Molecular Insights into Binding Mode and Interactions of Structure-Based Virtually Screened Inhibitors for Pseudomonas aeruginosa Multiple Virulence Factor Regulator (MvfR)
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Retrieval of MvfR and Preparation
2.2. Ligands Library Preparation
2.3. Structure-Based Virtual Screening (SBVS)
2.4. Dynamics Understanding Using Molecular Dynamics Simulations
2.5. Analysis of Radial Distribution Function
2.6. Binding Free Energies Calculation
2.7. Normal Mode Analysis for Assessing Binding Entropy
2.8. WaterSwap Analysis
2.9. Pharmacokinetics Studies
3. Results and Discussion
3.1. Identification of Potential Leads
3.2. Leads and Control Binding Conformation and Interactions
3.3. Deciphering Conformational Dynamics
3.4. Analysis of the Hydrogen Bonds
3.5. Radial Distribution Function (RDF) Analysis
3.6. Assessment of MM-GB/PBSA Binding Free Energies
3.7. MvfR Hotspot Residues
3.8. Calculating Binding Entropy
3.9. Evaluation of WaterSwap Absolute Binding Free Energy
3.10. Leads Pharmacokinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.-A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef]
- Rehman, A.; Ahmad, S.; Shahid, F.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A.; Alhumeed, N.; Qasim, M.; Ashfaq, U.A.; Tahir ul Qamar, M. Integrated Core Proteomics, Subtractive Proteomics, and Immunoinformatics Investigation to Unveil a Potential Multi-Epitope Vaccine against Schistosomiasis. Vaccines 2021, 9, 658. [Google Scholar] [CrossRef]
- Yach, D.; Hawkes, C.; Gould, C.L.; Hofman, K.J. The global burden of chronic diseases: Overcoming impediments to prevention and control. JAMA 2004, 291, 2616–2622. [Google Scholar] [CrossRef]
- Tahir ul Qamar, M.; Saba Ismail, S.A.; Mirza, M.U.; Abbasi, S.W.; Ashfaq, U.A.; Chen, L.-L. Development of a Novel Multi-Epitope Vaccine Against Crimean-Congo Hemorrhagic Fever Virus: An Integrated Reverse Vaccinology, Vaccine Informatics and Biophysics Approach. Front. Immunol. 2021, 12, 669812. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, S.; Rahman, N.A.A.; Peile, M.R.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health 2020, 8, 535668. [Google Scholar] [CrossRef]
- Ismail, S.; Shahid, F.; Khan, A.; Bhatti, S.; Ahmad, S.; Naz, A.; Almatroudi, A.; Tahir ul Qamar, M. Pan-Vaccinomics Approach Towards a Universal Vaccine Candidate Against WHO Priority Pathogens to Address Growing Global Antibiotic Resistance. Comput. Biol. Med. 2021, 136, 104705. [Google Scholar] [CrossRef] [PubMed]
- Tahir ul Qamar, M.; Ahmad, S.; Fatima, I.; Ahmad, F.; Shahid, F.; Naz, A.; Abbasi, S.W.; Khan, A.; Mirza, M.U.; Ashfaq, U.A.; et al. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput. Biol. Med. 2021, 132, 104389. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Raza, S.; Uddin, R.; Azam, S.S. Comparative subtractive proteomics based ranking for antibiotic targets against the dirtiest superbug: Acinetobacter baumannii. J. Mol. Graph. Model. 2018, 82, 74–92. [Google Scholar] [CrossRef]
- Rashid, M.I.; Naz, A.; Ali, A.; Andleeb, S. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Genomics 2017, 109, 274–283. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Bhatia, S.; Singh, S.; Franco Jr, F. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. Iran. J. Basic Med. Sci. 2021, 24, 699. [Google Scholar] [PubMed]
