Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil
Abstract
:1. Introduction
2. Results
2.1. Average Yield of AEO and Its Chemical Characterization
2.2. Lethality of AEO on the Different Mosquito Larval Forms
2.3. Potential Role of the Allspice Essential Oil in Eliminating Pests
2.4. Ecological Safety Analysis of AEO
3. Discussion
4. Materials and Methods
4.1. Collection, Extraction, and Chemical Composition Analysis of Allspice (P. dioica) Leaf Essential Oil
4.2. Efficacy of Pimenta dioica Essential Oil against Mosquito Larvae
4.3. Allspice Essential Oil (AEO) and Pest Control Capacity
4.3.1. Anti-Feedant Activity of AEO on Wheat Flour
4.3.2. Repellant Activity
4.3.3. AEO as A Potential Fumigant Agent
4.3.4. Determination of AEO’s Contact Toxicity
4.4. Allspice Essential Oil and Its Effect on the Germination Potential of Grains
4.5. Non-Targeted Species Toxicity in Guppy Fish (Poecilia reticulata)
4.6. AEO’s Genotoxic Effect on an Allium Cepa Model of Mitotic Damage
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yaseen, M.; Kausar, T.; Praween, B.; Shah, S.J.; Jan, Y.; Shekhawat, S.S.; Malik, M.; Azaz Ahmad Azad, Z.R. Insect Pest Infestation During Storage of Cereal Grains, Pulses and Oilseeds, In Health and Safety Aspects of Food Processing Technologies, Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 209–234. [Google Scholar]
- Wyckhuys, K.A.G.; Lu, Y.; Zhou, W.; Cock, M.J.W.; Naranjo, S.E.; Fereti, A.; Williams, F.E.; Furlong, M.J. Ecological pest control fortifies agricultural growth in Asia-Pacific economies. Nat. Ecol. Evol. 2020, 4, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Prudêncio, M. In Fairness to Mosquitoes. Trends Parasitol. 2020, 36, 876–877. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Doggett, S.L.; Singham, G.V.; Lee, C.-Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites Vectors 2017, 10, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, S.J.; Leong, Y.Q.; Bin Barhanuddin, M.F.H.; Wong, S.T.; Wong, S.F.; Mak, J.W.; Ahmad, R.B. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: A review. Parasites Vectors 2021, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. [Google Scholar] [CrossRef]
- Giménez-Moolhuyzen, M.; Blom, J.v.d.; Lorenzo-Mínguez, P.; Cabello, T.; Crisol-Martínez, E. Photosynthesis Inhibiting Effects of Pesticides on Sweet Pepper Leaves. Insects 2020, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Birch, A.N.E.; Begg, G.S.; Squire, G.R. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J. Exp. Bot. 2011, 62, 3251–3261. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lokeshwar, B.L. Medicinal properties of the Jamaican pepper plant Pimenta dioica and Allspice. Curr. Drug Targets 2012, 13, 1900–1906. [Google Scholar] [CrossRef]
