequina | not performed | - Olive oil samples (4 g) mixed with Milli-Q water (1:10, w/v). - pH = 2.0 by adding HCl 6 N. - addition of 0.313 mL of pepsin/0.1 N HCl (160 mg pepsin per mL). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. | - pH = 6 by adding NaHCO3 1 M. - addition of pancreatin/bile salts solution (2.5 mL, containing pancreatin (4 mg/mL) and bile salts (2.5 mg/mL) in NaHCO3 0.1 M). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. - inactivation of enzymes by heat treatment (4 min, 100 °C). | [17] |
O. europaea var. Picual, Blanqueta, Sevillana, Habichuelero and Chetoui | - Olive oil samples (5 g). - addition of artificial saliva (6 mL). - incubation at 37 ± 2 °C and rotated head over heels (55 rpm) for 5 min. | - addition of gastric juice (12 mL). - pH = 2–3. - incubation at 37 ± 2 °C and rotated head over heels (55 rpm) for 2 h. | - addition of duodenal juice (12 mL), bile (6 mL), and NaHCO3 solution (1 M, 2 mL). - pH = 6.5–7. - incubation at 37 ± 2 °C and rotated head over heels (55 rpm) for 2 h. | [31] |
O. europaea var. Arbequina, Hojiblanca | not performed | - Olive oil samples (4 g) mixed with Milli-Q water (1:10, w/v). - pH = 2.0 by adding HCl 6 N. - addition of 0.313 mL of pepsin/0.1 N HCl (160 mg pepsin per mL). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. | - pH = 6 by adding NaHCO3 1 M. - addition of pancreatin/bile salts solution (2.5 mL, containing pancreatin (4 mg/mL) and bile salts (2.5 mg/mL) in NaHCO3 0.1 M). - incubation (110 oscillations per min) at 37 °C for 2 h in a shaking water bath. - inactivation of enzymes by heat treatment (4 min, 100 °C). | [32] |
O. europaea var. Leccino Frantoio, Picual, Picholine marocaine, Kalamon | - Olive oil samples (scaled up to 500 µL of liquid sample). - SSF at pH 7.0 with salivary α-amylase (75 U/mL). - Incubation at 37 °C for 2 min. | - mixture with the SGF (ratio 1:1) at pH 3.0 (HCl 1 M) containing porcine pepsin (2000 U/mL). - incubation at 37 °C for 2 h. | - mixture with the SIF (ratio 1:1) at pH 7.0 (NaOH 1 M) containing pancreatin (100 U/mL) and bile salts (10 mM). - incubation at 37 °C for 2 h. | [33] |
O. europaea var. Manzanilla, Picual | - Olive oil samples (5 g). - addition of SSF (5 mL) with α-amylase and CaCl2 0.3 M (25 µL). - Incubation at 37 °C for 2 min. | - addition of SGF (10 mL) with pepsin and CaCl2 0.3 M (5 µL). - pH = 3.0 by adding HCl 1 N. - Incubation at 37 °C for 2 h. | - addition of SIF (20 mL) with pancreatin, bile salts, and CaCl2 0.3 M (40 µL). - pH = 7.0 by adding NaOH 1 N. - incubation at 37 °C for 2 h. | [34] |
O. europaea var. Brava Gallega, Mansa de Figueiredo | - EVOO samples (5 g). - addition of SSF (5 mL). - Incubation at 37 °C for 2 min (pH = 7). | - addition of SGF (10 mL) containing pepsin (2000 U/mL) and gastric lipase (60 U/mL). - pH = 3. - incubation at 37 °C for 2 h. | - addition of SIF (20 mL) containing bile salts (10 mM) and pancreatin (100 U/mL). - pH = 7. - incubation at 37 °C for 2 h. | [20] |