- Kaye, K.S.; Pogue, J.M. Infections caused by resistant gram-negative bacteria: Epidemiology and management. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—How P. aeruginosa can escape antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazan, R.; Maura, D.; Que, Y.A.; Rahme, L.G. Assessing Pseudomonas aeruginosa persister/antibiotic tolerant cells. In Pseudomonas Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2014; pp. 699–707. [Google Scholar]
- Kitao, T.; Lepine, F.; Babloudi, S.; Walte, F.; Steinbacher, S.; Maskos, K.; Blaesse, M.; Negri, M.; Pucci, M.; Zahler, B.; et al. Molecular insights into function and competitive inhibition of Pseudomonas aeruginosa multiple virulence factor regulator. mBio 2018, 9, e02158-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; MacKerell, A.D. Computer-aided drug design methods. In Antibiotics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 85–106. [Google Scholar]
- Suleman, M.; Tahir ul Qamar, M.; Shoaib Saleem, S.A.; Ali, S.S.; Khan, H.; Akbar, F.; Khan, W.; Alblihy, A.; Alrumaihi, F.; Waseem, M. Mutational Landscape of Pirin and Elucidation of the Impact of Most Detrimental Missense Variants That Accelerate the Breast Cancer Pathways: A Computational Modelling Study. Front. Mol. Biosci. 2021, 8, 692835. [Google Scholar] [CrossRef] [PubMed]
- Alamri, M.A.; Tahir ul Qamar, M.; Afzal, O.; Alabbas, A.B.; Riadi, Y.; Alqahtani, S.M. Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. J. Mol. Liq. 2021, 330, 115699. [Google Scholar] [CrossRef]
- Ahmad, S.; Shahid, F.; Tahir ul Qamar, M.; Abbasi, S.W.; Sajjad, W.; Ismail, S.; Alrumaihi, F.; Allemailem, K.S.; Almatroudi, A.; Ullah Saeed, H.F. Immuno-Informatics Analysis of Pakistan-Based HCV Subtype-3a for Chimeric Polypeptide Vaccine Design. Vaccines 2021, 9, 293. [Google Scholar] [CrossRef]
- Sussman, J.L.; Lin, D.; Jiang, J.; Manning, N.O.; Prilusky, J.; Ritter, O.; Abola, E.E. Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. Sect. D Biol. Crystallogr. 1998, 54, 1078–1084. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Case, D.A.; Babin, V.; Berryman, J.T.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham, T.E., III; Darden, T.A.; Duke, R.E.; Gohlke, H.; et al. The FF14SB force field. Amber 2014, 14, 29–31. [Google Scholar]
- Rehan Khalid, R.; Tahir ul Qamar, M.; Maryam, A.; Ashique, A.; Anwar, F.; H Geesi, M.; Siddiqi, A.R. Comparative Studies of the Dynamics Effects of BAY60-2770 and BAY58-2667 Binding with Human and Bacterial H-NOX Domains. Molecules 2018, 23, 2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 2021, 49, D509–D515. [Google Scholar] [CrossRef] [PubMed]
- Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 2017, 33, 3658–3660. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Chemical Biology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 243–250. [Google Scholar]
- Halgren, T.A. Merck Molecular Force Field. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial; The Scripps Research Institute, Molecular Graphics Laboratory: La Jolla, CA, USA, 2012; pp. 91000–92037. [Google Scholar]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins Struct. Funct. Bioinform. 2003, 52, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Muneer, I.; Ul Qamar, M.T.; Tusleem, K.; Abdul Rauf, S.; Hussain, H.M.J.; Siddiqi, A.R. Discovery of selective inhibitors for cyclic AMP response element-binding protein: A combined ligand and structure-based resources pipeline. Anticancer Drugs 2019, 30, 363–373. [Google Scholar] [CrossRef]