- Gomes da Rocha Voris, D.; dos Santos Dias, L.; Alencar Lima, J.; dos Santos Cople Lima, K.; Pereira Lima, J.B.; dos Santos Lima, A.L. Evaluation of larvicidal, adulticidal, and anticholinesterase activities of essential oils of Illicium verum Hook. f., Pimenta dioica (L.) Merr. and Myristica fragrans Houtt. against Zika virus vectors. Environ. Sci. Pollut. Res. 2018, 25, 22541–22551. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Dwivedy, A.K.; Das, S.; Upadhyay, N.; Singh, A.; Dkhar, M.S.; Kayang, H.; Prakash, B.; Dubey, N.K. Chemically characterised Pimenta dioica (L.) Merr. essential oil as a novel plant based antimicrobial against fungal and aflatoxin B(1) contamination of stored maize and its possible mode of action. Nat. Prod. Res. 2020, 34, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Leal, A.C.; Palou, E.; López-Malo, A.; Bach, H. Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. BioMed Res. Int. 2019, 2019, 1639726. [Google Scholar] [CrossRef] [Green Version]
- Mérida-Reyes, M.S.; Muñoz-Wug, M.A.; Oliva-Hernández, B.E.; Gaitán-Fernández, I.C.; Simas, D.L.R.; Ribeiro da Silva, A.J.; Pérez-Sabino, J.F. Composition and Antibacterial Activity of the Essential Oil from Pimenta dioica (L.) Merr. from Guatemala. Medicines 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Weetman, D.; Kamgang, B.; Badolo, A.; Moyes, C.L.; Shearer, F.M.; Coulibaly, M.; Pinto, J.; Lambrechts, L.; McCall, P.J. Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. Int. J. Environ. Res. Public Health 2018, 15, 220. [Google Scholar] [CrossRef] [Green Version]
- Aragão, C.F.; Pinheiro, V.C.S.; Neto, J.P.N.; Da Silva, E.V.P.; Pereira, G.J.G.; Nascimento, B.L.S.D.; Castro, K.D.S.; Maia, A.M.; Catete, C.P.; Martins, L.C.; et al. Natural Infection of Aedes aegypti by Chikungunya and Dengue type 2 Virus in a Transition Area of North-Northeast Brazil. Viruses 2019, 11, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloria-Soria, A.; Armstrong, P.M.; Powell, J.R.; Turner, P.E. Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proc. R. Soc. B Boil. Sci. 2017, 284, 20171506. [Google Scholar] [CrossRef] [Green Version]
- Mourya, D.T.; Gokhale, M.D.; Majumdar, T.D.; Yadav, P.D.; Kumar, V.; Mavale, M.S. Experimental Zika virus infection in Aedes aegypti: Susceptibility, transmission & co-infection with dengue & chikungunya viruses. Indian J. Med Res. 2018, 147, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.C.; Melo, D.R.; Franco, C.T.; Maturano, R.; Fabri, R.L.; Daemon, E. Evaluation of Eugenol and (E)-Cinnamaldehyde Insecticidal Activity Against Larvae and Pupae of Musca domestica (Diptera: Muscidae). J. Med. Èntomol. 2019, 57, 181–186. [Google Scholar] [CrossRef]
- Barbosa, J.D.; Silva, V.B.; Alves, P.B.; Gumina, G.; Santos, R.L.; Sousa, D.P.; Cavalcanti, S.C. Structure-activity relationships of eugenol derivatives againstAedes aegypti(Diptera: Culicidae) larvae. Pest Manag. Sci. 2012, 68, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Asari, A.; Salleh, S.; Azmi, W. Eugenol and Thymol Derivatives as Antifeedant Agents against Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) Larvae. Insects 2021, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ho, S.-H.; Lee, H.-C.; Yap, Y.-L. Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2002, 38, 403–412. [Google Scholar] [CrossRef]
- Fernandes, M.J.G.; Pereira, R.B.; Pereira, D.M.; Fortes, A.G.; Castanheira, E.M.S.; Gonçalves, M.S.T. New Eugenol Derivatives with Enhanced Insecticidal Activity. Int. J. Mol. Sci. 2020, 21, 9257. [Google Scholar] [CrossRef] [PubMed]
