Assessment of Agroeconomic Indicators of Sesamum indicum L. as Influenced by Application of Boron at Different Levels and Plant Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Specification
2.2. Brief Description of the Methodology for Analysis of Soil Samples
2.3. Treatment Details and Estimation of Yield
2.4. Estimation of Boron in the Soil Sample
2.5. Estimation of Boron in the Plant Sample
2.6. Estimation of Certain Quality Parameters
2.6.1. Estimation of Antioxidant Activity (AOA)
2.6.2. Estimation of Total Oil Content (TOC)
2.6.3. Estimation of Acid Value
2.7. Boron Use Efficiency Indices
2.8. Economic Analysis
2.9. Statistical Analysis
3. Results
3.1. Effect of B on Seed and Stover Yield of Sesame
3.2. Effect of B on Its Uptake by Seed and Stover of Sesame
3.3. Effect of B on Certain Quality Parameters of Sesame
3.4. Effect of B on Efficiency Indices and Economic Analysis
4. Discussion
4.1. Effect of B on Seed and Stover Yield of Sesame
4.2. Effect of B on Its Uptake by Seed and Stover of Sesame
4.3. Effect of B on Certain Quality Parameters of Sesame
4.4. Effect of B on Efficiency Indices and Economic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatments | Seed B Concentration (mg kg−1) | Stover B Concentration (mg kg−1) | ||||
---|---|---|---|---|---|---|
1st Year | 2nd Year | Mean | 1st Year | 2nd Year | Mean | |
T1 | 22.59 d ± 1.22 | 22.37 d ± 0.69 | 22.48 f | 31.17 d ± 1.69 | 30.64 d ± 0.94 | 30.90 e |
T2 | 22.63 d ± 0.98 | 22.49 d ± 0.29 | 22.56 f | 31.23 d ± 1.35 | 30.80 d ± 0.40 | 31.02 e |
T3 | 25.66 c ± 1.08 | 24.55 c ± 0.86 | 25.11 e | 35.41 c ± 1.48 | 33.64 c ± 1.18 | 34.52 d |
T4 | 28.69 b ± 1.27 | 28.14 b ± 0.07 | 28.41 c | 39.59 b ± 1.75 | 38.55 b ± 0.10 | 39.07 b |
T5 | 30.36 a ± 0.23 | 28.60 b ± 0.66 | 29.48 b | 41.90 a ± 0.32 | 39.17 b ± 0.91 | 40.54 b |
T6 | 22.91 d ± 0.80 | 22.58 d ± 0.21 | 22.75 f | 31.61 d ± 1.11 | 30.93 d ± 0.29 | 31.27 e |
T7 | 27.06 c ± 0.46 | 25.01 c ± 0.83 | 26.03 d | 37.34 c ± 0.64 | 34.26 c ± 1.13 | 35.80 c |
T8 | 30.09 ab ± 0.01 | 28.13 b ± 0.27 | 29.11 bc | 41.52 ab ± 0.02 | 38.53 b ± 0.37 | 40.03 b |
T9 | 31.36 a ± 0.66 | 30.64 a ± 0.29 | 31.00 a | 43.28 a ± 0.91 | 41.97 a ± 0.39 | 42.63 a |
LSD ≤ 0.05 | 1.50 | 0.96 | 0.88 | 2.07 | 1.32 | 1.21 |
References
- Pathak, N.; Rai, A.K.; Kumari, R.; Bhat, K.V. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014, 8, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Vanisha, K.; Atwal, A.K.; Dhaliwal, S.S.; Banga Shashi, K. Assessment of diverse sesame (Sesamum indicum L.) germplasm for mineral composition. J. Plant. Sci. Res. 2013, 29, 61–68. [Google Scholar]
- Indian Oilseed and Produce Export Promotion Council (IOPEPC). Kharif-2019 Survey of Sesame Crop. 78/79, Bajaj Bhavan, Nariman Point Mumbai 400021, Maharashtra, India, 2019. pp. 1–20. Available online: http://www.iopepc.org/misc/2019_20/Kharif%202019%20Sesame%20crop%20survey.pdf (accessed on 20 September 2021).