- Alamri, M.A.; Tahir ul Qamar, M.; Mirza, M.U.; Alqahtani, S.M.; Froeyen, M.; Chen, L.-L. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. J. Pharm. Anal. 2020, 10, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Durdagi, S.; Tahir ul Qamar, M.; Salmas, R.E.; Tariq, Q.; Anwar, F.; Ashfaq, U.A. Investigating the molecular mechanism of staphylococcal DNA gyrase inhibitors: A combined ligand-based and structure-based resources pipeline. J. Mol. Graph. Model. 2018, 85, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Muhseen, Z.T.; Hameed, A.R.; Al-Hasani, H.M.H.; Tahir ul Qamar, M.; Li, G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. J. Mol. Liq. 2020, 320, 114493. [Google Scholar] [CrossRef]
- Case, D.A.; Belfon, K.; Ben-Shalom, I.; Brozell, S.R.; Cerutti, D.; Cheatham, T.; Cruzeiro, V.W.D.; Darden, T.; Duke, R.E.; Giambasu, G.; et al. Amber 2021: Reference Manual; University of California Press: Berkeley, CA, USA, 2021. [Google Scholar]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Antechamber: An accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 2001, 222, U403. [Google Scholar]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Andleeb, S.; Imtiaz-Ud-Din; Rauf, M.K.; Azam, S.S.; Badshah, A.; Sadaf, H.; Raheel, A.; Tahir, M.N.; Raza, S. A one-pot multicomponent facile synthesis of dihydropyrimidin-2(1: H)-thione derivatives using triphenylgermane as a catalyst and its binding pattern validation. RSC Adv. 2016, 6, 79651–79661. [Google Scholar] [CrossRef]
- Feller, S.E.; Zhang, Y.; Pastor, R.W.; Brooks, B.R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103, 4613–4621. [Google Scholar] [CrossRef]
- Kräutler, V.; Van Gunsteren, W.F.; Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Donohue, J. Radial Distribution Functions of Some Structures of the Polypeptide Chain. Proc. Natl. Acad. Sci. USA 1954, 40, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM_PBSA and MM_GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef]
- Genheden, S.; Kuhn, O.; Mikulskis, P.; Hoffmann, D.; Ryde, U. The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J. Chem. Inf. Model. 2012, 52, 2079–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, C.J.; Malaisree, M.; Michel, J.; Long, B.; McIntosh-Smith, S.; Mulholland, A.J. Rapid decomposition and visualisation of protein-ligand binding free energies by residue and by water. Faraday Discuss. 2014, 169, 477–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergström, C.A.S.; Larsson, P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int. J. Pharm. 2018, 540, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Abbas, G.; Azam, S.S. Screening pipeline for Flavivirus based inhibitors for Zika virus NS1. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 17, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Maiorov, V.N.; Crippen, G.M. Significance of Root-Mean-Square Deviation in Comparing Three-Dimensional Structures of Globular Proteins. J. Mol. Biol. 1994, 235, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Raza, S.; Uddin, R.; Azam, S.S. Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. J. Mol. Graph. Model. 2017, 77, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J. XMGRACE; Version 5.1.19; Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology: Beaverton, OR, USA, 2005. [Google Scholar]
