Plasma Exosomes of Patients with Breast and Ovarian Tumors Contain an Inactive 20S Proteasome
Abstract
:1. Introduction
2. Results
2.1. Characterization of Exosomes
2.2. Proteasomal Activity and the Level of 20S Proteasome in Tissues
2.3. Proteasomal Activity and the Level 20S Proteasome in Exosomes from Plasma and Ascites of Tumor Patients
3. Discussion
4. Materials and Methods
4.1. Human Samples
4.2. Immunohistochemistry
4.3. Clarified Tissue Homogenates
4.4. Exosome Isolation
4.5. Exosomes Characterization
4.6. Proteasome Activity Assay
4.7. Western Blot Analysis
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Piperigkou, Z.; Kyriakopoulou, K.; Koutsakis, C.; Mastronikolis, S.; Karamanos, N.K. Key matrix remodeling enzymes: Functions and targeting in cancer. Cancers 2021, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Baek, K.H. Regulation of cancer metabolism by deubiquitinating enzymes: The Warburg effect. Int. J. Mol. Sci. 2021, 22, 6173. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Mizushima, T.; Saeki, Y. The proteasome: Molecular machinery and pathophysiological roles. Biol. Chem. 2012, 393, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Grune, T. Structure of the proteasome. Prog. Mol. Biol. Transl. Sci. 2012, 109, 1–39. [Google Scholar]
- Zou, T.; Lin, Z. The involvement of ubiquitination machinery in cell cycle regulation and cancer progression. Int. J. Mol. Sci. 2021, 22, 5754. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zeng, W.; Xie, K.; Diao, P.; Tang, P. Potential use of chymotrypsin-like proteasomal activity as a biomarker for prostate cancer. Oncol. Lett. 2018, 15, 5149–5154. [Google Scholar] [CrossRef] [Green Version]
- Kondakova, I.V.; Yunusova, N.V.; Spirina, L.V.; Kolomiets, L.A.; Villert, A.B. Association between intracellular proteinase activities and the content of locomotor proteins in tissues of primary tumors and metastases of ovarian cancer. Russ. J. Bioorg. Chem. 2014, 40, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Sixt, S.U.; Dahlmann, B. Extracellular, circulating proteasomes and ubiquitin–incidence and relevance. Biochim. Biophys. Acta 2008, 1782, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Romaniuk, W.; Bolkun, L.; Kalita, J.; Galar, M.; Bernatowicz, M.; Ostrowska, H.; Kloczko, J. High chymotrypsin-like activity in the plasma of patients with newly diagnosed multiple myeloma treated with bortezomib is predictive of a better response and longer PFS. Ann. Hematol. 2018, 97, 1879–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, O.; Anlasik, T.; Wiedemann, J.; Thomassen, J.; Wohlschlaeger, J.; Hagel, V.; Keyvani, K.; Schwieger, I.; Dahlmann, B.; Sure, U.; et al. Circulating extracellular proteasome in the cerebrospinal fluid: A study on concentration and proteolytic activity. J. Mol. Neurosci. 2012, 46, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Kulichkova, V.A.; Artamonova, T.O.; Lyublinskaya, O.G.; Khodorkovskii, M.A.; Tomilin, A.N.; Tsimokha, A.S. Proteomic analysis of affinity-purified extracellular proteasomes reveals exclusively 20S complexes. Oncotarget 2017, 8, 102134–102149. [Google Scholar] [CrossRef] [Green Version]
- Tsimokha, A.S.; Artamonova, T.O.; Diakonov, E.E.; Khodorkovskii, M.A.; Tomilin, A.N. Post-translational modifications of extracellular proteasome. Molecules 2020, 25, 3504. [Google Scholar] [CrossRef]