- Myint, D.; Gilani, S.A.; Kawase, M.; Watanabe, K.N. Sustainable Sesame (Sesamum indicum L.) Production through Improved Technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability 2020, 12, 3515. [Google Scholar] [CrossRef]
- Nayyar, V.K. Soil micronutrient deficiencies in the rice-wheat cropping system. In Addressing Resource Conservation Issues in Rice-Wheat Systems of South Asia: A Resource Book; International Maize and Wheat Improvement Center: New Delhi, India, 2003; pp. 157–162. [Google Scholar]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Phys. Plant 2015, 37, 139. [Google Scholar] [CrossRef]
- Kihara, J.; Sileshi, G.W.; Nziguheba, G.; Kinyua, M.; Zingore, S.; Sommer, R. Application of secondary nutrients and micronutrients increases crop yields in sub-Saharan Africa. Agron. Sustain. Dev. 2017, 37, 25. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, J.; Tahereh, A.; Naserand, S.; Shahryar, D. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric. Slov. 2016, 107, 265–276. [Google Scholar]
- Soleimani, S. Effect of boron levels on potato and sesame crop sequence. Annu. Hortic. 2006, 6, 60–64. [Google Scholar]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kihara, J.; Bolo, P.; Kinyua, M.; Rurinda, J.; Piikki, K. Micronutrient deficiencies in African soils and the human nutritional nexus: Opportunities with staple crops. Environ. Geochem. Health 2020, 42, 3015–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, C.A.; Roques, S.E.; Berry, P.M. Effects of foliar applied nitrogen fertilizer on oilseed rape (Brassica napus). J. Agric. Sci. 2013, 153, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Lawson, P.G.; Daum, D.; Czaudema, R.; Meuser, H.; Harling, J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 6, 450. [Google Scholar] [CrossRef]
- Hamideldin, N.; Hussein, O.S. Response of sesame (Sesamum indicum L.) plants to foliar spray with different concentrations of boron. J. Am. Oil Chem. Soc. 2014, 91, 1949–1953. [Google Scholar] [CrossRef]
- Kumar, B.; Sarkar, N.C.; Fatima, A. Influence of different levels of sulphur and boron nutrition on nutrient uptake and yield of summer sesame in West Bengal. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1757–1762. [Google Scholar] [CrossRef]
- Modhavadiya, V.L.; Solanki, M.S.; Hirpara, D.V.; Jadeja, A.S.; Ranpariya, V.S. Effect of sulphur and boron on yield of summer Sesamum (Sesamum indicum L.) under medium black calcareous soils of south Saurashtra region of Gujarat. Int. J. Chem. Stud. 2018, 6, 378–380. [Google Scholar]
- Shamsuzzoha, M.; Kundu, P.K.; Rouf, M.A.; Afrose, R.; Mostofa, M. Effect of combined application of nitrogen and boron on yield contributing characters and yield of sesame (Sesamum indicum L.). Annu. Res. Rev. Biol. 2019, 31, 1–12. [Google Scholar] [CrossRef]
- Padasalagi, R.M.; Lalitha, B.S.; Jayadeva, H.M.; Gurunath, R. Effect of sulphur and boron on growth and yield of sesame (Sesamum indicum L.). J. Pharmacogn. Phytochem. 2019, 8, 1426–1431. [Google Scholar]
- Mekki, B.B. Effect of boron foliar application on yield and quality of some sunflower (Helianthus annuus L.) cultivars. JAST B 2015, 5, 309–316. [Google Scholar]
- Naeem, M.; Naeem, M.S.; Ahmad, R.; Ahmad, R.; Ashraf, M.Y.; Ihsan, M.Z.; Nawaz, F.; Athar, H.R.; Ashraf, M.; Abbas, H.T.; et al. Improving drought tolerance in maize by foliar application of boron: Water status, antioxidative defense and photosynthetic capacity. Arch. Agron. Soil Sci. 2018, 64, 626–639. [Google Scholar] [CrossRef]
- Hamurcu, M.; Sekmen, A.H.; Turkan, İ.; Gezgin, S.; Demiral, T.; Bell, R.W. Induced anti-oxidant activity in soybean alleviates oxidative stress under moderate boron toxicity. Plant Growth Regul. 2013, 70, 217–226. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.; Black, C.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 1367–1378. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus by Extraction with Sodium Bicarbonate; USDA Circular Nr 939; US Government Printing Office: Washington, DC, USA, 1954; pp. 1–19.