- Wade, R.C.; Goodford, P.J. The role of hydrogen-bonds in drug binding. Prog. Clin. Biol. Res. 1989, 289, 433–444. [Google Scholar]
- Ghosh, A.; Yan, H. Hydrogen bond analysis of the EGFR-ErbB3 heterodimer related to non-small cell lung cancer and drug resistance. J. Theor. Biol. 2019, 464, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Raza, S.; Abro, A.; Liedl, K.R.; Azam, S.S. Toward novel inhibitors against KdsB: A highly specific and selective broad-spectrum bacterial enzyme. J. Biomol. Struct. Dyn. 2019, 37, 1326–1345. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Raza, S.; Azam, S.S.; Liedl, K.R.; Fuchs, J.E. Interaction mechanisms of a melatonergic inhibitor in the melatonin synthesis pathway. J. Mol. Liq. 2016, 221, 507–517. [Google Scholar] [CrossRef]
- Tuccinardi, T. What is the current Value of MM/PBSA and MM/GBSA Methods in Drug Discovery. Expert Opin. Drug Discov. 2021, 16, 1233–1237. [Google Scholar] [CrossRef]
- Altharawi, A.; Ahmad, S.; Alamri, M.A.; Tahir ul Qamar, M. Structural insight into the binding pattern and interaction mechanism of chemotherapeutic agents with Sorcin by docking and molecular dynamic simulation. Colloids Surf. B Biointerfaces 2021, 208, 112098. [Google Scholar] [CrossRef]
- El Bakri, Y.; Anouar, E.H.; Ahmad, S.; Nassar, A.A.; Taha, M.L.; Mague, J.T.; El Ghayati, L.; Essassi, E.M. Synthesis and Identification of Novel Potential Molecules Against COVID-19 Main Protease Through Structure-Guided Virtual Screening Approach. Appl. Biochem. Biotechnol. 2021, 193, 1–22. [Google Scholar] [CrossRef]
- Humayun, F.; Khan, A.; Ahmad, S.; Yuchen, W.; Wei, G.; Nizam-Uddin, N.; Hussain, Z.; Khan, W.; Zaman, N.; Rizwan, M.; et al. Abrogation of SARS-CoV-2 interaction with host (NRP1) Neuropilin-1 receptor through high-affinity marine natural compounds to curtail the infectivity: A structural-dynamics data. Comput. Biol. Med. 2021, 2021, 104714. [Google Scholar] [CrossRef]
- Abro, A.; Azam, S.S. Binding free energy based analysis of arsenic (+3 oxidation state) methyltransferase with S-adenosylmethionine. J. Mol. Liq. 2016, 220, 375–382. [Google Scholar] [CrossRef]
- Whitty, A. Growing PAINS in academic drug discovery. Future Med. Chem. 2011, 3, 797–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, A.G.; Breimer, D.D. The blood-brain barrier: Clinical implications for drug delivery to the brain. J. R. Coll. Physicians Lond. 1994, 28, 502. [Google Scholar]
- Coluccia, A.; La Regina, G.; Barilone, N.; Lisa, M.-N.; Brancale, A.; André-Leroux, G.; M Alzari, P.; Silvestri, R. Structure-based virtual screening to get new scaffold inhibitors of the Ser/Thr protein kinase PknB from mycobacterium tuberculosis. Lett. Drug Des. Discov. 2016, 13, 1012–1018. [Google Scholar] [CrossRef] [Green Version]
- Ngemenya, M.N.; Abwenzoh, G.N.; Ikome, H.N.; Zofou, D.; Ntie-Kang, F.; Efange, S.M.N. Structurally simple synthetic 1, 4-disubstituted piperidines with high selectivity for resistant Plasmodium falciparum. BMC Pharmacol. Toxicol. 2018, 19, 42. [Google Scholar] [CrossRef]
- Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021, 137, 104851. [Google Scholar] [CrossRef]
