Jabuticaba (Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes
Abstract
:1. Introduction
2. Results and Discussions
2.1. Jabuticaba Peels: Chemical Characterization and Antioxidant Activity
2.2. Preparation and Characterization of the Phospholipid Vesicles
2.3. In Vitro Studies with Keratinocytes
2.3.1. Biocompatibility of Vesicles
2.3.2. Protective Effect of the Extract, in Dispersion or Loaded in Vesicles, against Damage Induced in Keratinocytes by Hydrogen Peroxide
2.3.3. In Vitro Wound Healing Effects
3. Materials and Methods
3.1. Materials
3.2. Jabuticaba Peels: Extraction, Chemical Characterization, and Antioxidant Activity
3.3. Vesicle Preparation
3.4. Characterization of the Vesicles
3.5. Stability of Vesicles on Storage
3.6. Measurement of the Antioxidant Activity of Samples Using the DPPH Colorimetric Test
3.7. Biocompatibility and Protective Effect of Samples against Oxidative Stress in Keratinocytes
3.8. In Vitro Wound Healing Properties
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gomes, A.C.A.; da Costa Lima, M.; de Oliveira, K.Á.R.; dos Santos Lima, M.; Magnani, M.; Câmara, M.P.S.; de Souza, E.L. Coatings with chitosan and phenolic-rich extract from acerola (Malpighia Emarginata D.C.) or Jabuticaba (Plinia Jaboticaba (Vell.) Berg) processing by-product to control rot caused by Lasiodiplodia spp. in Papaya (Carica Papaya L.) Fruit. Int. J. Food Microbiol. 2020, 331, 108694. [Google Scholar] [CrossRef] [PubMed]
- Macedo, E.H.B.C.; Santos, G.C.; Santana, M.N.; Jesus, E.F.O.; de Araújo, U.B.; Anjos, M.J.; Pinheiro, A.S.; Carneiro, C.S.; Rodrigues, I.A. Unveiling the physicochemical properties and chemical profile of artisanal jabuticaba wines by bromatological and NMR-based metabolomics approaches. LWT 2021, 146, 111371. [Google Scholar] [CrossRef]
- Oguntibeju, O.O. Medicinal plants and their effects on diabetic wound healing. Vet. World 2019, 12, 653. [Google Scholar] [CrossRef] [Green Version]
- A Critical Review on Ethnobotanical, Phytochemical and Pharmacological Investigations of Martynia Annua Linn. International Journal of Ayurvedic Medicine. Available online: https://ijam.co.in/index.php/ijam/article/view/1135 (accessed on 20 October 2021).
- Rahimi, H.R.; Arastoo, M.; Ostad, S.N. A Comprehensive Review of Punica (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches. Iran. J. Pharm. Res. 2012, 11, 385. [Google Scholar]
- Pimenta Inada, K.O.; Nunes, S.; Martínez-Blázquez, J.A.; Tomás-Barberán, F.A.; Perrone, D.; Monteiro, M. Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of Jabuticaba (Myrciaria Jaboticaba) peel and seed. Food Chem. 2020, 309, 125794. [Google Scholar] [CrossRef]
- Heck, R.T.; Ferreira, D.F.; Fagundes, M.B.; dos Santos, B.A.; Cichoski, A.J.; Saldaña, E.; Lorenzo, J.M.; de Menezes, C.R.; Wagner, R.; Barin, J.S.; et al. Jabuticaba peel extract obtained by microwave hydrodiffusion and gravity extraction: A green strategy to improve the oxidative and sensory stability of beef burgers produced with healthier oils. Meat Sci. 2020, 170, 108230. [Google Scholar] [CrossRef]
