Ionic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe2O3/WO3·0.5H2O Hybrid Nanostructure with Enhanced Photocatalytic Property
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Fe3O4
2.3. Synthesis of γ-Fe2O3/WO3·0.5H2O Magnetic Hybrid Nanostructure
2.4. Materials Characterization
2.5. Measurement of Photocatalytic Activity
3. Results
3.1. Surface and Structure Characterization of Samples
3.2. Magnetism Measurement
3.3. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, H.; Zhang, L.; Chen, Z. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Han, M.; Chen, R. Hexagonal@ Cubic CdS Core@ Shell Nanorod Photocatalyst for Highly Active Production of H2 with Unprecedented Stability. Adv. Mater. 2016, 28, 8906–8911. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.A.; Kang, S.W.; Hunge, Y.M. Photocatalytic degradation of Rhodamine B using graphitic carbon nitride photocatalyst. J. Mater. Sci. Mater. Electron. 2021, 32, 15577–15585. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Khan, S.; Takagi, K. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. J. Colloid Interface Sci. 2021, 582, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J. Colloid Interface Sci. 2022, 606, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953971. [Google Scholar] [CrossRef]
- Clarke, E.A.; Anliker, R. Organic Dyes and Pigments; Springer: Berlin/Heidelberg, Germany, 1980; pp. 181–215. [Google Scholar]
- Mashentseva, A.A.; Barsbay, M.; Aimanova, N.A.; Zdorovets, M.V. Application of silver-loaded composite track-etched membranes for photocatalytic decomposition of methylene blue under visible light. Membranes 2021, 11, 60. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Lee, K.Y.; Phadtare, V.D.; Dhavale, R.P.; Jung, H. Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity. Ceram. Int. 2020, 46, 4939–4946. [Google Scholar] [CrossRef]
- Vdp, A.; Vgp, A.; Tk, A.; Kyl, A.; Ank, B.; Hc, A. Ultrasonically dispersed ultrathin g-C3N4 nanosheet/BaBi2Nb2O9 heterojunction photocatalysts for efficient photocatalytic degradation of organic pollutant. J. Alloy. Compd. 2021, 884, 161037. [Google Scholar]
- Kim, T.; Parale, V.; Jung, H.N.R.; Kim, Y.; Driss, Z.; Driss, D. Facile synthesis of SnO2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange. Nanomaterials 2019, 9, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parale, V.G.; Kim, T.; Phadtare, V.D.; Han, W.; Park, H.H. SnO2 aerogel deposited onto polymer-derived carbon foam for environmental remediation. J. Mol. Liq. 2019, 287, 110990. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, F.; Li, H. Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sens. Actuators B Chem. 2012, 162, 259–268. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, J.; Ke, L. Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties. ACS Appl. Mater. Interfaces 2011, 3, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santato, C.; Ulmann, M.; Augustynski, J. Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B. 2001, 105, 936–940. [Google Scholar] [CrossRef]
- Seifollahi Bazarjani, M.; Hojamberdiev, M.; Morita, K. Visible light photocatalysis with c-WO3–x/WO3 × H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J. Am. Chem. Soc. 2013, 135, 4467–4475. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Z.G.; Miyauchi, M. Efficient visible light active CaFe2O4/WO3 based composite photocatalysts: Effect of interfacial modification. J. Phys. Chem. C 2009, 113, 17132–17137. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, S.; Liu, B.K. Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 2014, 4, 3724–3729. [Google Scholar] [CrossRef]
- Cao, J.; Luo, B.; Lin, H. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl. Catal. B Environ. 2012, 111, 288–296. [Google Scholar] [CrossRef]
