A Novel Alternative Methods for Decalcification of Water Resources Using Green Agro-Ashes
Abstract
:1. Introduction
2. Experimental
2.1. Collection of Raw Materials for Ash
2.2. Characteristics of Fly Ash Samples
2.3. Chemicals and Materials
2.4. Hardness Removal Experiment
2.5. Studying Other Chemical Precipitations Compared with Agro-Ash
3. Results and Discussion
3.1. XRD Analysis of Ash Materials
3.2. SEM-EDX Analysis of Ash Materials
3.3. FTIR Analysis
3.4. Assessment of the Ability of the Tested Ash Materials to Remove Ca Ions
Changes in Water Quality by Increasing the Amount of Agro-Ash in Pure Distilled Water
3.5. The Proper Mechanism for the Removal of Ca Ions from an Aqueous System
Analysis of the Residue Agro-Ash during the Precipitation Process
3.6. Influence of the Initial Calcium Concentrations on the Removal Process
3.7. Influence of the pH of the Solution
3.8. Studying the Mass of Ash Materials
3.9. Contact Time
3.10. Comparison between Common Precipitation Methods and Tested Agro-Ash
3.11. SWOT Analysis for Using the Tested Agro-Ash as an Alternative Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naushad, M.; Lichtfouse, E. Green Materials for Wastewater Treatment; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 2009, 152, 39–47. [Google Scholar] [CrossRef]
- Norling, P.; Wood-Black, F.; Masciangioli, T.M. (Eds.) Water and Sustainable Development: Opportunities for the Chemical Sciences—A Workshop Report to the Chemical Sciences Roundtable; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Water and Jobs: Facts and Figures, Report; The United Nations World Water Development, UNESCO: Perugia, Italy, 2016; Available online: http://www.unesco.org/water/wwap (accessed on 10 August 2021).
- Nam, J.-S.; Baek, I.-H.; Kim, C.Y. Removal of Calcium Ions from Aqueous Solution by Phosphosilicate Glass. J. Am. Ceram. Soc. 2011, 94, 124–129. [Google Scholar] [CrossRef]
- Hammes, F.; Seka, A.; de Knijf, S.; Verstraete, W. A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res. 2003, 37, 699–704. [Google Scholar] [CrossRef]
- Shakkthivel, P.; Sathiyamoorthi, R.; Vasudevan, T. Development of acrylonitrile copolymers for scale control in cooling water systems. Desalination 2004, 164, 111–123. [Google Scholar] [CrossRef]
- Ketrane, R.; Saidani, B.; Gil, O.; Leleyter, L.; Baraud, F. Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water: Effect of temperature and concentration. Desalination 2009, 249, 1397–1404. [Google Scholar] [CrossRef]
- Hammes, F.; Seka, A.N.; van Hege, K.; van de Wiele, T.; Vanderdeelen, J.; Siciliano, S.D.; Verstraete, W. Calcium removal from industrial wastewater by bio-catalytic CaCO3 precipitation. J. Chem. Technol. Biotechnol. 2003, 78, 670–677. [Google Scholar] [CrossRef]
- Ye, Z.-L.; Hong, Y.; Pan, S.; Huang, Z.; Chen, S.; Wang, W. Full-scale treatment of landfill leachate by using the mechanical vapor recompression combined with coagulation pretreatment. Waste Manag. 2017, 66, 88–96. [Google Scholar] [CrossRef]