- Ferreira, P.R.; Marins, J.C.B.; de Oliveira, L.L.; Bastos, D.S.S.; Soares Júnior, D.T.; da Silva, C.D.; Fontes, E.A.F. Beverage based on whey permeate with phenolic extract of Jabuticaba peel: A pilot study on effects on muscle and oxidative stress in trained individuals. J. Funct. Foods 2020, 65, 103749. [Google Scholar] [CrossRef]
- Fidelis, M.; Vieira do Carmo, M.A.; Azevedo, L.; Cruz, T.M.; Marques, M.B.; Myoda, T.; Sant’Ana, A.S.; Furtado, M.M.; Wen, M.; Zhang, L.; et al. Response surface optimization of phenolic compounds from Jabuticaba (Myrciaria cauliflora [Mart.] O.Berg) seeds: Antioxidant, antimicrobial, antihyperglycemic, antihypertensive and cytotoxic assessments. Food Chem. Toxicol. 2020, 142, 111439. [Google Scholar] [CrossRef]
- Fidelis, M.; de Moura, C.; Junior, T.K.; Pap, N.; Mattila, P.; Mäkinen, S.; Putnik, P.; Kovačević, D.B.; Tian, Y.; Yang, B.; et al. Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy. Molecules 2019, 24, 3854. [Google Scholar] [CrossRef] [Green Version]
- Briuglia, M.-L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015, 5, 231–242. [Google Scholar] [CrossRef] [Green Version]
- van Tran, V.; Moon, J.; Lee, Y. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Controll. Release 2019, 300, 114–140. [Google Scholar] [CrossRef]
- Castangia, I.; Manca, M.L.; Catalán-Latorre, A.; Maccioni, A.M.; Fadda, A.M.; Manconi, M. Phycocyanin-encapsulating hyalurosomes as carrier for skin delivery and protection from oxidative stress damage. J. Mater. Sci. Mater. Med. 2016, 27, 1–10. [Google Scholar] [CrossRef]
- Manca, M.L.; Ferraro, M.; Pace, E.; di Vincenzo, S.; Valenti, D.; Fernàndez-Busquets, X.; Peptu, C.A.; Manconi, M. Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract. Nanomaterials 2021, 11, 850. [Google Scholar] [CrossRef]
- Gibis, M.; Vogt, E.; Weiss, J. Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food Funct. 2012, 3, 246–254. [Google Scholar] [CrossRef]
- Lee, E.H.; Lim, S.J.; Lee, M.K. Chitosan-Coated Liposomes to Stabilize and Enhance Transdermal Delivery of Indocyanine Green for Photodynamic Therapy of Melanoma. Carbohydr. Polym. 2019, 224, 115143. [Google Scholar] [CrossRef] [PubMed]
- Smistad, G.; Nyström, B.; Zhu, K.; Grønvold, M.; Røv-Johnsen, A.; Hiorth, M. Liposomes coated with hydrophobically modified hydroxyethyl cellulose: Influence of hydrophobic chain length and degree of modification. Coll. Surf. B Biointerfaces 2017, 156, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Halim, E.S. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arab. J. Chem. 2014, 7, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Lin, L.; Chen, P. Study of the mass spectrometric behaviors of anthocyanins in negative ionization mode and its applications for characterization of anthocyanins and non-anthocyanin polyphenols. Rapid Commun. Mass Spectrom. 2012, 26, 1123–1133. [Google Scholar] [CrossRef]
- Fidelis, M.; Santos, J.S.; Escher, G.B.; Rocha, R.S.; Cruz, A.G.; Cruz, T.M.; Marques, M.B.; Nunes, J.B.; do Carmo, M.A.V.; de Almeida, L.A.; et al. Polyphenols of jabuticaba [Myrciaria Jaboticaba (Vell.) O.Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats. Food Chem. 2021, 334, 127565. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pinela, J.; Barros, L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Anthocyanin-rich extract of Jabuticaba epicarp as a natural colorant: Optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chem. 2020, 316, 126364. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.B.; Long, C.; Kennelly, E.J. Phytochemistry and health benefits of Jaboticaba, an emerging fruit crop from Brazil. Food Res. Int. 2013, 54, 148–159. [Google Scholar] [CrossRef]