- Cao, S.W.; Zhu, Y.J.; Ma, M.Y. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and gamma-Fe2O3: Preparation and potential application in drug delivery. J. Phys. Chem. C 2008, 112, 1851–1856. [Google Scholar] [CrossRef]
- Kamali, S.; Yu, E.; Bates, B. Magnetic properties of γ-Fe2O3 nanoparticles in a porous SiO2 shell for drug delivery. J. Phys. Condens. Matter 2020, 33, 065301. [Google Scholar] [CrossRef]
- Sheikholeslami, Z.; Kebria, D.Y.; Qaderi, F. Application of γ-Fe2O3 nanoparticles for pollution removal from water with visible light. J. Mol. Liq. 2019, 299, 112118. [Google Scholar] [CrossRef]
- Feng, J.; Shi, Q.; Li, Y. Pyrolysis preparation of poly-γ-glutamic acid derived amorphous carbon nitride for supporting Ag and γ-Fe2O3 nanocomposites with catalytic and antibacterial activity. Mater. Sci. Eng. C 2019, 101, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Asuha, S.; Zhao, Y.M.; Zhao, S. Synthesis of mesoporous maghemite with high surface area and its adsorptive properties. Solid State Sci. 2012, 14, 833–839. [Google Scholar] [CrossRef]
- Kyoungja, W.; Lee, H.J. Synthesis and magnetism of hematite and maghemite nanoparticles. J. Magn. Magn. Mater. 2004, 272, E1155–E1156. [Google Scholar]
- Bomatí-Miguel, O.; Mazeina, L.; Navrotsky, A. Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem. Mater. 2008, 20, 591–598. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, W.; Cui, Z.; Song, W.; Xu, C.; Gao, M. Polyhedral maghemite nanocrystals prepared by a flame synthetic method: Preparations, characterizations, and catalytic properties. ACS Nano 2009, 3, 1775–1780. [Google Scholar] [CrossRef]
- Gang, Z.; Wang, T.; Shao, Y. A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications. Small 2017, 13, 1602243. [Google Scholar]
- Almeida, T.P.; Fay, M.; Zhu, Y.; Brown, P.D. Process map for the hydrothermal synthesis of α-Fe2O3 nanorods. J. Phys. Chem. C 2009, 113, 18689–18698. [Google Scholar] [CrossRef]
- Kojima, H.; Hanada, K. Origin of coercivity changes during the oxidation of Fe3O4 to γ-Fe2O3. IEEE Trans. Magn. 1980, 16, 11–13. [Google Scholar] [CrossRef]
- Bai, S.L.; Zhang, K.W.; Sun, J.H. Surface decoration of WO3 architectures with Fe2O3 nanoparticles for visible-light-driven photocatalysis. Crystengcomm 2014, 16, 3289. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.H.; Liu, R.R.; Cao, Z.; Sun, X.M. WO3@α-Fe2O3 heterojunction arrays with improved photoelectrochemical behavior for neutral ph water splitting. ChemCatChem 2016, 8, 1–7. [Google Scholar]
- Yin, L.; Chen, D.; Feng, M.; Ge, L.; Yang, D.; Song, Z. Hierarchical Fe2O3@WO3 nanostructures with ultrahigh specific surface areas: Microwave-assisted synthesis and enhanced h2s-sensing performance. RSC Adv. 2015, 5, 328–337. [Google Scholar] [CrossRef]
- Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J.M.; et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 2009, 48, 9457–9460. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, G. Porous aromatic frameworks as a platform for multifunctional applications. ACS Cent. Sci. 2019, 5, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Yuan, Y.; Zhu, G. Multifunctional porous aromatic frameworks: State of the art and opportunities. EnergyChem 2020, 2, 100037. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, Y.; Zhu, G. Molecularly Imprinted Porous Aromatic Frameworks for Molecular Recognition. ACS Cent. Sci. 2020, 6, 1082–1094. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Deng, D.; Zhang, S.; Meng, Q.; Li, Z.; Wang, Z.; Sha, H.; Faller, R.; Bian, Z.; Zou, X.; et al. Porous organic frameworks featured by distinct confining fields for the selective hydrogenation of biomass-derived ketones. Adv. Mater. 2020, 32, 1908243. [Google Scholar] [CrossRef]