- Ni, S.; Wu, C.; Wang, Y.; Guo, X.; Zhao, Z.; Sun, X. An extraction and precipitation process for the removal of Ca and Mg from ammonium sulfate rare earth wastewaters. Hydrometallurgy 2019, 187, 63–70. [Google Scholar] [CrossRef]
- Xia, M.; Ye, C.; Pi, K.; Liu, D.; Gerson, A.R. Ca removal and Mg recovery from flue gas desulfurization (FGD) wastewater by selective precipitation. Water Sci. Technol. 2017, 76, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jain, A.; Zuo, K.; Verduzco, R.; Walker, S.; Elimelech, M.; Zhang, Z.; Zhang, X.; Li, Q. Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. Water Res. 2019, 160, 445–453. [Google Scholar] [CrossRef]
- Farmanbordar, S.; Kahforoushan, D.; Fatehifar, E. A new method in the removal of Ca and Mg ions from industrial wastewater. Desalination Water Treat. 2015, 57, 8904–8910. [Google Scholar] [CrossRef]
- Erkan, H.S.; Engin, G.Ö. Calcium removal from calcium rich paper mill wastewater by microbial CaCO3 precipitation. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2019, 352–363. [Google Scholar] [CrossRef]
- Kharel, H.L.; Sharma, R.K.; Kandel, T.P. Water Hardness Removal Using Wheat Straw and Rice Husk Ash Properties. Nepal J. Sci. Technol. 2016, 17, 11–16. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Liu, J.; Gao, J.; Ji, Z.; Guo, X.; Liu, J.; Yuan, J. Trash to treasure: Seawater pretreatment by CO2 mineral carbonation using brine pretreatment waste of soda ash plant as alkali source. Desalination 2017, 407, 85–92. [Google Scholar] [CrossRef]
- El-Nahas, S.; Osman, A.I.; Arafat, A.S.; Al-Muhtaseb, A.H.; Salman, H.M. Facile and affordable synthetic route of nano powder zeolite and its application in fast softening of water hardness. J. Water Process. Eng. 2020, 33, 101104. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). The Sound Management of Chemicals and Wastes in the Context of the Sustainable Development Goals: Links between the Basel, Rotterdam and Stockholm Conventions and the 2030 Agenda for Sustainable Development; UNEP Division for Environmental Law and Conventions: Nairobi, Kenya, 2016. [Google Scholar]
- Voshell, S.; Mäkelä, M.; Dahl, O. A review of biomass ash properties towards treatment and recycling. Renew. Sustain. Energy Rev. 2018, 96, 479–486. [Google Scholar] [CrossRef]
- Stabile, P.; Bello, M.; Petrelli, M.; Paris, E.; Carroll, M.R. Carroll, Vitrification treatment of municipal solid waste bottom ash. Waste Manag. 2019, 95, 250–258. [Google Scholar] [CrossRef]
- Rodger, B.; Bridgewater, A.L. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Teixeira, E.R.; Camões, A.; Branco, F.G. Valorisation of wood fly ash on concrete. Resour. Conserv. Recycl. 2019, 145, 292–310. [Google Scholar] [CrossRef]
- Bernardo, M.; Rodrigues, S.; Lapa, N.; Matos, I.; Lemos, F.; Batista, M.K.S.; Carvalho, A.P.; Fonseca, I. High efficacy on diclofenac removal by activated carbon produced from potato peel waste. Int. J. Environ. Sci. Technol. 2016, 13, 1989–2000. [Google Scholar] [CrossRef]
