Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery
Abstract
:1. Introduction
2. Experimental Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yang, Y.; Ni, C.; Gao, M.; Wang, J.; Liu, Y.; Pan, H. Dispersion-strengthened microparticle silicon composite with high antipulverization capability for Li-ion batteries. Energy Storage Mater. 2018, 14, 279–288. [Google Scholar] [CrossRef]
- Xie, L.; Tang, C.; Bi, Z.; Song, M.; Fan, Y.; Yan, C.; Li, X.; Su, F.; Zhang, Q.; Chen, C. Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective. Adv. Energy Mater. 2021, 11, 2101650. [Google Scholar] [CrossRef]
- Zhao, W.; Wen, J.; Zhao, Y.; Wang, Z.; Shi, Y.; Zhao, Y. Hierarchically Porous Carbon Derived from Biomass Reed Flowers as Highly Stable Li-Ion Battery Anode. Nanomaterials 2020, 10, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, K.H.; Chae, K.H.; Choi, J.H.; Jeon, K.J.; Park, C.M. Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries. Chem. Eng. J. 2021, 417, 129242. [Google Scholar] [CrossRef]
- Roald, H.; Artyom, A.K.; Andrey, A.G.; Davide, M.P. Homo Citans and Carbon Allotropes: For an Ethics of Citation. Angew. Chem. 2016, 55, 10962–10976. [Google Scholar]
- Kharisov, B.I.; Kharissova, O.V. Classic Carbon Nanostructures. In Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications; Springer Nature Switzerland AG: Gewerbestrasse, Switzerland, 2019; pp. 35–110. [Google Scholar]
- Elena, F.S.; Yevgeny, A.G.; Nadezhda, A.P. Graphene Domain Signature of Raman Spectra of sp2 Amorphous Carbons. Nanomaterials 2020, 10, 2021. [Google Scholar]
- Lei, L.; Hailin, P.; Zhongfan, L. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Sosiety 2014, 136, 12194–12200. [Google Scholar]
- Plano, L.S.G. Growth of CVD Diamond for Electronic Applications. In Diamond: Electronic Properties and Applications, 1st ed.; Pan, L.S., Kania, D.R., Eds.; Springer: New York, NY, USA, 1995; pp. 61–138. [Google Scholar]
- Mildred, S.D.; Ado, J.; Mario, H.; Gene, D.; Riichiro, S. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar]
- Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K.S.; Basko, D.M.; Ferrari, A.C. Raman Spectroscopy of Graphene Edges. Nano Lett. 2009, 9, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wu, J.; Li, S.; Zhang, L.; Fu, J.; Huang, F.; Cheng, Q. Vertically oriented graphene nanowalls: Growth and application in Li-ion batteries. Diam. Relat. Mater. 2019, 91, 54–63. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Vittorio, S.; Casiraghi, C. Raman Spectrum of Graphene and Graphene Layers. Phisical Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Wang, H.; Zhang, L.; Cheng, Q.; Gong, Z.; Ostrikov, K. Graphene nanowalls conformally coated with amorphous/nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries. J. Power Sources 2019, 437, 226909. [Google Scholar] [CrossRef]
- Conway, B.E. Energetics and Elements of the Kinetics of Electrode Processes. In Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science + Business Media: New York, NY, USA, 1999; pp. 33–66. [Google Scholar]
Substrate | Base Pressure | Working Pressure | Chamber Atmosphere | Temperature | Growth Time |
---|---|---|---|---|---|
Cu foil | 5 × 10−5 Torr | 4 × 10−2 Torr | H2:CH4 = 2:1 | 700 °C | 15 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kwon, S.; Kim, K.; Kang, H.; Ko, J.M.; Choi, W. Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery. Molecules 2021, 26, 6950. https://doi.org/10.3390/molecules26226950
Lee S, Kwon S, Kim K, Kang H, Ko JM, Choi W. Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery. Molecules. 2021; 26(22):6950. https://doi.org/10.3390/molecules26226950
Chicago/Turabian StyleLee, Seokwon, Seokhun Kwon, Kangmin Kim, Hyunil Kang, Jang Myoun Ko, and Wonseok Choi. 2021. "Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery" Molecules 26, no. 22: 6950. https://doi.org/10.3390/molecules26226950
APA StyleLee, S., Kwon, S., Kim, K., Kang, H., Ko, J. M., & Choi, W. (2021). Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery. Molecules, 26(22), 6950. https://doi.org/10.3390/molecules26226950