- Yan, Z.; Yuan, Y.; Tian, Y.; Zhang, D.; Zhu, G. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew. Chem. Int. Ed. 2015, 54, 12733–12737. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Y.; Faheem, M.; Zou, X.; Ma, X.; Wang, Z.; Meng, Q.; Wang, L.; Zhao, S.; Zhu, G. Molecularly imprinted porous aromatic frameworks serving as porous artificial enzymes. Adv. Mater. 2018, 30, 1800069. [Google Scholar] [CrossRef]
- Meng, Q.; Huang, Y.; Deng, D.; Yang, Y.; Sha, H.; Zou, X.; Faller, R.; Yuan, Y.; Zhu, G. Porous Aromatic Framework Nanosheets Anchored with Lewis Pairs for Efficient and Recyclable Heterogeneous Catalysis. Adv. Sci. 2020, 7, 2000067. [Google Scholar] [CrossRef]
- Yang, Y.; Faheem, M.; Wang, L.; Meng, Q.; Sha, H.; Yang, N.; Yuan, Y.; Zhu, G. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent. Sci. 2018, 4, 748–754. [Google Scholar] [CrossRef]
- Yuan, Y.; Cui, P.; Tian, Y.; Zou, X.; Zhou, Y.; Sun, F.; Zhu, G. Cou-pling fullerene into porous aromatic frameworks for gas selective sorption. Chem. Sci. 2016, 7, 3751–3756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Yan, Z.; Wang, L.; Meng, Q.; Yuan, Y.; Zhu, G. Con-structing synergistic groups in porous aromatic frameworks for the selective removal and recovery of Lead(II) ions. J. Mater. Chem. A 2018, 6, 5202–5207. [Google Scholar] [CrossRef]
- Demir, S.; Brune, N.K.; Van Humbeck, J.F. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework. Acs Cent. 2016, 2, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Meng, Q.; Faheem, M.; Yang, Y.; Li, Z.; Wang, Z.; Deng, D.; Sun, F.; He, H.; Huang, Y.; et al. A molecular coordination template strategy for designing selective porous aromatic framework materials for uranyl capture. ACS Cent. Sci. 2019, 5, 1432–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Meng, Q.; Yang, Y.; Zou, X.; Yuan, Y.; Zhu, G. Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction. Chem. Sci. 2020, 11, 4747–4752. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhu, G.; Yuan, Y. Preparation of phosphoric acid based porous aromatic framework for uranium extraction. Acta Chim. Sin. 2019, 77, 469–474. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Q.; Ma, R.; Wang, Z.; Yang, Y.; Sha, H.; Ma, X.; Ruan, X.; Zou, X.; Yuan, Y.; et al. Constructing an ion pathway for uranium extraction from seawater. Chem 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, F.; Zhang, F.; Ren, H.; Guo, M.; Cai, K.; Jing, X.; Gao, X.; Zhu, G. Targeted synthesis of porous aromatic frame- works and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Adv. Mater. 2013, 25, 6619–6624. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, F.; Li, L.; Cui, P.; Zhu, G. Porous aromatic frame-works with anion-templated pore apertures serving as polymeric sieves. Nat. Commun. 2014, 5, 4260. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.L.; Jiang, J.S.; Jiang, D.M. Synthesis of rhombic dodecahedral Fe3O4 nanocrystals with exposed high-energy {110} facets and their peroxidase-like activity and lithium storage properties. J. Phys. Chem. C 2014, 118, 12588–12598. [Google Scholar] [CrossRef]
- Tahir, A.A.; Wijayantha, K.G.U.; Saremi-Yarahmadi, S. Nanostructured alpha-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem. Mater. 2009, 21, 3763–3772. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Ma, L. Substitution of WO3 in V2O5/WO3-TiO2 by Fe2O3 for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2013, 3, 161–168. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 8, 2441–2449. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Khalafalla, D. Superparamagnetic γ-Fe2O3. Phys. Status Solidi A 1972, 11, 229–241. [Google Scholar] [CrossRef]