- McFarlane, J.M.B.; Krause, K.D.; Paci, I. Accelerated Structural Prediction of Flexible Protein—Ligand Complexes: The SLICE Method. J. Chem. Inf. Model. 2019, 59, 5263–5275. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Azam, S.S. AFD: An application for bi-molecular interaction using axial frequency distribution. J. Mol. Model. 2018, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- N Mhlongo, N.; ES Soliman, M. Binding free energy-based footprint pharmacophore model to enhance virtual screening and drug discovery: A case on glycosidases as anti-influenza drug targets. Lett. Drug Des. Discov. 2016, 13, 1033–1046. [Google Scholar] [CrossRef]
# | Docked Complexes | Gold Score | AutoDock Binding Energy Value |
---|---|---|---|
1 | Top-1 | 61.4 | −9.18 |
2 | Top-2 | 59.2 | −9.0 |
3 | Top-3 | 58.4 | −9.14 |
4 | Top-4 | 57.2 | −8.4 |
5 | Top-5 | 56.3 | −9.10 |
6 | Top-6 | 56.2 | −7.88 |
7 | Top-7 | 55.3 | −7.37 |
8 | Top-8 | 54.4 | −7.19 |
9 | Top-9 | 54.3 | −7.01 |
10 | Top-10 | 52.2 | −6.78 |
Donor | Acceptor | Occupancy (%) |
---|---|---|
Control | ||
LIG204-Side-N3 | LEU115-Main-O | 0.13% |
TYR166-Side-OH | LIG204-Side-O3 | 0.19% |
LIG204-Side-N3 | ASP172-Main-O | 4.06% |
THR173-Side-OG1 | LIG204-Side-N4 | 0.98% |
LYS174-Side-NZ | LIG204-Side-O3 | 0.01% |
TYR73-Side-OH | LIG204-Side-C8 | 0.01% |
TYR166-Side-OH | LIG204-Side-C6 | 0.01% |
LIG204-Side-N3 | TYR166-Side-OH | 0.02% |
LIG204-Side-N3 | GLU167-Side-OE1 | 0.09% |
LIG204-Side-N3 | GLU167-Side-OE2 | 0.01% |
LIG204-Side-N2 | ARG117-Main-O | 0.15% |
LIG204-Side-N2 | LEU115-Main-O | 0.01% |
Top-1 | ||
TYR166-Side-OH | LIG204-Side-O18 | 0.48% |
LIG204-Side-N17 | THR173-Side-OG1 | 0.82% |
LYS174-Main-N | LIG204-Side-O19 | 1.81% |
LYS174-Side-NZ | LIG204-Side-O19 | 0.33% |
LIG204-Side-N16 | ASN114-Main-O | 0.13% |
LIG204-Side-N12 | ASP172-Main-O | 0.15% |
TYR166-Side-OH | LIG204-Side-O22 | 0.23% |
LIG204-Side-N12 | THR173-Side-OG1 | 0.01% |
TYR166-Side-OH | LIG204-Side-O23 | 0.02% |
TYR166-Side-OH | LIG204-Side-O21 | 0.06% |
LIG204-Side-N17 | ASP172-Main-O | 0.14% |
TYR166-Side-OH | LIG204-Side-O25 | 0.01% |
LIG204-Side-N12 | ASP172-Side-OD1 | 2.38% |
LIG204-Side-N15 | ASP172-Side-OD2 | 3.11% |
LIG204-Side-N17 | ASP172-Side-OD1 | 0.10% |
TYR73-Side-OH | LIG204-Side-N11 | 0.01% |
LIG204-Side-N11 | TYR73-Side-OH | 0.06% |
TYR73-Main-N | LIG204-Side-O19 | 3.09% |
LIG204-Side-N17 | LEU200-Main-O | 4.27% |
LIG204-Side-N17 | LEU203-Side-OXT | 3.56% |
LIG204-Side-N11 | TYR73-Main-O | 2.12% |
ARG201-Side-NH2 | LIG204-Side-O20 | 0.09% |
LIG204-Side-N12 | LEU200-Main-O | 0.76% |
LIG204-Side-N15 | LEU71-Main-O | 2.22% |
ARG201-Side-NH1 | LIG204-Side-O20 | 0.01% |
ARG201-Side-NH1 | LIG204-Side-O25 | 0.14% |
LIG204-Side-N15 | ARG197-Main-O | 0.34% |
LIG204-Side-N17 | LEU203-Main-O | 1.29% |
LIG204-Side-N17 | ARG201-Main-O | 0.05% |
LIG204-Side-N16 | THR74-Side-OG1 | 0.03% |
ARG201-Side-NH2 | LIG204-Side-O18 | 0.06% |
ARG201-Side-NH2 | LIG204-Side-O21 | 0.06% |
ARG201-Side-NH1 | LIG204-Side-O21 | 0.02% |
ARG201-Side-NH1 | LIG204-Side-O22 | 0.05% |
LIG204-Side-N15 | THR74-Main-O | 0.01% |
ARG201-Side-NH1 | LIG204-Side-O18 | 0.04% |
ARG201-Side-NH1 | LIG204-Side-O23 | 0.03% |
LIG204-Side-N11 | TYR73-Side-CD2 | 0.01% |
ARG201-Side-NH2 | LIG204-Side-O22 | 0.01% |
ARG201-Side-NE | LIG204-Side-O18 | 0.01% |
TYR73-Side-OH | LIG204-Side-O19 | 0.05% |
LIG204-Side-N15 | ASP172-Side-OD1 | 0.97% |
LIG204-Side-N12 | ASP172-Side-OD2 | 0.02% |
