Thrombolytic Agents: Nanocarriers in Targeted Release
Abstract
:1. Introduction
2. Mechanisms of Thrombus Formation
2.1. Venous Thrombi
2.1.1. Injury of Cardiovascular Endothelial Cells
2.1.2. Changes in Blood Flow
2.1.3. Hypercoagulability of Blood
2.2. Arterial Thrombi
3. Types of Thrombolytic Drugs
4. Targeting by Nanocarriers
4.1. Physical Responsive Nano-Drug Delivery Systems
4.1.1. Ultrasound-Mediated Drug-Loaded Thrombolysis System
4.1.2. Magnetic Targeted Nanoparticles
4.1.3. Shear Stress Responsive Nanocarriers
4.2. Biologically Targeted Nano-Drug Delivery System
4.2.1. Antibody or Peptide Modified Nanocarriers Based on Thrombus Pathophysiological Conditions
4.2.2. Cell Membrane-Coated Bionic Nanocarriers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furie, B.; Furie, B.C. Mechanisms of Thrombus Formation. N. Engl. J. Med. 2008, 359, 938–949. [Google Scholar] [CrossRef]
- Mackman, N. Triggers, targets and treatments for thrombosis. Nature 2008, 451, 914–918. [Google Scholar] [CrossRef]
- Esmon, C.; Turpie, A.G.G. Venous and arterial thrombosis—Pathogenesis and the rationale for anticoagulation. Thromb. Haemost. 2011, 105, 586–596. [Google Scholar] [CrossRef]
- Ali, M.; Salim Hossain, M.; Islam, M.; Arman, S.I.; Sarwar Raju, G.; Dasgupta, P.; Noshin, T.F. Aspect of thrombolytic therapy: A review. Sci. World J. 2014, 2014, 586510. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Xiu, W.; Liu, Y.; Ren, L.; Xiao, H.; Yang, F.; Gao, Y.; Xu, C.; Wang, L. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Sci. Adv. 2020, 6, eaaz8204. [Google Scholar] [CrossRef] [PubMed]
- Eppler, S.; Senn, T.; Gilkerson, E.; Modi, N. Pharmacokinetics and pharmacodynamics of recombinant tissue-type plasminogen activator following intravenous administration in rabbits: A comparison of three dosing regimens. Biopharm. Drug Dispos. 1998, 19, 31–38. [Google Scholar] [CrossRef]
- Biswas, I.; Khan, G.A. Endothelial Dysfunction in Cardiovascular Diseases. In Basic and Clinical Understanding of Microcirculation; InTech: Rijeka, Croatia, 2020. [Google Scholar]
- Van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J. Intern. Med. 2006, 259, 373–380. [Google Scholar] [CrossRef]
- Blann, A.D.; Nadar, S.K.; Lip, G.Y. The adhesion molecule P-selectin and cardiovascular disease. Eur. Heart J. 2003, 24, 2166–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döring, Y.; Soehnlein, O.; Weber, C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ. Res. 2017, 120, 736–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolenski, A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J. Thromb. Haemost. 2012, 10, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Woulfe, D.; Yang, J.; Prévost, N.; O’Brien, P.; Fortna, R.; Tognolini, M.; Jiang, H.; Wu, J.; Brass, L.F. Signaling Receptors on Platelets and Megakaryocytes. Methods Mol. Biol. 2004, 273, 3–32. [Google Scholar] [CrossRef]
- Koupenova, M.; Kehrel, B.E.; Corkrey, H.A.; Freedman, J.E. Thrombosis and platelets: An update. Eur. Heart J. 2016, 38, 785–791. [Google Scholar] [CrossRef]
- Esmon, C.T. The protein C pathway. Chest 2003, 124 (Suppl. 3), 26s–32s. [Google Scholar] [CrossRef] [Green Version]
- Schulman, S.; Furie, B. The Molecular Basis of Blood Coagulation. Cell 1988, 53, 505–518. [Google Scholar]
- Schaller, J.; Gerber, S.S. The plasmin–antiplasmin system: Structural and functional aspects. Cell. Mol. Life Sci. 2010, 68, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Mammen, E.F. Pathogenesis of venous thrombosis. Chest 1992, 102 (Suppl. 6), 640s–644s. [Google Scholar] [CrossRef]