- Das, B.; Hazarika, P.; Saikia, G.; Kalita, H.; Goswami, D.C.; Das, H.B.; Dube, S.N.; Dutta, R.K. Removal of iron from groundwater by ash: A systematic study of a traditional method. J. Hazard Mater. 2007, 141, 834–841. [Google Scholar] [CrossRef]
- Adams, F.V.; Peter, A.; Joseph, I.V.; Sylvester, O.P.; Mulaba-Bafubiandi, A.F. Purification of crude oil contaminated water using fly ash/clay. J. Water Process. Eng. 2019, 30, 100471. [Google Scholar] [CrossRef]
- Kalembkiewicz, J.; Galas, D.; Sitarz-Palczak, E. The Physicochemical Properties and Composition of Biomass Ash and Evaluating Directions of its Applications. Pol. J. Environ. Stud. 2018, 27, 2593–2603. [Google Scholar] [CrossRef]
- Demeyer, A.; Nkana, J.V.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Zanzi, R.; Sjöström, K.; Björnbom, E. Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy 2002, 23, 357–366. [Google Scholar] [CrossRef]
- Changmai, M.; Banerjee, P.; Nahar, K.; Purkait, M.K. A novel adsorbent from carrot, tomato and polyethylene terephthalate waste as a potential adsorbent for Co (II) from aqueous solution: Kinetic and equilibrium studies. J. Environ. Chem. Eng. 2018, 6, 246–257. [Google Scholar] [CrossRef]
- Palma, C.; Contreras, E.; Urra, J.; Martínez, M.J. Eco-friendly technologies based on banana peel use for the decolourization of the dyeing process wastewater. Waste Biomass Valorization 2010, 2, 77–86. [Google Scholar] [CrossRef]
- Masindi, V.; Osman, M.S.; Abu-Mahfouz, A.M. Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water. Desalination 2017, 424, 45–52. [Google Scholar] [CrossRef]
- Kadir, N.N.A.; Shahadat, M.; Ismail, S. Role of clay-based membrane for removal of copper from aqueous solution. Appl. Clay Sci. 2017, 137, 168–175. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A. Agricultural waste peels as versatile biomass for water purification—A review. Chem. Eng. J. 2015, 270, 244–271. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Rahman, T.; Fadhlulloh, M.A.; Abdullah, A.G.; Hamidah, I.; Mulyanti, B. Working Volume in High-Energy Ball-Milling Process on Breakage Characteristics and Adsorption Performance of Rice Straw Ash. IOP Conf. Ser. Mater. Sci. Eng. 2016, 128. [Google Scholar] [CrossRef]
- Balogun, A.O.; Lasode, O.A.; Li, H.; McDonald, A.G. Fourier transform infrared (FTIR) study and thermal decomposition kinetics of sorghum bicolour glume and albizia pedicellaris residues. Waste Biomass Valorization 2014, 6, 109–116. [Google Scholar] [CrossRef]
- Martinez, M.; Miralles, N.; Hidalgo, S.; Fiol, N.; Villaescusa, I.; Poch, J. Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. J. Hazard Mater. 2006, 133, 203–211. [Google Scholar] [CrossRef]
- Sepehr, M.; Mansur, Z.; Hossein, K.; Abdeltif, A.; Kamiar, Y.; Hamid, R.G. Potential of waste pumice and surface modified pumice for hexavalent chromium removal: Characterization, equilibrium, thermodynamic and kinetic study. Appl. Surf. Sci. 2013, 274, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Ates, A. The modification of aluminium content of natural zeolites with different composition. Powder Technol. 2019, 344, 199–207. [Google Scholar] [CrossRef]