Olive Leaves | ||||
O. europaea var. Serrana | - Olive leaf extracts (10 g) diluted with distilled water (1:8 w/v). - pH = 2.0 by adding HCl 6N. - stirring for 15 min. | - pH = 2 by adding HCl 6N. - addition of pepsin (3 mL, 160 mg/mL, 3.8 units/mg protein) from pig gastric mucosa in HCl 0.1 N). - incubation at 37 °C for 2 h. | - pH = 5 by adding NaHCO3 0.9 M - addition of pancreatine-bile solution (22.54 mL, containing pancreatin (4 mg/mL) and bile (25 mg/mL) in NaHCO3 0.1 M). - pH = 7.0 by adding NaHCO3 0.1 M. - incubation at 37 °C for 2 h in a shaking water bath. | [35] |
O. europaea var. Arbequina | - Olive leaf extracts (1 g). - addition of oral fluid which contained 1 mL of human saliva/g extract. - Incubation at 37 °C for 20 s. | - addition of SGF (3.6 mL, containing 0.2 g pepsin and 0.125 g NaCl in deionized water). - pH = 2.2. - incubation at 37 °C for 20 min. | - pH = 6.5 by adding NaOH. - addition of SIF (3.6 mL, containing pancreatin (20 mg), lipase (5 mg), cholic acid (10 mM), and deoxycholic acid (10 mM) in PBS buffer 0.1 M). - incubation at 37 °C for 20 min in a shaking water bath. | [36] |
O. europaea var. Chemlali North | not performed | - Olive leaf extract (1:50 w/v). - pH = 2 by adding HCl 6M. - addition of pepsin (0.02 g/g sample, 975 U/mg protein) from porcine stomach mucosa. - incubation at 37 °C for 2 h in a shaking water bath. | - pH = 6.5 by adding NaHCO3 1M - addition of pancreatin-bile mixture (0.05 g pancreatin (activity equivalent to 4X USP specifications) and 0.31 g salts in 12.5 mL of NaHCO3 0.1M) - incubation at 37 °C for 2 h in a shaking water bath. - samples were frozen to stop reaction. | [37] |
O. europaea var. Carrasqueña | - Olive leaf extracts (1 g). - addition of oral fluid which contained 1 mL of human saliva/g extract. - Incubation at 37 °C for 20 s. | - addition of SGF (3.6 mL, containing 0.2 g pepsin and 0.125 g NaCl in deionized water). - pH = 2.2. - incubation at 37 °C for 20 min. | - pH = 6.5 by adding NaOH. - addition of SIF (3.6 mL, containing pancreatin (20 mg), lipase (5 mg), cholic acid (10 mM), and deoxycholic acid (10 mM) in PBS buffer 0.1 M). - incubation at 37 °C for 20 min in a shaking water bath. | [38] |
O. europaea var. Coratina | Novel food: “Taralli”, enriched with olive leaf extract (obtained with ethanol/water, 50:50 v/v) - addition of oral phase solution (6 mL, containing 5% mucin, 3% uric acid, 40% urea, and 10.6 g of α-amylase). - incubation at 37 °C for 10 min (85 rpm). - dilution of samples to 30 mL with 0.9% NaCl. | - addition of porcine pepsin solution (2 mL, 20 mg/mL in HCl 0.1 M). - pH = 3.0 by adding HCl 0.1 M. - incubation at 37 °C for 1 h in a covered shaking water bath (85 rpm). - addition of 0.9% saline solution. | - pH = 6.5 by adding NaHCO3 1.0 M. - addition of intestinal enzymes (2.0 mL containing 30 mg/mL pancreatin, 15 mg/mL lipase in NaHCO3 0.1 M) and porcine bile salts (3 mL, 120 mg/mL bile extract in NaHCO3 0.1 M). - addition of 0.9% saline solution. - incubation at 37 °C for 2 h in a shaking water bath. - acidification with 2% aqueous acetic acid (1:1). | [39] |