- Smalberg, J.H.; Kruip, M.J.; Janssen, H.L.; Rijken, D.C.; Leebeek, F.W.; de Maat, M.P. Hypercoagulability and hypofibrinolysis and risk of deep vein thrombosis and splanchnic vein thrombosis: Similarities and differences. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.P. Arterial thrombosis—insidious, unpredictable and deadly. Nat. Med. 2011, 17, 1423–1436. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Bergmeier, W.; Hynes, R.O. Extracellular Matrix Proteins in Hemostasis and Thrombosis. Cold Spring Harb. Perspect. Biol. 2011, 4, a005132. [Google Scholar] [CrossRef]
- Kattula, S.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arter. Thromb. Vasc. Biol. 2017, 37, e13–e21. [Google Scholar] [CrossRef] [Green Version]
- Cadroy, Y.; Horbett, T.; Hanson, S.R. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo. J. Lab. Clin. Med. 1989, 113, 436–448. [Google Scholar]
- Klarhöfer, M.; Csapo, B.; Balassy, C.; Szeles, J.; Moser, E. High-resolution blood flow velocity measurements in the human finger. Magn. Reson. Med. 2001, 45, 716–719. [Google Scholar] [CrossRef]
- Kunamneni, A.; AbdelGhani, T.T.A.; Ellaiah, P.; Kunamneni, A. Streptokinase—The drug of choice for thrombolytic therapy. J. Thromb. Thrombolysis 2006, 23, 9–23. [Google Scholar] [CrossRef]
- Blann, A.D.; Landray, M.; Lip, G.Y.H. ABC of antithrombotic therapy: An overview of antithrombotic therapy. BMJ 2002, 325, 762–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellino, F.J. Recent advances in the chemistry of the fibrinolytic system. Chem. Rev. 1981, 81, 431–446. [Google Scholar] [CrossRef]
- Erdoğan, S.; Özer, A.Y.; Bilgili, H. In vivo behaviour of vesicular urokinase. Int. J. Pharm. 2005, 295, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Alteplase. CNS Drugs 2012, 26, 899–926. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Gowda, R.M. Clinical perspectives and therapeutics of thrombolysis. Int. J. Cardiol. 2003, 91, 115–127. [Google Scholar] [CrossRef]
- Cannon, C.P.; Gibson, C.M.; McCabe, C.H.; Adgey, A.J.; Schweiger, M.J.; Sequeira, R.F.; Grollier, G.; Giugliano, R.P.; Frey, M.; Mueller, H.S.; et al. TNK-tissue plasminogen activator compared with front-loaded alteplase in acute myocardial infarction: Results of the TIMI 10B trial. Thrombolysis in Myocardial Infarction (TIMI) 10B Investigators. Circulation 1998, 98, 2805–2814. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, H.M.M.; Mohammadi, E.; Seyedhosseini-Ghaheh, H.; Mahnam, K.; Jahanian-Najafabadi, A. Reteplase: Structure, Function, and Production. Adv. Biomed. Res. 2019, 8, 19. [Google Scholar] [CrossRef]
- Harvison, P.J. Urokinase. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–4. [Google Scholar]
- Harvison, P.J. Streptokinase. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–6. [Google Scholar]
- Hassanpour, S.; Kim, H.; Saadati, A.; Tebon, P.; Xue, C.; Dolder, F.W.V.D.; Thakor, J.; Baradaran, B.; Mosafer, J.; Baghbanzadeh, A.; et al. Thrombolytic Agents: Nanocarriers in Controlled Release. Small 2020, 16, 2001647. [Google Scholar] [CrossRef]
- Verstraete, M. Third-generation thrombolytic drugs. Am. J. Med. 2000, 109, 52–58. [Google Scholar] [CrossRef]
- Li, J.; Xi, A.; Qiao, H.; Liu, Z. Ultrasound-mediated diagnostic imaging and advanced treatment with multifunctional micro/nanobubbles. Cancer Lett. 2020, 475, 92–98. [Google Scholar] [CrossRef]