- Taha, G.M.; Arifien, A.E.; El-Nahas, S. Pomegranate (Punica graantum) Peels as an Agricultural Waste for Removing of CD(II), CR(VI), CU(II), NI(II), PB(II) and ZN(II) from Their Aqueous Solutions. Int. J. Glob. Health Health Disparities 2009, 6, 32–49. [Google Scholar]
- Khaskheli, M.I.; Memon, S.Q.; Siyal, A.N.; Khuhawar, M.Y. Use of orange peel waste for arsenic remediation of drinking water. Waste Biomass Valorization 2011, 2, 423–433. [Google Scholar] [CrossRef]
- Palacio, S.; Aitkenhead, M.; Escudero, A.; Montserrat-Marti, G.; Maestro, M.; Robertson, A.H. Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS ONE 2014, 9, e107285. [Google Scholar]
- Trivedi, N.S.; Kharkar, R.A.; Mandavgane, S.A. Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid. Resour.-Effic. Technol. 2016, 2, S39–S46. [Google Scholar] [CrossRef]
- Bruckman, V.J.; Wriessnig, K. Improved soil carbonate determination by FT-IR and X-ray analysis. Environ. Chem. Lett. 2013, 11, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Berzina-Cimdina, L.; Borodajenko, N. Chapter 6: Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. In Infrared Spectroscopy—Materials Science, Engineering and Technology; Theophile, P.T., Ed.; InTech: London, UK, 2012; p. 510. [Google Scholar]
- Saikia, B.J.; Parthasarathy, G.; Sarmah, N.C. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bull. Mater. Sci. 2008, 31, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Masindi, V.; Madzivire, G.; Tekere, M. Reclamation of water and the synthesis of gypsum and limestone from acid mine drainage treatment process using a combination of pre-treated magnesite nanosheets, lime, and CO2 bubbling. Water Resour. Ind. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Pandey, V.C.; Abhilash, P.C.; Upadhyay, R.N.; Tewari, D.D. Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: Implication for safe utilization of fly ash for agricultural production. J. Hazard Mater. 2009, 166, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Kefeni, K.K.; Mamba, B.B. Evaluation of charcoal ash nanoparticles pollutant removal capacity from acid mine drainage rich in iron and sulfate. J. Clean. Prod. 2020, 251, 119720. [Google Scholar] [CrossRef]
- Masindi, V. Recovery of drinking water and valuable minerals from acid mine drainage using an integration of magnesite, lime, soda ash, CO2 and reverse osmosis treatment processes. J. Environ. Chem. Eng. 2017, 5, 3136–3142. [Google Scholar] [CrossRef]
- Scholz, M. Wetlands for Water Pollution Control II Water Softening, 2nd ed.; Elsevier, B.V.: Amsterdam, The Netherlands, 2016; pp. 111–114. [Google Scholar]
- Zhao, Y.; Cao, H.; Xie, Y.; Yuan, J.; Ji, Z.; Yan, Z. Mechanism studies of a CO2 participant softening pretreatment process for seawater desalination. Desalination 2016, 393, 166–173. [Google Scholar] [CrossRef]
- Mohammadesmaeili, F.; Badr, M.K.; Abbaszadegan, M.; Fox, P. Mineral recovery from inland reverse osmosis concentrate using isothermal evaporation. Water Environ. Res. 2010, 82, 342–350. [Google Scholar] [CrossRef]