Residues from Olive Oil Process | ||||
Olive mill wastewater (OMWW) | not performed | Purified phenolic fractions from OMWW extracts (3 mL) diluted with NaCl 0.9% at pH 7. - addition of porcine pepsin solution (0.9 mL, 40 mg/mL in HCl 0.1 N). - pH = 2.5 by adding HCl 1 N - incubation at 37 °C for 1 h in a covered shaking water bath. | - pH = 5.3 by adding NaHCO3 100 mM/NaOH 1N. - addition of small intestinal enzyme solution (2.7 mL of porcine lipase (2 mg/mL), pancreatin (4 mg/mL), and bile (24 mg/mL) in NaHCO3 (100 mM). - pH = 6.5 ± 0.1 by adding NaOH 1N. - incubation at 37 °C for 1 h in a covered shaking water bath. | [40] |
Freeze-dried olive cake extracts from O. europaea var. Arbequina | - Extracts (1.5 g). - addition of amylase in phosphate buffer solution. - Incubation for 5 min. | - pH = 2 by adding HCl concentrate. - addition of porcine pepsin solution. - Incubation for at 37 °C for 2 h. | - addition of bile salts (2.5 mL) and pancreatin (2.5 mL) (8 g/L). - pH = 6.5 by adding NaHCO3. - A continuous-flow dialyzed step was chosen keeping the temperature constant, under 37 °C. | [9] |
Liquid-enriched olive pomace powder (LOPP) from O. europaea var. Galega Vulgar | - LOPP extracts - addition of α-amylase (0.6 mL, 100 U/mL). - incubation at 37 °C for 1 min and 200 rpm. | - pH = 2 by adding HCl 1M. - addition of pepsin solution (25 mg/mL) from porcine stomach mucosa at a rate of 0.05 mL/mL sample. - incubation at 37 °C for 1 h in a shaking bath. | - pH = 6.0 by adding NaHCO3 1M. - addition of pancreatin (2 g/L, from porcine pancreas 2g/L) and bile salts (12 g/L) at a ratio of 0.25 mL/mL sample. - incubation at 37 °C for 2 h in a shaking bath. - Dialysis process: dialysis tubing (3.5 kDa molecular weight cut-off) filled with NaHCO3 1 M). - Incubation at 37 °C in a shaking water bath (50 rpm) for 2 h. | [41] |
Olive pomace extracts (OPE) | - OPE samples (200 mg alone or mixed with 600 mg of food matrix). - addition of SSF (1.9 or 2.3 mL). - α-amylase (1500 U/mL). - Incubation at 37 °C for 2 min. | - addition of SGF (2.5 mL) containing pepsin (25,000 U/mL). - pH = 3. - incubation at 37 °C for 2 h. | - addition of SIF (5 mL) containing bile salts and pancreatin (800 U/mL). - pH = 7. - incubation at 37 °C for 2 h. | [11] |
Total Phenolic Content | |||||
---|---|---|---|---|---|
Oil Extract | Bioaccessible Fraction | Bioavailable Fraction | Residual Fraction | References | |
mg Ty/kg | mg Ty/kg | [5] | |||
EVOO 1 (Oliarola del Bradano) | 291 ± 8 | 276 ± 8 | - | - | |
EVOO 2 (Oliarola del Bradano) | 578 ± 9 | 583 ± 9 | - | - | |
