Screening of Potential Anti-Thrombotic Ingredients from Salvia miltiorrhiza in Zebrafish and by Molecular Docking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Molecular Docking
2.2. Assessment of the Anti-Thrombotic Effect of SAB, MA, LA, and LG
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Maintenance and Husbandry of Zebrafish
3.3. Molecular Docking Studies
3.4. Preparation of Solutions and Samples
3.5. AH/PHZ-Induced Zebrafish Thrombosis Model and DS Compounds Treatment
3.6. Ethics Statements
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, P.D.; Bao, B.H.; Shan, M.Q.; Zhang, K.C.; Cheng, F.F.; Cao, Y.D.; Zhang, L.; Ding, A.W. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia extract in zebrafish. J. Ethnopharmacol. 2018, 219, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Aksu, K.; Donmez, A.; Keser, G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr. Pharm. Des. 2012, 18, 1478–1493. [Google Scholar]
- Zitomersky, N.L.; Verhave, M.; Trenor, C.C., 3rd. Thrombosis and inflammatory bowel disease: A call for improved awareness and prevention. Inflamm. Bowel Dis. 2011, 17, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Vermeersch, E.; Denorme, F.; Maes, W.; De Meyer, S.F.; Vanhoorelbeke, K.; Edwards, J.; Shevach, E.M.; Unutmaz, D.; Fujii, H.; Deckmyn, H.; et al. The role of platelet and endothelial GARP in thrombosis and hemostasis. PLoS ONE 2017, 12, e0173329. [Google Scholar] [CrossRef] [Green Version]
- Stowell, S.R.; Stowell, C.P. Biologic roles of the ABH and Lewis histo-blood group antigens part II: Thrombosis, cardiovascular disease and metabolism. Vox Sang. 2019, 114, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhao, X.; Liu, H.; Wang, Y.; Zhao, C.; Zhao, T.; Zhao, B.; Wang, Y. Identification of a Quality Marker (Q-Marker) of Danhong Injection by the Zebrafish Thrombosis Model. Molecules 2017, 22, 1443. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; Liu, Z.; Zhao, S.; Song, Z.; He, D.; Wang, M.; Zeng, H.; Lu, C.; Lu, A.; Liu, Y. Integrated and global pseudotargeted metabolomics strategy applied to screening for quality control markers of Citrus TCMs. Anal. Bioanal. Chem. 2017, 409, 4849–4865. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Shan, L.; Zou, J.; Wu, Y.; Yang, F.; Zhang, Y.; Li, Y.; Zhang, Y. A Novel and Practical Chromatographic “Fingerprint-ROC-SVM” Strategy Applied to Quality Analysis of Traditional Chinese Medicine Injections: Using KuDieZi Injection as a Case Study. Molecules 2017, 22, 1237. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, W.R.; Lin, R.; Zhang, J.Y.; Ji, Q.L.; Lin, Q.Q.; Yang, L.N. Buyang Huanwu decoction ameliorates coronary heart disease with Qi deficiency and blood stasis syndrome by reducing CRP and CD40 in rats. J. Ethnopharmacol. 2010, 130, 98–102. [Google Scholar] [CrossRef]