- Luo, H.S.J.; Markström, H.; Wang, Z.; Niu, Q. Removal of Cu2+ from aqueous solution using fly ash. J. Miner. Mater. Charact. Eng. 2011, 10, 561–571. [Google Scholar]
- Bora, A.J.; Dutta, R.K. Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH. J. Water Process. Eng. 2019, 31, 100839. [Google Scholar] [CrossRef]
- O’Donnell, A.J.; Lytle, D.A.; Harmon, S.; Vu, K.; Chait, H.; Dionysiou, D.D. Capacitive deionization of a RO brackish water by AC/graphene composite electrodes. Water Res. 2016, 103, 319–333. [Google Scholar] [CrossRef]
- Li, T.; Sui, F.; Li, F.; Cai, Y.; Jin, Z. Selective Environmental Remediation of Strontium and Cesium Using Sulfonated Hyper-Cross-Linked Polymers (SHCPs). Powder Technol. 2014, 254, 338–343. [Google Scholar] [CrossRef]
- Shu, L.; Obagbemi, I.J.; Liyanaarachchi, S.; Navaratna, D.; Parthasarathy, R.; Aim, R.B.; Jegatheesan, V. Why does pH increase with CaCl2 as draw solution during forward osmosis filtration. Process. Saf. Environ. Protection 2016, 104, 465–471. [Google Scholar] [CrossRef]
- Twort, A.C.; Ratnayaka, D.D.; Brandt, M.J. Water Supply, 5th ed.; Butterworth-Heinemann Elsevier: Oxford, UK, 2000. [Google Scholar]
- Iqbal, M.; Saeed, A.; Zafar, S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 2009, 164, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Kinnarinen, T.; Golmaei, M.; Jernström, E.; Häkkinen, A. Removal of hazardous trace elements from recovery boiler fly ash with an ash dissolution method. J. Clean. Prod. 2019, 209, 1264–1273. [Google Scholar] [CrossRef]
- Samolada, M.C.; Zabaniotou, A.A. Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus. Resour. Conserv. Recycl. 2014, 83, 34–43. [Google Scholar] [CrossRef]
Minerals Phase | JCPDS Card | Chemical Structure | Compositions of Agro-Ash Samples % | |||
---|---|---|---|---|---|---|
Po-ash | BA-ash | Eg-ash | Min-ash | |||
Sylvite, syn | 73-0380 (C) | KCl | 6.0 | 15.5 | 11.5 | 7.4 |
Kalicinite | 70-1167 ((D) | KHCO3 | 11.7 | - | 19.8 | - |
Langbeinite | 72-1206 (C) | K2Mg2(SO4)3 | 16.0 | - | 27.4 | 33.2 |
Nahcolite | 21-1119 (D) | NaHCO3 | 22.3 | - | 24.2 | 45.2 |
Bradleyite | 22-0478 (I) | Na3Mg(PO4)CO3 | 1.0 | - | 17.1 | - |
Halite, syn | 05-0628 (*) | NaCl | 5.1 | 9.8 | - | - |
Scawtite | 81-1918 (C) | Ca7(Si6O18)(CO3)(H2O)2 | 37.9 | 43.5 | - | - |
Spurrite | 13-0496 (I) | Ca5(SiO4)2CO3 | - | 31.3 | - | - |
Calcite | 72-1652 (C) | CaCO3 | - | - | - | 14.1 |
Elements Composition | Weight % | |||
---|---|---|---|---|
Po-ash | BA-ash | Eg-ash | Min-ash | |
C | 22.44 | 11.26 | 25.72 | 14.49 |
Na | 0.27 | nd * | 0.2 | 0.96 |
Mg | 0.36 | 1.38 | 0.19 | 1.28 |
Al | 0.18 | nd * | nd * | 0.33 |
Si | 0.34 | 3.87 | nd * | 0.71 |
P | 0.44 | 0.91 | 0.19 | 1.38 |
S | 0.24 | 0.53 | 0.05 | 0.69 |
Cl | 1.3 | 5.7 | 1.32 | 6.05 |
K | 10.23 | 29.83 | 2.73 | 20.22 |
Ca | 0.27 | 2.25 | nd * | 4.03 |
Fe | nd | nd * | nd * | 0.35 |
O | 63.9 | 44.28 | 69.6 | 49.52 |
Total | 100 | 100 | 100 | 100 |
Functional Groups | Wavenumber cm−1 | Reference | |
---|---|---|---|
Raw Materials | Ash Materials | ||
OH Stretching | 3401 | - | [32,35] |