- Chaverri, C.; Cicció, J.F. Leaf and fruit essential oil compositions of Pimenta guatemalensis (Myrtaceae) from Costa Rica. Rev. Biol. Trop. 2014, 63, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Leal, A.C.; Palou, E.; López-Malo, A. Evaluation of the efficiency of allspice, thyme and rosemary essential oils on two foodborne pathogens in in-vitro and on alfalfa seeds, and their effect on sensory characteristics of the sprouts. Int. J. Food Microbiol. 2019, 295, 19–24. [Google Scholar] [CrossRef]
- Huy Hung, N.; Ngoc Dai, D.; Satyal, P.; Thi Huong, L.; Thi Chinh, B.; Quang Hung, D.; Anh Tai, T.; Setzer, W.N. Lantana camara Essential Oils from Vietnam: Chemical Composition, Molluscicidal, and Mosquito Larvicidal Activity. Chem. Biodivers. 2021, 18, e2100145. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Geng, Z.; Guo, S.; Cao, J.; Zhang, Z.; Pang, X.; Chen, Z.; Du, S.; Deng, Z. Antifeedant Activities of Lignans from Stem Bark of Zanthoxylum armatum DC. against Tribolium castaneum. Molecules 2018, 23, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patiño-Bayona, W.R.; Nagles Galeano, L.J.; Bustos Cortes, J.J.; Delgado Ávila, W.A.; Herrera Daza, E.; Suárez, L.E.C.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae). Insects 2021, 12, 532. [Google Scholar] [CrossRef]
- Paventi, G.; Rotundo, G.; Pistillo, M.; D’Isita, I.; Germinara, G. Bioactivity of Wild Hop Extracts against the Granary Weevil, Sitophilus granarius (L.). Insects 2021, 12, 564. [Google Scholar] [CrossRef]
- Ibáñez, M.D.; Blázquez, M.A. Phytotoxicity of Essential Oils on Selected Weeds: Potential Hazard on Food Crops. Plants 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Bullangpoti, V.; Mujchariyakul, W.; Laksanavilat, N.; Junhirun, P. Acute toxicity of essential oil compounds (thymol and 1,8-cineole) to insectivorous guppy, Poecilia reticulata Peters, 1859. Agric. Nat. Resour. 2018, 52, 190–194. [Google Scholar] [CrossRef]
- Owolarafe, T.A.; Salawu, K.; Ihegboro, G.O.; Ononamadu, C.J.; Alhassan, A.J.; Wudil, A.M. Investigation of cytotoxicity potential of different extracts of Ziziphus mauritiana (Lam) leaf Allium cepa model. Toxicol. Rep. 2020, 7, 816–821. [Google Scholar] [CrossRef] [PubMed]
Sl. No. | Compound | Retention Index | % a |
---|---|---|---|
1 | α-Thujene | 937 | 0.11 |
2 | α-Pinene | 946 | 0.06 |
3 | β-Pinene | 986 | 0.15 |
4 | Myrcene | 991 | 0.44 |
5 | α-Phellandrene | 1005 | 1.46 |
6 | α-Terpinene | 1020 | 0.08 |
7 | p-Cymene | 1026 | 0.66 |
8 | Ocimene | 1030 | 0.22 |
9 | 1,8-Cineole | 1033 | 1.86 |
10 | γ-Terpinene | 1062 | 0.40 |
11 | Terpinolene | 1092 | 1.05 |
12 | cis-Sabinene hydrate | 1097 | 0.12 |
13 | Linalool | 1098 | 0.05 |
14 | trans-p-Menth-2,8-dien1-ol | 1108 | 0.10 |
15 | cis-p-Mentha-2,8-dien1-ol | 1120 | 0.01 |
16 | β-Terpineol | 1180 | 0.66 |
17 | p-Cymene-1-ol | 1185 | 0.18 |
18 | Citronellol | 1220 | 0.46 |
19 | Linalyl acetate | 1250 | 0.01 |
20 | Terpinyl acetate | 1333 | 0.61 |
21 | Eugenol | 1351 | 65.82 |
22 | Methyl eugenol | 1401 | 15.22 |