- Li, H.X.; Han, S.Y.; Wang, X.W.; Ma, X.; Zhang, K.; Wang, L.; Ma, Z.Z.; Tu, P.F. Effect of the carthamins yellow from Carthamus tinctorius L. on hemorheological disorders of blood stasis in rats. Food Chem. Toxicol. 2009, 47, 1797–1802. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.J.; Luo, Y.Q.; Zhao, C.P.; Chen, H.; Zhong, Z.F.; Wang, S.; Wang, Y.T.; Yang, F.Q. Antithrombotic effect and action mechanism of Salvia miltiorrhiza and Panax notoginseng herbal pair on the zebrafish. Chin. Med. 2020, 15, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, T.; Chen, Y.; Zhou, X.; Lin, X.; Zhang, Q. Effectiveness and safety of Danshen injection on heart failure: Protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2019, 98, e15636. [Google Scholar] [CrossRef]
- Zhou, L.; Zuo, Z.; Chow, M.S. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 2005, 45, 1345–1359. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.P.; Wang, X.Y.; Gao, Y.H.; Chang, Y.X.; Chen, L.; Niu, Z.C.; Ai, J.Q.; Gao, X.M. Danhong injection attenuates isoproterenol-induced cardiac hypertrophy by regulating p38 and NF-κb pathway. J. Ethnopharmacol. 2016, 186, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Y.; Liu, H.C.; Guo, S.Y.; Xia, B.; Song, R.S.; Lao, Q.C.; Xuan, Y.X.; Li, C.Q. A Zebrafish Thrombosis Model for Assessing Antithrombotic Drugs. Zebrafish 2016, 13, 335–344. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, X.; Feng, B. Cardiovascular effects of salvianolic Acid B. Evid. Based Complement. Altern. Med. 2013, 2013, 247948. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.L.; Xiang, Y.H.; Ren, Z.Z.; Qiao, Y.J. Identification of thrombin inhibitors from Salvia Miltiorrhiza by pharmacophore based virtual screening and molecular docking. Chin. J. Tradit. Chin. Med. Pharm. 2013, 28, 6. [Google Scholar]
- Sheng, S.; Wang, J.; Wang, L.; Liu, H.; Li, P.; Liu, M.; Long, C.; Xie, C.; Xie, X.; Su, W. Network pharmacology analyses of the antithrombotic pharmacological mechanism of Fufang Xueshuantong Capsule with experimental support using disseminated intravascular coagulation rats. J. Ethnopharmacol. 2014, 154, 735–744. [Google Scholar] [CrossRef]
- Chu, H.; He, Q.X.; Wang, J.W.; Deng, Y.T.; Wang, J.; Hu, Y.; Wang, Y.Q.; Lin, Z.H. 3D-QSAR, molecular docking, and molecular dynamics simulation of a novel thieno [3, 4-d]pyrimidine inhibitor targeting human immunodeficiency virus type 1 reverse transcriptase. J. Biomol. Struct. Dyn. 2020, 38, 4567–4578. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, Y.; Zang, X.; Wu, T.; Qi, X.; Pan, S.; Xu, X. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci. Rep. 2016, 6, 23634. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Chu, H.; Wang, Y.; Guo, H.; Wang, Y.; Wang, S.; Feng, Z.; Xie, X.Q.; Hu, Y.; Liu, H.; et al. In silico design novel vibsanin B derivatives as inhibitor for heat shock protein 90 based on 3D-QSAR, molecular docking and molecular dynamics simulation. J. Biomol. Struct. Dyn. 2020, 38, 4313–4324. [Google Scholar] [CrossRef]