- Hernot, S.; Klibanov, A.L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1153–1166. [Google Scholar] [CrossRef] [Green Version]
- Rix, A.; Curaj, A.; Liehn, E.A.; Kiessling, F. Ultrasound Microbubbles for Diagnosis and Treatment of Cardiovascular Diseases. Semin. Thromb. Hemost. 2019, 46, 545–552. [Google Scholar] [CrossRef]
- Gong, Q.; Gao, X.; Liu, W.; Hong, T.; Chen, C. Drug-Loaded Microbubbles Combined with Ultrasound for Thrombolysis and Malignant Tumor Therapy. BioMed Res. Int. 2019, 2019, 6792465. [Google Scholar] [CrossRef]
- Liu, W.-S.; Huang, Z.-Z.; Wang, X.-W.; Zhou, J. Effects of microbubbles on transcranial Doppler ultrasound-assisted intracranial urokinase thrombolysis. Thromb. Res. 2012, 130, 547–551. [Google Scholar] [CrossRef]
- Guan, L.; Wang, C.; Yan, X.; Liu, L.; Li, Y.; Mu, Y. A thrombolytic therapy using diagnostic ultrasound combined with RGDS-targeted microbubbles and urokinase in a rabbit model. Sci. Rep. 2020, 10, 12511. [Google Scholar] [CrossRef]
- Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y. Superparamagnetic Colloids: Controlled Synthesis and Niche Applications. Adv. Mater. 2006, 19, 33–60. [Google Scholar] [CrossRef]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef]
- Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607. [Google Scholar] [CrossRef]
- Li, Q.; Liu, X.; Chang, M.; Lu, Z. Thrombolysis Enhancing by Magnetic Manipulation of Fe3O4 Nanoparticles. Materials 2018, 11, 2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-P.; Yang, P.-C.; Lu, Y.-J.; Ma, Y.-H.; Tu, S.-J. Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle. Int. J. Nanomed. 2012, 7, 5137–5149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Guo, D.; Zhang, Y.; Wu, W.; Ran, H.; Wang, Z. Construction and evaluation of Fe3O4-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS Appl. Mater. Interfaces 2014, 6, 5566–5576. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-A.; Ma, Y.-H.; Hsu, T.-Y.; Chen, J.-P. Preparation of Peptide and Recombinant Tissue Plasminogen Activator Conjugated Poly(Lactic-Co-Glycolic Acid) (PLGA) Magnetic Nanoparticles for Dual Targeted Thrombolytic Therapy. Int. J. Mol. Sci. 2020, 21, 2690. [Google Scholar] [CrossRef] [Green Version]
- Kroll, M.H.; Hellums, J.D.; McIntire, L.V.; Schafer, A.; Moake, J.L. Platelets and shear stress. Blood 1996, 88, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Strony, J.; Beaudoin, A.; Brands, D.; Adelman, B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am. J. Physiol. Circ. Physiol. 1993, 265, H1787–H1796. [Google Scholar] [CrossRef]
- Siegel, J.M.; Markou, C.P.; Ku, D.N.; Hanson, S.R. A Scaling Law for Wall Shear Rate Through an Arterial Stenosis. J. Biomech. Eng. 1994, 116, 446–451. [Google Scholar] [CrossRef]
- Wootton, D.M.; Ku, D.N. Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis. Annu. Rev. Biomed. Eng. 1999, 1, 299–329. [Google Scholar] [CrossRef]
- Bark, D.L.; Ku, D.N. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 2010, 43, 2970–2977. [Google Scholar] [CrossRef]
- Rubenstein, D.A.; Yin, W. Platelet-Activation Mechanisms and Vascular Remodeling. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2011; pp. 1117–1156. [Google Scholar]
- Nesbitt, W.S.; Westein, E.; Tovar-Lopez, F.J.; Tolouei, E.; Mitchell, A.; Fu, J.; Carberry, J.; Fouras, A.; Jackson, S.P. A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 2009, 15, 665–673. [Google Scholar] [CrossRef]