EVOO 3 (Oliarola del Bradano) | 538 ± 8 | 551 ± 14 | - | - | |
EVOO 4 (Oliarola del Bradano) | 663 ± 9 | 655 ± 9 | - | - | |
EVOO 5 (Maiatica) | 277 ± 6 | 262 ± 14 | - | - | |
EVOO 6 (Maiatica) | 286 ± 11 | 262 ± 15 | - | - | |
EVOO 7 (Coratina) | 451 ± 11 | 437 ± 15 | - | - | |
EVOO 8 (Coratina) | 473 ± 15 | 483 ± 8 | - | - | |
EVOO 9 (Coratina) | 713 ± 13 | 724 ± 9 | - | - | |
EVOO 10 (Coratina) | 354 ± 15 | 376 ± 8 | - | - | |
mg CAE/kg | mg CAE/kg | [10] | |||
EVOO 11 (Cornicabra) | 317 | 891 | - | - | |
EVOO 12 (Picual) | 256 | 630 | - | - | |
EVOO 13 (Manzanilla) | 234 | 685 | - | - | |
EVOO 14 (Picudo) | 207 | 764 | - | - | |
EVOO 15 (Hojiblanca) | 169 | 689 | - | - | |
EVOO 16 (Arbequina) | 153 | 613 | - | - | |
mg GA/kg | mg GA/kg | Absorption (% from the Initial Solution) * | mg GA/kg | [12] | |
EVOO 17 (Picual) | 368 ± 32 | 1029 ± 221 | 25.41 ± 5.07 | 10.38 | |
mg CAE/kg | mg CAE/kg | mg CAE/kg | [17] | ||
EVOO 18 (Arbequina, Granada) | 168 ± 1.14 | 451 ± 29.8 | 49.1 ± 4.74 | 110 ± 12.7 | |
EVOO 19 (Arbequina, Jaén) | 163 ± 13.519 | 538 ± 53.1 | 55.9 ± 5.88 | 101 ± 25.1 | |
EVOO 20 (Arbequina, Málaga) | 302 ± 29.45 | 506 ± 3.06 | 37.9 ± 7.00 | 140 ± 16.2b | |
EVOO 21 (Arbequina, Cádiz) | 196 ± 13.5 | 392 ± 66.1 | 44.5 ± 3.04 | 67.7 ± 24.8 | |
EVOO 22 (Arbequina, Sevilla) | 227 ± 9.27 | 411 ± 48.0 | 102 ± 19.4 | 194 ± 33.6 | |
EVOO 23 (Arbequina, Albacete) | 197 ± 13.5 | 566 ± 38.9 | 32.5 ± 3.57 | 127 ± 41.2 | |
EVOO 24 (Arbequina, Toledo) | 174 ± 2.85 | 436 ± 4.02 | 87.7 ± 7.86 | 109 ± 12.2 | |
EVOO 25 (Arbequina, Valladolid) | 290 ± 15.61 | 432 ± 18.9 | 110 ± 17.4 | 136 ± 15.7 | |
EVOO 26 (Arbequina, Lérida) | 104 ± 21.3 | 391 ± 81.1 | 83.4 ± 9.73 | 96.8 ± 16.1 | |
EVOO 27 (Arbequina, Rio Grande do Sul) | 151 ± 4.44 | 531 ± 12.1 | 97.0 ± 15.4 | 121 ± 9.21 | |
EVOO 28 (Arbequina, Minas Gerais) | 75.0 ± 2.18 | 473 ± 41.6 | 97.6 ± 21.0 | 92.6 ± 4.83 | |
mg CAE/kg | mg CAE/kg | % | [32] | ||
EVOO 29 (Hojiblanca, 2014) | 397 | 1031 | - | 18–52% | |
EVOO 30 (Hojiblanca, 2014) | 367 | 633 | - | 18–52% | |
EVOO 31 (Hojiblanca, 2015) | 394 | 1018 | - | 18–52% | |
EVOO 32 (Hojiblanca, 2015) | 405 | 893 | - | 18–52% | |
EVOO 33 (Arbequina, 2014) | 231 | 371 | - | 18–52% | |
EVOO 34 (Arbequina, 2014) | 222 | 451 | - | 18–52% | |
EVOO 35 (Arbequina, 2015) | 230 | 1453 | - | 18–52% | |
EVOO 36 (Arbequina, 2015) | 226 | 1347 | - | 18–52% |
Antioxidant Capacity | |||||
---|---|---|---|---|---|
Oil Extract | Bioaccessible Fraction | Bioavailable Fraction Absorption (% from the Initial Solution) * | Residual Fraction | References | |
mmol Trolox/kg | mmol Trolox/kg | [10] | |||
EVOO 11 (Cornicabra) | 0.60 ± 0.13 | 2.51 ± 0.90 | - | - | |
EVOO 12 (Picual) | 0.40 ± 0.13 | 0.95 ± 0.24 | - | - | |
EVOO 13 (Manzanilla) | 0.60 ± 0.09 | 1.95 ± 0.24 | - | - | |
EVOO 14 (Picudo) | 0.62 ± 0.13 | 1.55 ± 0.30 | - | - | |