- Weyand, A.C.; Shavit, J.A. Zebrafish as a model system for the study of hemostasis and thrombosis. Curr. Opin. Hematol. 2014, 21, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Gregory, M.; Hanumanthaiah, R.; Jagadeeswaran, P. Genetic analysis of hemostasis and thrombosis using vascular occlusion. Blood Cells Mol. Dis. 2002, 29, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.R.; Gihr, G.; Gawaz, M.P.; Müller, I.I. Hemostasis in Danio rerio: Is the zebrafish a useful model for platelet research? J. Thromb. Haemost. 2010, 8, 1159–1169. [Google Scholar] [CrossRef]
- Khandekar, G.; Kim, S.; Jagadeeswaran, P. Zebrafish thrombocytes: Functions and origins. Adv. Hematol. 2012, 2012, 857058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadeeswaran, P. Zebrafish: A tool to study hemostasis and thrombosis. Curr. Opin. Hematol. 2005, 12, 149–152. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.; Lin, H.F.; Italiano, J.; Handin, R.I. The identification and characterization of zebrafish hematopoietic stem cells. Blood. 2011, 118, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Lieschke, G.J.; Currie, P.D. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007, 8, 353–367. [Google Scholar] [CrossRef]
- Lu, S.; Hu, M.; Wang, Z.; Liu, H.; Kou, Y.; Lyu, Z.; Tian, J. Generation and Application of the Zebrafish heg1 Mutant as a Cardiovascular Disease Model. Biomolecules 2020, 10, 1542. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Yang, Z.; Yu, Q.; Zhao, L.; Wang, Y. Synergistic Effects of Cryptotanshinone and Senkyunolide I in Guanxinning Tablet Against Endogenous Thrombus Formation in Zebrafish. Front. Pharmacol. 2021, 11, 622787. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Han, C.; Li, G.; Guo, H.; Wang, Y.; Hu, Y.; Lin, Z.; Wang, Y. In silico design novel (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine derivatives as inhibitors for glycogen synthase kinase 3 based on 3D-QSAR, molecular docking and molecular dynamics simulation. Comput. Biol. Chem. 2020, 88, 107328. [Google Scholar] [CrossRef] [PubMed]
Number | Target Name | PDB ID | Number of Compounds |
---|---|---|---|
1 | Antithrombin III (ATIII) | 1R1L | 160 |
2 | Coagulation factor IIa (F2) | 5AFY | 143 |
3 | von Willebrand factor (VWF) | 4C2A | 143 |
4 | Coagulation factor XI (F11) | 6TS4 | 110 |
5 | Plasminogen activator inhibitor (PAI) | 1JRR | 100 |
6 | Neuronal acetylcholine receptor beta-2 (CHRNB2) | 6NCJ | 88 |
7 | DNA topoisomerase II (TOP2) | 3QX3 | 73 |
8 | Neuronal acetylcholine receptor alpha-2/alpha-3 (CHRNA2/A3) | 4ZK4 | 50 |
9 | Glycoprotein IIb/IIIa receptor (GPIIb/IIIa) | 3T3M | 43 |
10 | Coagulation factor Xa (F10) | 2JKH | 40 |
11 | P-selectin (SELP) | 1G1S | 38 |
12 | Neuronal acetylcholine receptor alpha-2/alpha-3 (CHRNA2/A3) | 5FJV | 36 |
13 | Neuronal acetylcholine receptor alpha-7 (CHRNA7) | 5AFN | 36 |
14 | Tyrosine-protein kinase SYK (SYK) | 4YJR | 19 |
15 | DNA topoisomerase II (TOP2) | 1ZXN | 16 |