LIG204-Side-N17 | ASP172-Side-OD2 | 0.01% |
LIG204-Side-N15 | TYR73-Side-CG | 0.01% |
LIG204-Side-O23 | ASP172-Side-OD1 | 0.71% |
LIG204-Side-O23 | ASP172-Side-OD2 | 0.25% |
LYS75-Side-NZ | LIG204-Side-O23 | 4.95% |
LYS75-Side-NZ | LIG204-Side-C1 | 7.03% |
LIG204-Side-N15 | TYR73-Side-OH | 0.23% |
LYS75-Side-NZ | LIG204-Side-N16 | 0.61% |
LIG204-Side-N16 | THR74-Main-O | 0.07% |
LYS75-Side-NZ | LIG204-Side-N11 | 0.57% |
LYS75-Side-NZ | LIG204-Side-O20 | 0.22% |
LIG204-Side-N12 | TYR73-Side-CD2 | 0.08% |
LIG204-Side-N12 | TYR73-Side-CG | 0.01% |
LYS75-Side-NZ | LIG204-Side-N13 | 0.02% |
LIG204-Side-O22 | ASP172-Side-OD2 | 0.15% |
TYR73-Side-OH | LIG204-Side-N15 | 0.01% |
LIG204-Side-N12 | TYR73-Side-CE2 | 0.01% |
LIG204-Side-O22 | ASP172-Side-OD1 | 0.02% |
LYS75-Side-NZ | LIG204-Side-O21 | 0.07% |
LIG204-Side-N11 | TYR73-Side-CB | 0.01% |
LYS75-Side-NZ | LIG204-Side-O18 | 0.02% |
LIG204-Side-N17 | TYR73-Side-CD2 | 0.01% |
LIG204-Side-N11 | ASP172-Side-OD2 | 0.01% |
THR74-Side-OG1 | LIG204-Side-N11 | 0.01% |
ARG201-Side-NE | LIG204-Side-O20 | 0.02% |
Top-2 | ||
SER104-Side-OG | LIG204-Side-O19 | 15.02% |
SER163-Side-OG | LIG204-Side-O18 | 5.49% |
LIG204-Side-N13 | LEU115-Main-O | 1.27% |
LIG204-Side-N16 | ASN114-Main-O | 0.14% |
LIG204-Side-O26 | LEU115-Main-O | 0.01% |
SER163-Side-OG | LIG204-Side-O21 | 42.57% |
GLN102-Side-NE2 | LIG204-Side-O25 | 0.07% |
SER163-Side-OG | LIG204-Side-O22 | 2.19% |
GLN102-Side-NE2 | LIG204-Side-O19 | 0.29% |
SER104-Side-OG | LIG204-Side-O24 | 10.23% |
GLN102-Side-NE2 | LIG204-Side-O24 | 1.74% |
TYR166-Side-OH | LIG204-Side-O20 | 18.22% |
SER104-Side-OG | LIG204-Side-O23 | 4.27% |
ILE144-Main-N | LIG204-Side-O19 | 0.01% |
TYR166-Side-OH | LIG204-Side-O22 | 16.34% |
GLN102-Side-NE2 | LIG204-Side-O23 | 1.74% |
LIG204-Side-O26 | ARG117-Main-O | 0.52% |
ARG117-Main-N | LIG204-Side-O26 | 0.14% |
LIG204-Side-N15 | VAL78-Side-CG2 | 0.02% |
TYR166-Side-OH | LIG204-Side-O21 | 6.73% |
TYR166-Side-OH | LIG204-Side-O18 | 5.83% |
ILE94-Main-N | LIG204-Side-O18 | 1.08% |
ILE94-Main-N | LIG204-Side-O22 | 1.31% |
ILE94-Main-N | LIG204-Side-O21 | 0.65% |
SER93-Side-OG | LIG204-Side-O22 | 0.03% |
SER93-Side-OG | LIG204-Side-O21 | 0.04% |
LIG204-Side-N17 | ASP172-Main-O | 0.04% |
LIG204-Side-N17 | THR173-Side-OG1 | 0.03% |
Compound | MM/GBSA | ||||||
---|---|---|---|---|---|---|---|
ΔG Binding | ΔG Electrostatic | ΔG Bind Van Der Waals | ΔG Bind Gas Phase | ΔG Polar Solvation | ΔG Non-Polar Solvation | ΔG Solvation | |
Control | −41.7 | −6.9 | −54.6 | −61.6 | 26.5 | −6.6 | 19.9 |
Top-1 | −76.3 | −30.6 | −25.1 | −55.7 | −17.4 | −3.2 | −20.6 |
Top-2 | −143.8 | −23.4 | −39.9 | −63.3 | −75.0 | −5.5 | −80.5 |
MM/PBSA | |||||||
Control | −31.6 | −6.9 | −54.6 | −61.6 | 34.6 | −4.6 | 30.0 |
Top-1 | −80.8 | −30.6 | −25.1 | −55.7 | −22.5 | −2.6 | −25.1 |
Top-2 | −149.1 | −23.4 | −39.9 | −63.3 | −81.9 | −3.9 | −85.8 |
Residue | Control | Top-1 | Top-2 |
---|---|---|---|
Gln102 | −2.1 | −6.88 | −8.14 |
Asn114 | −3.4 | −7.01 | −6.40 |
Arg117 | −1.8 | −5.78 | −8.49 |
Val119 | −2.8 | −6.41 | −9.78 |
Asp172 | −1.74 | −2.87 | −9.14 |
Property | Model Name | Predicted Value Top-1 | Predicted Value Top-2 | Unit |
---|---|---|---|---|
Absorption | Water solubility | −2.892 | −2.892 | Numeric (log mol/L) |
Absorption | Caco2 permeability | −0.601 | −0.673 | Numeric (log Papp in 10−6 cm/s) |