EVOO 15 (Hojiblanca) | 0.36 ± 0.13 | 1.08 ± 0.56 | - | - | |
EVOO 16 (Arbequina) | 0.44 ± 0.12 | 0.84 ± 0.39 | - | - | |
mmol Trolox/kg | mmol Trolox/kg | % | [12] | ||
EVOO 17 (Picual) | 0.65 ± 0.001 | 0.88 ± 0.01 | 2.27 ± 0.22 | 6.7 | |
mmol Trolox/kg | mmol Trolox/kg | mmol Trolox/kg | [17] | ||
EVOO 18 (Arbequina, Granada) | 0.93 ± 0.05 | 2.58 ± 0.31 | 50.1 ± 2.21 | 0.38 ± 0.07 | |
EVOO 19 (Arbequina, Jaén) | 1.45 ± 0.18 | 2.27 ± 0.45 | 43.0 ± 0.70 | 0.42 ± 0.02 | |
EVOO 20 (Arbequina, Málaga) | 1.58 ± 0.01 | 0.99 ± 0.08 | 52.4 ± 12.8 | - | |
EVOO 21 (Arbequina, Cádiz) | 0.52 ± 0.02 | 2.54 ± 0.13 | 30.7 ± 0.10 | 0.41 ± 0.04 | |
EVOO 22 (Arbequina, Sevilla) | 1.22 ± 0.30 | 2.08 ± 0.27 | 40.0 ± 2.22 | - | |
EVOO 23 (Arbequina, Albacete) | 0.74 ± 0.05 | 2.56 ± 0.19 | 39.2 ± 5.98 | 0.18 ± 0.18 | |
EVOO 24 (Arbequina, Toledo) | 0.81 ± 0.03 | 1.91 ± 0.24 | 52.2 ± 4.54 | 0.29 ± 0.04 | |
EVOO 25 (Arbequina, Valladolid) | 1.52 ± 0.04 | 2.33 ± 0.12 | 38.9 ± 4.76 | - | |
EVOO 26 (Arbequina, Lérida) | 0.65 ± 0.20 | 2.51 ± 0.07 | 44.4 ± 6.74 | 0.35 ± 0.04 | |
EVOO 27 (Arbequina, Rio Grande doSul) | 0.97 ± 0.01 | 2.97 ± 0.26 | 51.5 ± 5.56 | - | |
EVOO 18 (Arbequina, Minas Gerais) | 0.56 ± 0.06 | 50.0 ± 3.64 | 50.0 ± 3.64 | - | |
mmol Trolox/kg | mmol Trolox/kg | [32] | |||
EVOO 29 (Hojiblanca, 2014) | 0.67 | 0.98 | - | - | |
EVOO 30 (Hojiblanca, 2014) | 0.70 | 0.93 | - | - | |
EVOO 31 (Hojiblanca, 2015) | 1.39 | 4.97 | - | - | |
EVOO 32 (Hojiblanca, 2015) | 1.41 | 3.83 | - | - | |
EVOO 33 (Arbequina, 2014) | 1.52 | 2.28 | - | - | |
EVOO 34 (Arbequina, 2014) | 0.93 | 1.88 | - | - | |
EVOO 35 (Arbequina, 2015) | 0.70 | 5.44 | - | - | |
EVOO 36 (Arbequina, 2015) | 0.71 | 4.83 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reboredo-Rodríguez, P.; González-Barreiro, C.; Martínez-Carballo, E.; Cambeiro-Pérez, N.; Rial-Otero, R.; Figueiredo-González, M.; Cancho-Grande, B. Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules 2021, 26, 6667. https://doi.org/10.3390/molecules26216667
Reboredo-Rodríguez P, González-Barreiro C, Martínez-Carballo E, Cambeiro-Pérez N, Rial-Otero R, Figueiredo-González M, Cancho-Grande B. Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules. 2021; 26(21):6667. https://doi.org/10.3390/molecules26216667
Chicago/Turabian StyleReboredo-Rodríguez, Patricia, Carmen González-Barreiro, Elena Martínez-Carballo, Noelia Cambeiro-Pérez, Raquel Rial-Otero, María Figueiredo-González, and Beatriz Cancho-Grande. 2021. "Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products" Molecules 26, no. 21: 6667. https://doi.org/10.3390/molecules26216667
APA StyleReboredo-Rodríguez, P., González-Barreiro, C., Martínez-Carballo, E., Cambeiro-Pérez, N., Rial-Otero, R., Figueiredo-González, M., & Cancho-Grande, B. (2021). Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules, 26(21), 6667. https://doi.org/10.3390/molecules26216667