16 | P2Y purinoceptor 1 (P2RY1) | 4XNV | 5 |
17 | Plasminogen activator inhibitor (PAI) | 2HI9 | 4 |
18 | Coagulation factor IX (F9) | 5JB9 | 4 |
19 | Carboxypeptidase B2 (CPB2) | 4P10 | 3 |
20 | Platelet glycoprotein Ib alpha (CD42b) | 4CH2 | 3 |
21 | Arachidonate 5-lipoxygenase (5-LOX) | 3V99 | 2 |
22 | Plasminogen activator inhibitor (PAI) | 4G8R | 2 |
23 | Proteinase activated receptor 1 (F2R) | 3VW7 | 1 |
24 | P2Y purinoceptor 12 (P2RY12) | 4PXZ | 0 |
25 | HMG-CoA reductase (HMGCR) | 2R4F | 0 |
Number | Mol ID | Molecule Name | Number of Targets |
---|---|---|---|
1 | MOL000069 | palmitic acid | 15 |
2 | MOL000131 | EIC (linoleic acid) | 15 |
3 | MOL000675 | oleic acid | 15 |
4 | MOL002229 | HEPTACOSANE | 15 |
5 | MOL007060 | lithospermic acid B | 15 |
6 | MOL007116 | methylrosmarinate | 15 |
7 | MOL007129 | potassium salvianolate d | 15 |
8 | MOL007139 | salvianolic acid e | 15 |
9 | MOL000860 | stearic acid | 14 |
10 | MOL004784 | stenol | 14 |
11 | MOL007113 | lithospermic acid | 14 |
12 | MOL007136 | salvianolic acid a | 14 |
13 | MOL001219 | satol | 13 |
14 | MOL004502 | monomethyl lithospermate | 13 |
15 | MOL007083 | Z-8-hexadecen-1-ol acetate | 13 |
16 | MOL007132 | (2R)-3-(3,4-dihydroxyphenyl)-2-[(Z)-3-(3,4-dihydroxyphenyl)acryloyl]oxy-propionic acid | 13 |
17 | MOL000865 | hexadecane | 12 |
18 | MOL000869 | henicosane | 12 |
19 | MOL001394 | oktadekan | 12 |
20 | MOL002376 | pentacosane | 12 |
21 | MOL007039 | henicosyl formate | 12 |
22 | MOL007055 | 9-methyl lithospermate b | 12 |
23 | MOL007103 | dimetbyl lithosper-mate b | 12 |
24 | MOL007104 | dimethyllithospermate | 12 |
25 | MOL007106 | ethyl lithospermate | 12 |
26 | MOL007138 | salvianolic acid d | 12 |
27 | MOL000128 | nerylacetate | 11 |
28 | MOL002771 | VIV | 11 |
29 | MOL007074 | salvianolic acid b | 11 |
30 | MOL007135 | salvianic acid c | 11 |
31 | MOL007137 | salvianolic acid c | 11 |
32 | MOL007142 | salvianolic acid j | 11 |
33 | MOL000009 | luteolin-7-o-glucoside | 10 |
34 | MOL000054 | L- | 10 |
35 | MOL000055 | L-lysin | 10 |
36 | MOL000932 | alpha-farnesene | 10 |
37 | MOL007044 | 3,7-dimethylocta-2,6-dien-1-yl formate | 10 |
Molecular | 1R1L | 5AFY | 4C2A | 6TS4 | 3QX3 | 3T3M | 2JKH | 5AFN |
---|---|---|---|---|---|---|---|---|
Original ligand | 2.18 | 3.61 | 3.93 | 3.88 | 3.31 | 6.36 | 6.22 | 6.71 |
SAB | 4.12 | 12.58 | 8.91 | 9.75 | 4.50 | 7.38 | 6.60 | 7.12 |
MA | 6.60 | 7.10 | 6.04 | 7.21 | 5.01 | 7.64 | 7.11 | 7.43 |
LA | 2.78 | 9.14 | 8.40 | 7.57 | 4.19 | 9.70 | 8.14 | 7.49 |
LG | 3.85 | 6.65 | 5.96 | 8.08 | 3.32 | 7.50 | 8.09 | 6.71 |
Compounds | Hydrogen Bonds | Other Amino Acid Residues |
---|---|---|
SAB | TYR59A, ARG37D, GLY193, ALA195, GLY216, ALA97, GLY218, CYS219, CYS40, LEU39 | TRP215, LYS192, HIS57, LEU146, CYS191, ALA190 |
MA | LEU39, CYS40, ASP189, CYS219, LYS192 | ALA195, GLY226, GLY216, ALA190, SER214, TRP215, CYS191 |