Absorption | Intestinal absorption (human) | 0 | 0 | Numeric (% Absorbed) |
Absorption | Skin Permeability | −2.735 | −2.735 | Numeric (log Kp) |
Absorption | P-glycoprotein substrate | Yes | Yes | Categorical (Yes/No) |
Absorption | P-glycoprotein I inhibitor | No | No | Categorical (Yes/No) |
Absorption | P-glycoprotein II inhibitor | No | No | Categorical (Yes/No) |
Distribution | VDss (human) | 0.01 | −0.005 | Numeric (log L/kg) |
Distribution | Fraction unbound (human) | 0.382 | 0.387 | Numeric (Fu) |
Distribution | BBB permeability | −2.587 | −2.775 | Numeric (log BB) |
Distribution | CNS permeability | −7.316 | −6.425 | Numeric (log PS) |
Metabolism | CYP2D6 substrate | No | No | Categorical (Yes/No) |
Metabolism | CYP3A4 substrate | No | No | Categorical (Yes/No) |
Metabolism | CYP1A2 inhibitor | No | No | Categorical (Yes/No) |
Metabolism | CYP2C19 inhibitor | No | No | Categorical (Yes/No) |
Metabolism | CYP2C9 inhibitor | No | No | Categorical (Yes/No) |
Metabolism | CYP2D6 inhibitor | No | No | Categorical (Yes/No) |
Metabolism | CYP3A4 inhibitor | No | No | Categorical (Yes/No) |
Excretion | Total Clearance | 0.348 | 0.34 | Numeric (log ml/min/kg) |
Excretion | Renal OCT2 substrate | No | No | Categorical (Yes/No) |
Toxicity | AMES toxicity | No | No | Categorical (Yes/No) |
Toxicity | Max. tolerated dose (human) | 0.439 | 0.438 | Numeric (log mg/kg/day) |
Toxicity | hERG I inhibitor | No | No | Categorical (Yes/No) |
Toxicity | hERG II inhibitor | No | No | Categorical (Yes/No) |
Toxicity | Oral rat acute toxicity (LD50) | 2.482 | 2.482 | Numeric (mol/kg) |
Toxicity | Oral rat chronic toxicity (LOAEL) | 6.023 | 4.58 | Numeric (log mg/kg_bw/day) |
Toxicity | Hepatotoxicity | No | No | Categorical (Yes/No) |
Toxicity | Skin sensitization | No | No | Categorical (Yes/No) |
Toxicity | T. Pyriformis toxicity | 0.285 | 0.285 | Numeric (log ug/L) |
Toxicity | Minnow toxicity | 7.668 | 8.464 | Numeric (log mM) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almihyawi, R.A.H.; Al-Hasani, H.M.H.; Jassim, T.S.; Muhseen, Z.T.; Zhang, S.; Chen, G. Molecular Insights into Binding Mode and Interactions of Structure-Based Virtually Screened Inhibitors for Pseudomonas aeruginosa Multiple Virulence Factor Regulator (MvfR). Molecules 2021, 26, 6811. https://doi.org/10.3390/molecules26226811
Almihyawi RAH, Al-Hasani HMH, Jassim TS, Muhseen ZT, Zhang S, Chen G. Molecular Insights into Binding Mode and Interactions of Structure-Based Virtually Screened Inhibitors for Pseudomonas aeruginosa Multiple Virulence Factor Regulator (MvfR). Molecules. 2021; 26(22):6811. https://doi.org/10.3390/molecules26226811
Chicago/Turabian StyleAlmihyawi, Raed A. H., Halah M. H. Al-Hasani, Tabarak Sabah Jassim, Ziyad Tariq Muhseen, Sitong Zhang, and Guang Chen. 2021. "Molecular Insights into Binding Mode and Interactions of Structure-Based Virtually Screened Inhibitors for Pseudomonas aeruginosa Multiple Virulence Factor Regulator (MvfR)" Molecules 26, no. 22: 6811. https://doi.org/10.3390/molecules26226811
APA StyleAlmihyawi, R. A. H., Al-Hasani, H. M. H., Jassim, T. S., Muhseen, Z. T., Zhang, S., & Chen, G. (2021). Molecular Insights into Binding Mode and Interactions of Structure-Based Virtually Screened Inhibitors for Pseudomonas aeruginosa Multiple Virulence Factor Regulator (MvfR). Molecules, 26(22), 6811. https://doi.org/10.3390/molecules26226811