- Ruggeri, Z.M.; Orje, J.N.; Habermann, R.; Federici, A.B.; Reininger, A.J. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006, 108, 1903–1910. [Google Scholar] [CrossRef]
- Goto, S.; Sakai, H.; Goto, M.; Ono, M.; Ikeda, Y.; Handa, S.; Ruggeri, Z.M. Enhanced Shear-Induced Platelet Aggregation in Acute Myocardial Infarction. Circulation 1999, 99, 608–613. [Google Scholar] [CrossRef] [Green Version]
- Korin, N.; Kanapathipillai, M.; Matthews, B.D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S.A.; Bhatta, D.; et al. Shear-Activated Nanotherapeutics for Drug Targeting to Obstructed Blood Vessels. Science 2012, 337, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, S.; Liu, K.; Ma, G.; Yan, X. Co-Assembly of Heparin and Polypeptide Hybrid Nanoparticles for Biomimetic Delivery and Anti-Thrombus Therapy. Small 2016, 12, 4719–4725. [Google Scholar] [CrossRef] [PubMed]
- Holme, M.; Fedotenko, I.; Abegg, D.; Althaus, J.; Babel, L.; Favarger, F.; Reiter, R.; Tanasescu, R.; Zaffalon, P.-L.; Ziegler, A.; et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 2012, 7, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Allemailem, K.S.; Almatroodi, S.A.; Almatroudi, A.; Rahmani, A.H. Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. 3 Biotech 2020, 10, 163. [Google Scholar] [CrossRef]
- Wagner, A.; Vorauer-Uhl, K. Liposome Technology for Industrial Purposes. J. Drug Deliv. 2011, 2011, 591325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Li, C.; Zhou, D.; Ding, C.; Jin, Y.; Tian, Q.; Meng, X.; Pu, K.; Zhu, Y. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 2018, 70, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, C.L.; Li, W.; Sun, M.; Ravichandran, K.; Hickman, D.; Kos, C.; Kaur, G.; Gupta, A.S. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials 2017, 128, 94–108. [Google Scholar] [CrossRef]
- Juenet, M.; Aid, R.; Li, B.; Berger, A.; Aerts, J.; Ollivier, V.; Nicoletti, A.; Letourneur, D.; Chauvierre, C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 2018, 156, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Palekar, R.U.; Myerson, J.W.; Schlesinger, P.H.; Sadler, J.E.; Pan, H.; Wickline, S.A. Thrombin-Targeted Liposomes Establish a Sustained Localized Anticlotting Barrier against Acute Thrombosis. Mol. Pharm. 2013, 10, 4168–4175. [Google Scholar] [CrossRef] [Green Version]
- Petroková, H.; Mašek, J.; Kuchař, M.; Wünschová, A.V.; Štikarová, J.; Bartheldyová, E.; Kulich, P.; Hubatka, F.; Kotouček, J.; Knotigová, P.T.; et al. Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders. Pharmaceutics 2019, 11, 642. [Google Scholar] [CrossRef] [Green Version]
- Lü, C.P.; Yang, H.; Wang, J.; Dong, X.L. Thrombolysis of rabbit’s pulmonary embolism with thrombus-targeted urokinase immune liposome. Zhonghua Xin Xue Guan Bing Za Zhi 2009, 37, 1035–1038. [Google Scholar]
- Absar, S.; Nahar, K.; Kwon, Y.M.; Ahsan, F. Thrombus-Targeted Nanocarrier Attenuates Bleeding Complications Associated with Conventional Thrombolytic Therapy. Pharm. Res. 2013, 30, 1663–1676. [Google Scholar] [CrossRef]
- Wu, M.; Le, W.; Mei, T.; Wang, Y.; Chen, B.; Liu, Z.; Xue, C. Cell membrane camouflaged nanoparticles: A new biomimetic platform for cancer photothermal therapy. Int. J. Nanomed. 2019, 14, 4431–4448. [Google Scholar] [CrossRef] [Green Version]