LA | CYS58, ARG37D, ALA195, GLY193, ASP194, ASP189, GLY218, CYS219 | ALA97, HIS57, LYS192, TRP215, ALA190, GLY216 |
LG | ASP189, HIS57, GLU98, GLY193, ALA195, ASP194, TRP215, SER214, VAL227 | GLY226, CYS219, ALA190, LYS192 |
DS Compounds | Concentrations (μg/mL) | Pre-Treatment Efficacy (%) | Pre-Treatment IC50 (μg/mL) | Post-Treatment Efficacy (%) | Post-Treatment IC50 (μg/mL) |
---|---|---|---|---|---|
ASP | 12.5 | 16.06 | 9.23 | ||
25 | 77.01 | 19.08 | 57.59 | 27.22 | |
50 | 79.39 | 68.04 | |||
SAB | 12.5 | 54.90 | 26.68 | ||
25 | 57.71 | 58.95 | |||
50 | 79.05 | 12.22 | 65.63 | 27.23 | |
100 | 87.98 | 66.08 | |||
200 | 94.21 | 77.88 | |||
MA | 12.5 | 35.69 | 21.43 | ||
25 | 51.65 | 55.87 | |||
50 | 74.63 | 22.07 | 63.73 | 31.03 | |
100 | 75.34 | 72.39 | |||
200 | 81.38 | 73.49 | |||
LA | 12.5 | 23.52 | 29.87 | ||
25 | 49.61 | 44.55 | |||
50 | 69.93 | 31.12 | 50.66 | 50.62 | |
100 | 71.97 | 56.48 | |||
200 | 70.64 | 67.45 | |||
LG | 12.5 | 33.17 | 17.58 | ||
25 | 44.34 | 21.97 | |||
50 | 45.09 | 62.75 | 51.07 | 85.22 | |
100 | 55.21 | 51.29 | |||
200 | 61.34 | 62.57 |
DS Compounds | Concentrations (μg/mL) | Pre-Treatment Efficacy (%) | Pre-Treatment IC50 (μg/mL) | Post-Treatment Efficacy (%) | Post-Treatment IC50 (μg/mL) |
---|---|---|---|---|---|
ASP | 12.5 | 23.08 | 37.66 | ||
25 | 41.12 | 37.28 | 76.29 | 15.56 | |
50 | 56.94 | 80.27 | |||
SAB | 12.5 | 50.79 | 49.69 | ||
25 | 53.66 | 64.43 | |||
50 | 63.53 | 11.28 | 73.10 | 8.11 | |
100 | 68.42 | 73.40 | |||
200 | 67.79 | 74.00 | |||
MA | 12.5 | 46.48 | 50.15 | ||
25 | 59.87 | 53.82 | |||
50 | 60.10 | 15.47 | 64.78 | 10.72 | |
100 | 79.05 | 65.12 | |||
200 | 79.84 | 66.44 | |||
LA | 12.5 | 36.54 | 37.37 | ||
25 | 38.52 | 48.93 | |||
50 | 52.11 | 50.59 | 52.90 | 27.95 | |
100 | 59.69 | 78.32 | |||
200 | 62.43 | 80.13 | |||
LG | 12.5 | 30.33 | 50.89 | ||
25 | 30.77 | 58.06 | |||
50 | 60.26 | 55.34 | 68.82 | 14.01 | |
100 | 60.85 | 83.09 | |||
200 | 60.21 | 91.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Qin, N.; Rao, C.; Zhu, J.; Wang, H.; Hu, G. Screening of Potential Anti-Thrombotic Ingredients from Salvia miltiorrhiza in Zebrafish and by Molecular Docking. Molecules 2021, 26, 6807. https://doi.org/10.3390/molecules26226807
Tang H, Qin N, Rao C, Zhu J, Wang H, Hu G. Screening of Potential Anti-Thrombotic Ingredients from Salvia miltiorrhiza in Zebrafish and by Molecular Docking. Molecules. 2021; 26(22):6807. https://doi.org/10.3390/molecules26226807
Chicago/Turabian StyleTang, Huilan, Ningyi Qin, Chang Rao, Jiahui Zhu, Haiqiang Wang, and Guang Hu. 2021. "Screening of Potential Anti-Thrombotic Ingredients from Salvia miltiorrhiza in Zebrafish and by Molecular Docking" Molecules 26, no. 22: 6807. https://doi.org/10.3390/molecules26226807
APA StyleTang, H., Qin, N., Rao, C., Zhu, J., Wang, H., & Hu, G. (2021). Screening of Potential Anti-Thrombotic Ingredients from Salvia miltiorrhiza in Zebrafish and by Molecular Docking. Molecules, 26(22), 6807. https://doi.org/10.3390/molecules26226807