- Merwin, H.D.; Peech, M. Exchangeability of soils potassium in the sand, silt and clay fractions as influenced by the nature of the complementary exchangeable cations. Soil Sci. Soc. Am. Proceed. 1950, 15, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- John, M.K.; Chuah, H.H.; Neufeld, J.H. Application of improved Azomethine–H method to the determination of boron in soils and plants. Anal. Lett. 1975, 8, 559–568. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Taneja, P.K.; Shukla, A.K.; Kaur, L.; Verma, G.; Verma, V.; Singh, J. Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil. Environ. Sci. Pollut. Res. 2021, 1–10. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Taneja, P.K.; Singh, J.; Bhatti, S.S.; Singh, R. Cadmium accumulation potential of Brassica species grown in metal spiked loamy sand soil. Soil Sediment Contam. 2020, 29, 638–649. [Google Scholar] [CrossRef]
- Gujral, H.S.; Angurala, M.; Sharma, P.; Singh, J. Phenolic content and antioxidant activity of germinated and cooked pulses. Int. J. Food Prop. 2011, 14, 1366–1374. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.; Singh, B.; Kaur, G. Potato cereal extrudates: Chemical composition, functional properties, in vitro digestibility and consumer acceptability. J. Nutr. Food Sci. 2018, 8, 2. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Win, S.S.; Trabold, T.A. Sustainable waste-to-energy technologies: Transesterification. In Sustainable Food Waste-to-Energy Systems; Academic Press: Cambridge, MA, USA, 2018; pp. 89–109. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R.; Rahal, A. Genotypic variation for productivity, zinc utilization efficiencies and kernel quality in rice under low available zinc conditions. J. Plant Nutr. 2010, 33, 1835–1848. [Google Scholar] [CrossRef]
- Kumar, B.R.; Rao, S.G.; Kondababu, P. Yield and economics of sesame based cropping system in north coastal zone of Andhra Pradesh. Curr. Agric. Res. 2020, 8, 2. [Google Scholar]
- Randhawa, M.K.; Dhaliwal, S.S.; Sharma, V.; Toor, A.S.; Sharma, S.; Kaur, M.; Verma, G. Nutrient use efficiency as a strong indicator of nutritional security and builders of soil nutrient status through integrated nutrient management technology in a rice-wheat system in northwestern India. Sustainability 2021, 13, 4551. [Google Scholar] [CrossRef]
- Mamatha, K.; Vidyasagar, G.E.C.; Laxminarayana, P.; Padmaja, G. Effect of boron levels and farmyard manure on physiological growth and quality of sesame (Sesamum indicum L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2568–2574. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sharma, P.K.; Rai, A. Response of sesame (Sesamum indicum L.) to sulphur and boron in upland red soil of Vindhyan Zone. J. Indian Soc. Soil Sci. 2018, 66, 432–435. [Google Scholar] [CrossRef]
- Atique-ur-Rehman, F.M.; Rashid, A.; Nadeem, F.; Stuerz, S.; Asch, F.; Bell, R.W.; Siddique, K.H.M. Boron nutrition of rice in different production systems. A review. Agron. Sustain. Dev. 2018, 38, 25. [Google Scholar] [CrossRef] [Green Version]
- El-Feky, S.S.; El-Shintinawy, F.; Shaker, E.M.; El-Din, H.A.S. Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Aust. J. Crop Sci. 2012, 6, 1687–1695. [Google Scholar]
- Qamar, J.; Rehman, A.; Ali, M.A.; Qamar, R.; Ahmed, K.; Raza, W. Boron increases the growth and yield of mungbean. J. Adv. Agric. 2016, 6, 3. [Google Scholar]