- Dombrowski, K.E.; Wright, S.E.; Birkbeck, J.C. Surface Analysis of Proteins and Related Molecules by X-ray Photoelectron Spectroscopy (XPS). FASEB J. 1996, 10, A1495. [Google Scholar]
- Mou, F.; Guan, J.; Xiao, Z. Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/gamma-phase-shell hierarchical nanostructures with strong As(V) removal capability. J. Mater. Chem. 2011, 21, 5414–5421. [Google Scholar] [CrossRef]
- Lu, A.H.; Salabas, E.L.; Schueth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Veeralingam, S.; Badhulika, S. Bi-Metallic sulphides 1D Bi2S3 microneedles/1D RuS2 nano-rods based n-n heterojunction for large area, flexible and high-performance broadband photodetector. J. Alloy. Compd. 2021, 10, 160954. [Google Scholar] [CrossRef]
- Hou, W.C.; Chowdhury, I.; Goodwin, D.G. Photochemical Transformation of Graphene Oxide in Sunlight. Environ. Sci. Technol. 2015, 49, 3435–3543. [Google Scholar] [CrossRef]
- Wang, W.; Li, N.; Chi, Y.; Li, Y.J.; Yan, W.F. Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceram. Int. 2013, 39, 3511–3518. [Google Scholar] [CrossRef]
- Yao, T.; Cui, T.; Wang, H. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye. Nanoscale 2014, 6, 7666–7674. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.L.; Wu, X.Y.; Tan, H.Y.; Paolo, A.; Hao, S.Y. Effect of Zn on Photocatalytic Activity of Block-Shaped Monoclinic WO3. Chin. J. Inorg. Chem. 2021, 37, 1700–1706. [Google Scholar]
- Fatimah, I.; Fadhilah, S.; Mawardani, S.A. γ-Fe2O3 Nanoparticles immobilized in SiO2 aerogel synthesized from rice husk ash for photofenton like degradation of rhodamine B. Rasayan J. Chem. 2018, 11, 544–553. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X.; Zhang, R. Type-II C2N/ZnTe Van Der Waals Heterostructure: A Promising Photocatalyst for Water Splitting. Adv. Mater. Interfaces 2021, 8, 2002068. [Google Scholar] [CrossRef]
- Guo, J.X.; Zhou, X.Y.; Lu, Y.B. Monodisperse spindle-like FeWO4 nanoparticles: Controlled hydrothermal synthesis and enhanced optical properties. J. Solid State Chem. 2012, 196, 550–556. [Google Scholar] [CrossRef]
- Bai, S.; Yang, X.; Liu, C. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain. Chem. Eng. 2018, 6, 12906–12913. [Google Scholar] [CrossRef]
- Senthil, R.A.; Theerthagiri, J.; Selvi, A. Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation. Opt. Mater. 2017, 64, 533–539. [Google Scholar] [CrossRef]
- Ranjbar, M.; Taher, M.A.; Sam, A. NiO nanostructures: Novel solvent-less solid-state synthesis, characterization and MB photocatalytic degradation. J. Mater. Sci. Mater. Electron. 2015, 26, 8029–8034. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Priya, A.; Madhavan, J. Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4 nanocomposites. RSC Adv. 2014, 4, 38222–38229. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Wang, K.; Cao, X. Ionic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe2O3/WO3·0.5H2O Hybrid Nanostructure with Enhanced Photocatalytic Property. Molecules 2021, 26, 6857. https://doi.org/10.3390/molecules26226857
Xu M, Wang K, Cao X. Ionic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe2O3/WO3·0.5H2O Hybrid Nanostructure with Enhanced Photocatalytic Property. Molecules. 2021; 26(22):6857. https://doi.org/10.3390/molecules26226857
Chicago/Turabian StyleXu, Man, Kai Wang, and Xuan Cao. 2021. "Ionic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe2O3/WO3·0.5H2O Hybrid Nanostructure with Enhanced Photocatalytic Property" Molecules 26, no. 22: 6857. https://doi.org/10.3390/molecules26226857
APA StyleXu, M., Wang, K., & Cao, X. (2021). Ionic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe2O3/WO3·0.5H2O Hybrid Nanostructure with Enhanced Photocatalytic Property. Molecules, 26(22), 6857. https://doi.org/10.3390/molecules26226857