- Morales, P.; Barros, L.; Dias, M.I.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Ramirez Asquieri, E.; Berrios, J.D.J. Non-fermented and fermented Jabuticaba (Myrciaria Cauliflora Mart.) pomaces as valuable sources of functional ingredients. Food Chem. 2016, 208, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- This, P.; Lacombe, T.; Thomas, M.R.; Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B.; Plaza, M.; Pozzo, T.; Liu, J.; et al. Biological activities of polyphenols from grapes. Int. J. Molec. Sci. 2014, 11, 622–646. [Google Scholar] [CrossRef]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap–orbitrap mass spectrometry. Food Chem. 2014, 152, 340–348. [Google Scholar] [CrossRef]
- Gasperotti, M.; Masuero, D.; Vrhovsek, U.; Guella, G.; Mattivi, F. Profiling and accurate quantification of Rubus Ellagitannins and ellagic acid conjugates using direct UPLC-Q-TOF HDMS and HPLC-DAD analysis. J. Agric. Food Chem. 2010, 58, 4602–4616. [Google Scholar] [CrossRef] [PubMed]
- Renai, L.; Scordo, C.V.A.; Chiuminatto, U.; Ulaszewska, M.; Giordani, E.; Petrucci, W.A.; Tozzi, F.; Nin, S.; del Bubba, M. Liquid chromatographic quadrupole time-of-flight mass spectrometric untargeted profiling of (poly)phenolic compounds in Rubus Idaeus L. and Rubus Occidentalis L. fruits and their comparative evaluation. Antioxidants 2021, 10, 704. [Google Scholar] [CrossRef] [PubMed]
- Tarone, A.G.; Silva, E.K.; Betim Cazarin, C.B.; Marostica, M.R., Jr. Inulin/fructooligosaccharides/pectin-based structured systems: Promising encapsulating matrices of polyphenols recovered from Jabuticaba peel. Food Hydrocoll. 2021, 111, 106387. [Google Scholar] [CrossRef]
- Nagula, R.; Wairkar, S. Undefined Recent Advances in Topical Delivery of Flavonoids: A Review. J. Control. Release 2019, 296, 190–201. [Google Scholar]
- McClements, D.J.; Öztürk, B. Utilization of nanotechnology to improve the application and bioavailability of phytochemicals derived from waste streams. J. Agric. Food Chem. 2021. [Google Scholar] [CrossRef]
- Molinaro, R.; Gagliardi, A.; Mancuso, A.; Cosco, D.; Soliman, M.; Casettari, L.; Paolino, D. Development and in vivo evaluation of multidrug ultradeformable vesicles for the treatment of skin inflammation. Pharmaceutics 2019, 11, 644. [Google Scholar] [CrossRef] [Green Version]
- Sachan, R.; Parashar, T.; Singh, V.; Singh, G.; Tyagi, S.; Patel, C. Drug carrier transferosomea: A novel tool for transdermal drug delivery. Int. J. Res. Develop. Pharm. Life Sci. 2013, 2, 309–316. [Google Scholar]
- Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef]
- Hoffmann, H.; Kästner, U.; Dönges, R.; Ehrler, R. Gels from modified hydroxyethyl cellulose and ionic surfactants. Polym. Gels Netw. 1996, 4, 509–526. [Google Scholar] [CrossRef]
- Gille, J.; Joenje, H. Cell Culture Models for Oxidative Stress: Superoxide and Hydrogen Peroxide versus Normobaric Hyperoxia. Mutat. Res. 1992, 275, 405–414. [Google Scholar] [CrossRef]