- Metwally, A.; El-Shazoly, R.; Hamada, A.M. Effect of boron on growth criteria of some wheat cultivars. J. Biol. Earth Sci. 2012, 2, B1–B9. [Google Scholar]
- Ayvaz, M.; Koyuncu, M.; Guven, A.; Fagerstedt, K.V. Does boron affect hormone levels of barley cultivars? Eurasian J. Biosci. 2012, 6, 113–120. [Google Scholar] [CrossRef]
- Dravie, E.E.; Kortei, N.K.; Essuman, E.K.; Tettey, C.O.; Boakye, A.A.; Hunkpe, G. Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L.). Sci. Afr. 2020, 8, e00349. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Mandal, J.; Banerjee, H.; Alipatra, A.; Ray, K.; Phonglosa, A. Boron fertilization in sunflower (Helianthus annuus L.) in an Inceptisol of West Bengal, India. Commun. Soil Sci. Plant Anal. 2015, 46, 528–544. [Google Scholar] [CrossRef]
- Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and approaches to enhance its availability in Plants for sustainable agriculture. Int. J. Mol. Sci. 2018, 19, 1856. [Google Scholar] [CrossRef] [Green Version]
- Akshatha, S.; Rajkumara, S. Response of sesame to different levels and methods of boron application. J. Farm. Sci. 2018, 31, 46–49. [Google Scholar]
Soil Properties | Values | Method |
---|---|---|
Soil texture | Sandy loam | [22] |
pH | 7.70 | |
EC (dSm−1) | 0.35 | |
Bulk density (g cm−3) | 1.42 | |
Organic matter (%) | 0.83 | [23] |
Total N (%) | 0.39 | [22] |
Available P (kg ha−1) | 19.66 | [24] |
Available K (kg ha−1) | 128.85 | [25] |
DTPA-extractable Zn (mg kg−1) | 0.74 | [26] |
DTPA-extractable Fe (mg kg−1) | 20.7 | |
DTPA-extractable Mn (mg kg−1) | 6.26 | |
DTPA-extractable Cu (mg kg−1) | 0.56 | |
Available B (mg kg−1) | 0.48 | [27] |
Treatments | Source | Boron Application Rate (mg L−1) | Crop Stages of B Application | |
---|---|---|---|---|
Flowering Stage | Capsule Formation Stage | |||
T1 | Control | - | − | |
T2 | Water spray | - | + | − |
T3 | Boron | 20 | + | − |
T4 | Boron | 30 | + | − |
T5 | Boron | 40 | + | − |
T6 | Water spray | - | + | + |
T7 | Boron | 20 | + | + |
T8 | Boron | 30 | + | + |
T9 | Boron | 40 | + | + |
Treatments | Seed Yield (kg ha−1) | Stover Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
1st Year | 2nd Year | Mean | % Increase | 1st Year | 2nd Year | Mean | % Increase | |
T1 | 548.1 b ± 42.7 | 566.3 b± 7.0 | 557.2 b | - | 3065.4 b ± 168.7 | 3506.8 c ± 260.1 | 3286.6 c | - |
T2 | 587.6 b ± 2.0 | 579.2 b ± 15.2 | 583.4 b | 4.67 | 3083.2 b ± 180.1 | 3761.6 bc ± 246.1 | 3422.4 bc | 4.14 |
T3 | 533.3 b ± 39.2 | 643.1 ab ± 25.5 | 588.2 b | 5.57 | 3238.7 b ± 204.5 | 3976.3 bc ± 238.1 | 3607.5 bc | 9.77 |
T4 | 700.2 ab ± 25.1 | 658.8 a ± 24.6 | 679.5 a | 21.90 | 4065.9 ab ± 288.8 | 4775.5 a ± 289.5 | 4420.7 a | 34.51 |
T5 | 612.4 b ± 13.69 | 611.6 ab ± 16.0 | 612.5 b | 9.87 | 3230.1 b ± 163.6 | 4013.7 b ± 201.5 | 3621.4 bc | 10.19 |
T6 | 576.5 b ± 11.3 | 598.3 b ± 17.3 | 587.4 b | 5.39 | 3113.5 b ± 140.7 | 4007.9 b ± 214.0 | 3560.7 bc | 8.34 |
T7 | 663.1 ab ± 13.0 | 661.7 a ± 35.6 | 662.4 a | 18.85 | 4068.8 ab ± 552.4 | 4756.2 a ± 169.9 | 4412.5 a | 34.27 |
T8 | 755.7 a ± 207 | 656.5 a ± 10.7 | 706.6 a | 26.75 | 4375.6 a ± 103.3 | 4212.4 b ± 109.1 | 4293.5 ab | 30.65 |
T9 | 556.2 b ± 60.6 | 588.4 b ± 50.9 | 572.3 b | 2.69 | 3552.3 b ± 105.8 | 4048.1 b ± 245.1 | 3800.2 b | 15.64 |
LSD ≤ 0.05 | 133.4 | 51.2 | 80.1 | - | 737.5 | 452.4 | 501.3 | - |