- Luk, B.T.; Zhang, L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control Release 2015, 220, 600–607. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Wang, Y.; Liang, H.; Xia, S.; Liang, W.; Kong, J.; Liang, Y.; Chen, X.; Mao, M.; Chen, Z.; et al. Intrinsic Biotaxi Solution Based on Blood Cell Membrane Cloaking Enables Fullerenol Thrombolysis In Vivo. ACS Appl. Mater. Interfaces 2020, 12, 14958–14970. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Xu, J.; Liu, G.; Di, C.; Zhao, X.; Li, X.; Li, Y.; Pang, N.; Yang, C.; et al. Engineered Nanoplatelets for Targeted Delivery of Plasminogen Activators to Reverse Thrombus in Multiple Mouse Thrombosis Models. Adv. Mater. 2020, 32, e1905145. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, R.; Meng, N.; Guo, H.; Wu, S.; Wang, X.; Li, J.; Wang, H.; Jiang, K.; Xie, C.; et al. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J. Control Release 2020, 328, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Logtenberg, M.E.W.; Scheeren, F.A.; Schumacher, T.N. The CD47-SIRPα Immune Checkpoint. Immunity 2020, 52, 742–752. [Google Scholar] [CrossRef]
- Disharoon, D.; Marr, D.W.M.; Neeves, K.B. Engineered microparticles and nanoparticles for fibrinolysis. J. Thromb. Haemost. 2019, 17, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Murata, M.; Goto, S. Von Willebrand Factor-Dependent Shear-Induced Platelet Aggregation: Basic Mechanisms and Clinical Implications. Ann. N. Y. Acad. Sci. 1997, 811, 325–336. [Google Scholar] [CrossRef] [PubMed]
Agent | Targeting | Plasma Half-Life (min) | Immunogenicity | Ref. |
---|---|---|---|---|
UK | Non-fibrin | 10–20 min | / | [34] |
SK | Non-fibrin | ~36 min | Immunogenic | [35] |
proUK | Fibrin specific | 4–6 min | / | [36] |
Alteplase | Fibrin specific | 4–8 min | / | [37] |
Reteplase | Fibrin specific | 14–18 min | / | [37] |
Drug | Modification of Nanocarrier with | Target | Ref. |
---|---|---|---|
UK | cRGD | activated platelets | [66] |
/ | PPACK | thrombin | [69] |
/ | D7 | fibrin | [70] |
UK | DDmAb (D-dimer monoclonal antibody) | thrombus | [71] |
SK | GSSSGRGDSPA | activated platelets | [67] |
DAEWVDVS | |||
tPA | CQQHHLGGAKQAGDV | activated platelets | [72] |
Techniques | Mechanisms | Limitations | |
---|---|---|---|
Biological response | Cell membrane | Cell membranes carry proteins such as CD47 and integrin on their surface. | The mode of drug release is unknown |
Antibody/peptide | The specific binding of antibody and antigen. | Targeting efficiency is uncertain | |
Physical response | Shear stress | The large shear stress at the site of arterial thrombus can destroy the structure of the nanocarrier. | It can only be applied to lesions with high shear stress |
Ultrasound | Cavitation effect between ultrasonic waves and microbubbles | Thermal effect | |
Magnet | Controllable behavior of magnetic nanoparticles under a magnetic field | Safety of magnetic nanoparticles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.; Wang, Y.; Hu, F.; Lv, L.; Chen, K.; Xing, G. Thrombolytic Agents: Nanocarriers in Targeted Release. Molecules 2021, 26, 6776. https://doi.org/10.3390/molecules26226776
Shen M, Wang Y, Hu F, Lv L, Chen K, Xing G. Thrombolytic Agents: Nanocarriers in Targeted Release. Molecules. 2021; 26(22):6776. https://doi.org/10.3390/molecules26226776
Chicago/Turabian StyleShen, Minghua, Yujiao Wang, Fan Hu, Linwen Lv, Kui Chen, and Gengmei Xing. 2021. "Thrombolytic Agents: Nanocarriers in Targeted Release" Molecules 26, no. 22: 6776. https://doi.org/10.3390/molecules26226776
APA StyleShen, M., Wang, Y., Hu, F., Lv, L., Chen, K., & Xing, G. (2021). Thrombolytic Agents: Nanocarriers in Targeted Release. Molecules, 26(22), 6776. https://doi.org/10.3390/molecules26226776