- Manca, M.L.; Lattuada, D.; Valenti, D.; Marelli, O.; Corradini, C.; Fernàndez-Busquets, X.; Zaru, M.; Maccioni, A.M.; Fadda, A.M.; Manconi, M. Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid. Eur. J. Pharm. Biopharm. 2019, 136, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Castangia, I.; Zaru, M.; Nácher, A.; Valenti, D.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Development of curcumin loaded sodium hyaluronate immobilized vesicles (Hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials 2015, 71, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Kumpulainen, J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef]
- Santos, J.S.; Leal, A.S.; Escher, G.B.; Cruz, A.G.; Cruz, T.M.; Hellström, J.; Pihlava, J.-M.; Granato, D. Effects of an herbal extract composed of white tea, roasted yerba mate and fermented rooibos on the antioxidant activity and sensory properties of popsicles manufactured with different protein sources. J. Food Bioact. 2020, 11, 84–94. [Google Scholar] [CrossRef]
- Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int. J. Pharm. 2013, 455, 66–74. [Google Scholar] [CrossRef]
- Zhuang, J.; Ping, Q.; Song, Y.; Qi, J.; Cui, Z. Effects of chitosan coating on physical properties and pharmacokinetic behavior of mitoxantrone liposomes. Int. J. Nanomed. 2010, 5, 407–416. [Google Scholar]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Serreli, G.; Congiu, F.; Montoro, P.; Fenu, M.A. Characterization, Phenolic Profile, Nitrogen Compounds and Antioxidant Activity of Carignano Wines. J. Food Compos. Anal. 2017, 58, 60–68. [Google Scholar] [CrossRef]
- Allaw, M.; Manconi, M.; Aroffu, M.; Marongiu, F.; Porceddu, M.; Bacchetta, G.; Usach, I.; Rached, R.A.; Rajha, H.N.; Maroun, R.G.; et al. Extraction, characterization and incorporation of hypericum Scruglii extract in ad hoc formulated phospholipid vesicles designed for the treatment of skin diseases connected with oxidative stress. Pharmaceutics 2020, 12, 1010. [Google Scholar] [CrossRef] [PubMed]
Phenolic Composition and Antioxidant Activity | Content |
---|---|
Total phenolic content | 7090 ± 43 mg GAE/100 g |
ortho-Diphenols | 784 ± 3 mg CAE/100 g |
Total flavonoids | 1870 ± 31 mg CE/100 g |
Condensed tannins | 498 ± 13 mg CE/100 g |
Total anthocyanins | 107 ± 3 mg/100 g |
Total ellagitannins content | 901 ± 3 mg/100 g |
Delphinidin 3-O-glucoside | 8 ± 0.21 mg/100 g |
Cyanidin 3-O-glucoside | 61 ± 0.51 mg/100 g |
Gallic acid | 290 ± 6 mg/100 g |
FRAP | 10768 ± 232 mg AAE/100 g |
DPPH | 6807 ± 108 mg AAE/100 g |
Reducing power | 1921 ± 10 mg GAE/100 g |
CUPRAC | 27983 ± 393 mg AAE/100 g |
Cu2+ chelating ability | 20696 ± 172 mg EDTAE/100 g |
Anthocyanins | |||||
---|---|---|---|---|---|
Rt (min) | Suggested Compound | M+ | Exact Mass | Detected Mass | Fragment ions |
5.84 | Delphinidin-Hex | C21H21O12 | 465.1033 | 465.1017 | 303.0458 |
6.29 | Cyanidin-Hex | C21H21O11 | 449.1084 | 449.1064 | 287.0533 |
Ellagitannins | |||||
Rt (min) | Suggested Compound | (M-H)- | Exact Mass | Detected Mass | Fragment ions |
1.35 | Galloyl-HHDP-Hex | C27H21O18 | 633.0734 | 633.0745 | 481.0612, 300.9947, 275.0160 |