23 | Caryophyllene | 1428 | 4.03 |
24 | β-Gurjunene | 1432 | 0.04 |
25 | Aromadendrene | 1440 | 0.10 |
26 | Alloaromadendrene | 1461 | 0.01 |
27 | α-Humulene | 1465 | 1.58 |
28 | Cedrene | 1468 | 0.24 |
29 | Bergamotene | 1470 | 0.06 |
30 | γ-Muurolene | 1475 | 0.84 |
31 | Patchulene | 1486 | 0.24 |
32 | Germacrene D | 1490 | 0.49 |
33 | β-Bisabolene | 1506 | 0.10 |
34 | Caryophyllene oxide | 1566 | 0.61 |
Test | Assay | IC50 Values |
---|---|---|
Anti-feedant assay (IC50 µg/g wheat flour) | Sitophilus oryzae | 1.57 ± 0.09 |
Tribolium castaneum | 2.04 ± 0.10 | |
Callosobruchus maculatus | 1.88 ± 0.06 | |
Repellent activity RC50 (µg/L of air) | Sitophilus oryzae | 3.79 ± 0.18 |
Tribolium castaneum | 5.38 ± 0.22 | |
Callosobruchus maculatus | 5.15 ± 0.31 | |
Fumigant toxicity LC50 (µg/L of air) | Sitophilus oryzae | 14.5 ± 0.61 |
Tribolium castaneum | 19.1 ± 0.43 | |
Callosobruchus maculatus | 18.5 ± 0.67 | |
Contact toxicity LD50 (µg/mm2) | Sitophilus oryzae | 75.1 ± 3.08 |
Tribolium castaneum | 81.6 ± 2.04 | |
Callosobruchus maculatus | 69.3 ± 1.55 |
Duration of Exposure in Hours | Untreated Grains | Pimenta dioica Essential Oil (µg/mL) | ||
---|---|---|---|---|
100 | 250 | 500 | ||
48 | 14.1 ± 2.4 | 13.8 ± 1.4 | 13.4 ± 1.2 | 13.5 ± 2.0 |
72 | 32.6 ± 1.3 | 33.4 ± 1.6 | 32.1 ± 1.5 | 32.9 ± 1.1 |
96 | 60.2 ± 2.4 | 58.6± 2.1 | 58.4 ± 2.4 | 59.1 ± 1.9 |
120 | 82.1 ± 3.2 | 80.6 ± 3.0 | 79.2 ± 3.1 | 80.5 ± 2.4 |
144 | 92.6 ± 1.1 | 90.2 ± 3.3 | 91.3 ± 2.4 | 91.4 ± 2.3 |
Treatment Group | Mitotic Index (%) | Frequency of Aberrant Cells (%) |
---|---|---|
Normal (Untreated) | 12.56 ± 0.32 | 0.42 ± 0.03 |
AEO (1 mg/mL) | 12.41 ± 0.17 | 0.50 ± 0.05 |
AEO (2.5 mg/mL) | 11.88 ± 0.41 | 0.51 ± 0.07 |
AEO (5 mg/mL) | 12.01 ± 0.40 | 0.48 ± 0.03 |
AEO (10 mg/mL) | 12.37 ± 0.22 | 0.51 ± 0.08 |
Treatment Group | % Mortality | Fishes Having Difficulty Swimming | Fishes with a Color Change | Time Spent on Top of the Water (Seconds) |
---|---|---|---|---|
Normal | 0 | 0 | 0 | 31.2 ± 4.0 |
AEO (50 µg/mL) | 0 | 0 | 0 | 37.6 ± 2.0 |
AEO (100 µg/mL) | 0 | 0 | 0 | 38.3 ± 4.0 |
AEO (200 µg/mL) | 0 | 0 | 0 | 30.5 ± 5.0 |
AEO (250 µg/mL) | 0 | 0 | 0 | 34.2 ± 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayanankutty, A.; Kuttithodi, A.M.; Alfarhan, A.; Rajagopal, R.; Barcelo, D. Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil. Molecules 2021, 26, 6698. https://doi.org/10.3390/molecules26216698
Narayanankutty A, Kuttithodi AM, Alfarhan A, Rajagopal R, Barcelo D. Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil. Molecules. 2021; 26(21):6698. https://doi.org/10.3390/molecules26216698
Chicago/Turabian StyleNarayanankutty, Arunaksharan, Aswathi Moothakoottil Kuttithodi, Ahmed Alfarhan, Rajakrishnan Rajagopal, and Damia Barcelo. 2021. "Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil" Molecules 26, no. 21: 6698. https://doi.org/10.3390/molecules26216698
APA StyleNarayanankutty, A., Kuttithodi, A. M., Alfarhan, A., Rajagopal, R., & Barcelo, D. (2021). Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil. Molecules, 26(21), 6698. https://doi.org/10.3390/molecules26216698