Treatments | Seed B Uptake (g ha−1) | Stover B Uptake (g ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
1st Year | 2nd Year | Mean | % Increase | 1st Year | 2nd Year | Mean | % Increase | |
T1 | 123.67 c ± 11.47 | 126.67 c ± 2.94 | 125.18 c | - | 955.29 c ± 73.89 | 1074.26 d ± 66.32 | 1015.36 d | - |
T2 | 132.85 c ± 5.38 | 130.12 c ± 1.95 | 131.49 c | 5.04 | 963.04 c ± 78.76 | 1158.65 d ± 61.64 | 1061.57 cd | 4.55 |
T3 | 136.84 c ± 12.28 | 157.89 b ± 4.21 | 147.67 c | 17.97 | 1146.33 bc ± 109.78 | 1337.52 c ± 52.98 | 1245.19 c | 22.64 |
T4 | 200.91 ab ± 7.61 | 185.09 a ± 6.67 | 192.94 ab | 54.13 | 1609.32 ab ± 118.80 | 1840.72 a ±116.11 | 1726.85 a | 70.07 |
T5 | 185.94 b ± 11.58 | 174.63 a ± 8.57 | 180.28 b | 44.02 | 1353.40 b ± 76.39 | 1571.92 b ± 46.94 | 1468.01 b | 44.58 |
T6 | 131.92 c ± 7.76 | 135.04 c ± 4.78 | 133.50 c | 6.65 | 984.23 c ± 42.66 | 1239.58 c ± 58.18 | 1113.43 cd | 9.66 |
T7 | 179.40 b ± 17.75 | 165.29 b ± 14.31 | 172.33 b | 37.67 | 1518.98 ab ± 101.89 | 1629.09 b ± 6.30 | 1579.35 ab | 55.55 |
T8 | 227.15 a ± 21.14 | 184.62 a ± 3.95 | 205.40 a | 64.08 | 1816.22 a ± 68.46 | 1623.10 b ± 143.79 | 1718.45 a | 69.25 |
T9 | 174.22 bc ± 18.33 | 180.17 ab ± 17.42 | 177.25 b | 41.60 | 1537.11 ab ± 72.27 | 1699.15 b ± 113.55 | 1619.75 ab | 59.52 |
LSD ≤ 0.05 | 39.54 | 16.25 | 23.75 | 301.25 | 146.74 | 199.10 |
Treatments | AOA (%) * | TOC (%) ** | Acid Value |
---|---|---|---|
T1 | 65.21 c ± 0.27 | 34.20 d ± 1.06 | 0.87 ± 0.06 |
T2 | 65.59 c ± 0.32 | 34.72 d ± 0.71 | 0.87 ± 0.06 |
T3 | 68.25 b ± 0.87 | 37.35 c ± 0.98 | 0.86 ± 0.05 |
T4 | 68.45 b ± 0.69 | 42.15 b ± 0.18 | 0.88 ± 0.04 |
T5 | 68.40 b ± 0.24 | 45.98 a ± 0.92 | 0.88 ± 0.03 |
T6 | 65.63 c ± 0.20 | 34.83 d ± 0.67 | 0.89 ± 0.05 |
T7 | 68.65 ab ± 0.74 | 39.57 c ± 3.77 | 0.90 ± 0.02 |
T8 | 69.41 a ± 0.42 | 44.35 ab ± 0.77 | 0.89 ± 0.01 |
T9 | 68.89 ab ± 0.36 | 45.92 a ± 0.38 | 0.89 ± 0.01 |
LSD ≤ 0.05 | 0.87 | 2.38 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Behera, S.K.; Sandhu, P.S.; Kaur, K.; Gaber, A.; Althobaiti, Y.S.; Abdelhadi, A.A.; et al. Assessment of Agroeconomic Indicators of Sesamum indicum L. as Influenced by Application of Boron at Different Levels and Plant Growth Stages. Molecules 2021, 26, 6699. https://doi.org/10.3390/molecules26216699
Dhaliwal SS, Sharma V, Shukla AK, Verma V, Behera SK, Sandhu PS, Kaur K, Gaber A, Althobaiti YS, Abdelhadi AA, et al. Assessment of Agroeconomic Indicators of Sesamum indicum L. as Influenced by Application of Boron at Different Levels and Plant Growth Stages. Molecules. 2021; 26(21):6699. https://doi.org/10.3390/molecules26216699
Chicago/Turabian StyleDhaliwal, Salwinder Singh, Vivek Sharma, Arvind Kumar Shukla, Vibha Verma, Sanjib Kumar Behera, Prabhjodh Singh Sandhu, Kamaljit Kaur, Ahmed Gaber, Yusuf S. Althobaiti, Abdelhadi A. Abdelhadi, and et al. 2021. "Assessment of Agroeconomic Indicators of Sesamum indicum L. as Influenced by Application of Boron at Different Levels and Plant Growth Stages" Molecules 26, no. 21: 6699. https://doi.org/10.3390/molecules26216699
APA StyleDhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Behera, S. K., Sandhu, P. S., Kaur, K., Gaber, A., Althobaiti, Y. S., Abdelhadi, A. A., & Hossain, A. (2021). Assessment of Agroeconomic Indicators of Sesamum indicum L. as Influenced by Application of Boron at Different Levels and Plant Growth Stages. Molecules, 26(21), 6699. https://doi.org/10.3390/molecules26216699