4.04 | Bis-HHDP-Hex | C34H23O22 | 783.0681 | 783.0683 | 481.0623, 300.9966, 275.0177, 249.0357 |
4.47 | Castalagin/Vescalagin | C41H25O26 | 933.0634 | 933.0650 | 915.0612, 783.0648, 425.0042, 300.9958, 275.0140, 249.0357 |
4.88 | Castalagin/Vescalagin | C41H25O26 | 933.0634 | 933.0617 | 783.0716, 425.0010, 300.9959, 275.0163 |
4.94 | Bis-HHDP-Hex | C34H23O22 | 783.0681 | 783.0643 | 481.0614, 300,9954, 275.0161, 249.0287 |
5.19 | Bis-HHDP-Hex | C34H23O22 | 783.0681 | 783.0654 | 481.0569, 300.9959, 275.0514, 249.0369 |
5.30 | Trigalloyl-HHDP-Hex | C41H27O27 | 951.0740 | 951.0725 | 907.0729, 783.0651, 481.0534, 300,9956, 275.0153, 249.343 |
5.86 | Pterocarinin A | C46H35O30 | 1067.1213 | 1067.1189 | 1023.1228, 933.1010, 377.0256, 300.9955, 275.0174, 249.0358 |
6.08 | Galloyl-Bis-HHDP-Hex (casuarinin) | C41H27O26 | 935.0791 | 935.0770 | 917.0676, 873.0729, 855.0708, 783.0633, 633.0699, 300.9955, 275.0170. 249.0360 |
7.04 | Digalloyl-HHDP-Hex | C34H25O22 | 785.0837 | 785.0865 | 633.0690, 300.9957, 275.0128, 261.0000, 249.0363 |
7.18 | Galloyl-Bis-HHDP-Hex | C41H27O26 | 935.0791 | 935.0787 | 783.0715, 633.0704, 463.0501, 300.9964, 275.0180, 249.0375 |
7.36 | degallolyated Sanguiin H-6 | C75H49O48 | 858.0660 / (M − 2H)2− | 858.0645 / (M − 2H)2− | 935.0776, 783.0776, 633.0709, 300.9958, 275.0175, 249.0368 |
7.51 | Galloyl-Bis-HHDP-Hex | C41H27O26 | 935.0791 | 935.0824 | 633.0772, 300.9963, 275.0183, 249.0367 |
8.08 | Ellagic acid-Pen | C19H13O12 | 433.0407 | 433.0378 | 300.9949, 275.0173, 249.0363 |
Extract | S75 | Tween80 | Sodium Hyaluronate | Hydroxyethyl Cellulose | |
---|---|---|---|---|---|
mg/mL | mg/mL | mg/mL | mg/mL | mg/mL | |
Transfersomes | 40 | 180 | 40 | ||
1HEcellulose-transfersomes | 40 | 180 | 40 | 1 | |
2HEcellulose -transfersomes | 40 | 180 | 40 | 2 | |
1hyaluronan-transfersomes | 40 | 180 | 40 | 1 | |
2hyaluronan-transfersomes | 40 | 180 | 40 | 2 |
Mean Diameter (nm) | Polydispersity Index (PI) | Zeta Potential (mV) | EE (%) | |
---|---|---|---|---|
Transfersomes | * 62 ± 4 | 0.23 | −19 ± 2 | 90 ± 4 |
1IE-transfersomes | ° 89 ± 2 | 0.25 | −16 ± 4 | 90 ± 2 |
2IE-transfersomes | ° 94 ± 5 | 0.21 | −19 ± 2 | 94 ± 5 |
1IALO-transfersomes | ° 89 ± 5 | 0.22 | −18 ± 3 | 91 ± 2 |
2IALO-transfersomes | ° 95 ± 4 | 0.25 | −19 ± 2 | 95 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castangia, I.; Manca, M.L.; Allaw, M.; Hellström, J.; Granato, D.; Manconi, M. Jabuticaba (Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes. Molecules 2021, 26, 6697. https://doi.org/10.3390/molecules26216697
Castangia I, Manca ML, Allaw M, Hellström J, Granato D, Manconi M. Jabuticaba (Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes. Molecules. 2021; 26(21):6697. https://doi.org/10.3390/molecules26216697
Chicago/Turabian StyleCastangia, Ines, Maria Letizia Manca, Mohamad Allaw, Jarkko Hellström, Daniel Granato, and Maria Manconi. 2021. "Jabuticaba (Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes" Molecules 26, no. 21: 6697. https://doi.org/10.3390/molecules26216697
APA StyleCastangia, I., Manca, M. L., Allaw, M., Hellström, J., Granato, D., & Manconi, M. (2021). Jabuticaba (Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes. Molecules, 26(21), 6697. https://doi.org/10.3390/molecules26216697