C–H bond of CH2 group | 2915 | - | [32,36,37,38] |
O–H bending | 1639 | 1652 | [39,40,43] |
Carboxyl (–COOH) groups | 1749 | - | [32,36,37] |
CO stretching bond of CO32− | 1400 | 1450 | [26,38,44,45] |
Si–O–Si asymmetric Or SiO4 2− group | 1064 | 1061 | [26,32,35,46,47] |
P–O stretching PO4 2− group | - | 1104 | [38,46] |
M–O bond | - | 863 | [42,48] |
Bending S–O of SO4 −2 | - | 617 | [38,46] |
Samples | Final pH | Conductivity (mS/cm) | TDS (ppm) | % Removal |
---|---|---|---|---|
Po-ash | 9.5 | 9.2 | 4729 | 75 |
BA-ash | 9.6 | 9.2 | 4729 | 79.2 |
Eg-ash | 8.7 | 8.8 | 4524 | 58.3 |
Min-ash | 9.7 | 7.4 | 3806 | 58.3 |
Blank Ca2+: 1000 ppm | 7.7 | 5.19 | 2659 | - |
Parameters | Units | Dist. Water | Po-ash | BA-ash | Eg-ash | Min-ash |
---|---|---|---|---|---|---|
Total hardness | ppm | - | 100 | 80 | 80 | 140 |
pH | - | 6.9 | 9.7 | 10.3 | 10.6 | 10.7 |
Conductivity | mS/cm | 0.008 | 6.6 | 6.8 | 8.7 | 5.3 |
Na+ | ppm | - | 54 | 6 | 99 | 196 |
K+ | g/L | - | 1.64 | 1.64 | 2.34 | 1.35 |
Fe2+ | ppm | - | nd | nd | nd | nd |
Mn2+ | ppm | - | 0.1 | 0.1 | 0.1 | 0.1 |
Cl− | g/L | - | 0.74 | 0.45 | 0.26 | 0.22 |
SO42− | g/L | - | 0.44 | 0.09 | 0.37 | 0.26 |
CO32− | g/L | - | 1.62 | 3.0 | 2.88 | 3.66 |
HCO3− | g/L | - | 4.09 | 1.40 | 3.11 | 0.43 |
Reagents | pH | Cond. (mS/cm) | TDS (g/L) | % Removal |
---|---|---|---|---|
0.2% NaOH | 12.3 | 13.4 | 6.73 | 10% |
0.2% NaHCO3 | 7.87 | 5.99 | 2.99 | 60% |
0.2% Na2CO3 | 8.22 | 5.51 | 2.75 | 72% |
0.2% Ca(OH)2 | 12.2 | 12.7 | 6.18 | Increment |
0.2% Ca(OH)2 + 0.2% Na2CO3 | 11.6 | 7.04 | 3.52 | 60% |
0.2% CaO + 0.2% Na2CO3 | 12.3 | 11.2 | 5.62 | 10% |
PO-ash (0.5 g/L) | 9.5 | 9.2 | 4.72 | 75 |
BA-ash (0.5 g/L) | 9.6 | 9.2 | 4.72 | 79% |
Eg-ash (0.5 g/L) | 8.7 | 8.8 | 4.52 | 58% |
Min-ash (0.5 g/L) | 9.7 | 7.4 | 3.80 | 58% |
Blank (1000 ppm CaCl2) | 7.7 | 5.19 | 2.65 | - |
SWOT Analysis | |
---|---|
Strength | Weakness |
|
|
Opportunities | Threats |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Nahas, S.; Arafat, A.S.; El Din, H.S.; Alhamzani, A.G.; Abou-Krisha, M.M.; Alsoghier, H.M. A Novel Alternative Methods for Decalcification of Water Resources Using Green Agro-Ashes. Molecules 2021, 26, 6777. https://doi.org/10.3390/molecules26226777
El-Nahas S, Arafat AS, El Din HS, Alhamzani AG, Abou-Krisha MM, Alsoghier HM. A Novel Alternative Methods for Decalcification of Water Resources Using Green Agro-Ashes. Molecules. 2021; 26(22):6777. https://doi.org/10.3390/molecules26226777
Chicago/Turabian StyleEl-Nahas, Safaa, Abdulrahem S. Arafat, Hanan Salah El Din, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, and Hesham M. Alsoghier. 2021. "A Novel Alternative Methods for Decalcification of Water Resources Using Green Agro-Ashes" Molecules 26, no. 22: 6777. https://doi.org/10.3390/molecules26226777
APA StyleEl-Nahas, S., Arafat, A. S., El Din, H. S., Alhamzani, A. G., Abou-Krisha, M. M., & Alsoghier, H. M. (2021). A Novel Alternative Methods for Decalcification of Water Resources Using Green Agro-Ashes. Molecules, 26(22), 6777. https://doi.org/10.3390/molecules26226777