- Osaki, M.; Okada, F. Exosomes and their role in cancer progression. Yonago Acta Med. 2019, 62, 182–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semina, S.E.; Scherbakov, A.M.; Vnukova, A.A.; Bagrov, D.V.; Evtushenko, E.G.; Safronova, V.M.; Golovina, D.A.; Lyubchenko, L.N.; Gudkova, M.V.; Krasil’nikov, M.A. Exosome-mediated transfer of cancer cell resistance to antiestrogen drugs. Molecules 2018, 23, 829. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tao, Y.; Wang, X.; Jiang, P.; Li, J.; Peng, M.; Zhang, X.; Chen, K.; Liu, H.; Zhen, P.; et al. Tumor-secreted exosomal miR-222 promotes tumor progression via regulating p27 expression and re-localization in pancreatic cancer. Cell. Physiol. Biochem. 2018, 51, 610–629. [Google Scholar] [CrossRef] [PubMed]
- Konoshenko, M.; Sagaradze, G.; Orlova, E.; Shtam, T.; Proskura, K.; Kamyshinsky, R.; Yunusova, N.; Alexandrova, A.; Efimenko, A.; Tamkovich, S. Total blood exosomes in breast cancer: Potential role in crucial steps of tumorigenesis. Int. J. Mol. Sci. 2020, 21, 7341. [Google Scholar] [CrossRef]
- Tutanov, O.; Orlova, E.; Proskura, K.; Grigor’eva, A.; Yunusova, N.; Tsentalovich, Y.; Alexandrova, A.; Tamkovich, S. Proteomic analysis of blood exosomes from healthy females and breast cancer patients reveals an association between different exosomal bioactivity on non-tumorigenic epithelial cell and breast cancer cell migration in vitro. Biomolecules 2020, 10, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtam, T.; Naryzhny, S.; Samsonov, R.; Karasik, D.; Mizgirev, I.; Kopylov, A.; Petrenko, E.; Zabrodskaya, Y.; Kamyshinsky, R.; Nikitin, D.; et al. Plasma exosomes stimulate breast cancer metastasis through surface interactions and activation of FAK signaling. Breast Cancer Res. Treat. 2019, 174, 129–141. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, C.; Nong, Q.; Long, F.; Liu, J.; Mu, Z.; Chen, B.; Wu, D.; Wu, H. Exosomal leucine-rich-alpha2-glycoprotein 1 derived from non-small-cell lung cancer cells promotes angiogenesis via TGF-β signal pathway. Mol. Ther. Oncolytics 2019, 14, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Kossinova, O.A.; Gopanenko, A.V.; Tamkovich, S.N.; Krasheninina, O.A.; Tupikin, A.E.; Kiseleva, E.; Yanshina, D.D.; Malygin, A.A.; Ven’yaminova, A.G.; Kabilov, M.R.; et al. Cytosolic YB-1 and NSUN2 are the only proteins recognizing specific motifs present in mRNAs enriched in exosomes. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Tamkovich, S.N.; Tutanov, O.S.; Laktionov, P.P. Exosomes: Generation, structure, transport, biological activity, and diagnostic application. Biochem. Suppl. Ser. A Membr. Cell Biol. 2016, 10, 163–173. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.J.; Curigliano, G.; Loibl, S.; Dubsky, P.; Gnant, M.; Poortmans, P.; Colleoni, M.; Carsten, D.; Piccart-Gebhart, M.; Regan, M.; et al. Estimating the benefits of therapy for early stage breast cancer the St Gallen international consensus guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 2019, 30, 1541–1557. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, A.; Nagao, S.; Kogiku, A.; Yamamoto, K.; Miwa, M.; Wakahashi, S.; Ichida, K.; Sudo, T.; Yamaguchi, S.; Fujiwara, K. A preoperative low cancer antigen 125 level (≤25.8 mg/dl) is a useful criterion to determine the optimal timing of interval debulking surgery following neoadjuvant chemotherapy in epithelial ovarian cancer. Jpn. J. Clin. Oncol. 2016, 46, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Gerashchenko, T.S.; Novikov, N.M.; Krakhmal, N.V.; Zolotaryova, S.Y.; Zavyalova, M.V.; Cherdyntseva, N.V.; Denisov, E.V.; Perelmuter, V.M. Markers of cancer cell invasion: Are they good enough? J. Clin. Med. 2019, 8, 1092. [Google Scholar] [CrossRef] [Green Version]
- Grigoryeva, E.S.; Savelieva, O.E.; Popova, N.O.; Cherdyntseva, N.V.; Perelmuter, V.M. Do tumor exosomes integrins alone determine organotropic metastasis? Mol. Biol. Rep. 2020, 47, 8145–8157. [Google Scholar] [CrossRef] [PubMed]
- Croft, P.K.-d.; Sharma, S.; Godbole, N.; Rice, G.E.; Salomon, C. Ovarian-cancer-associated extracellular vesicles: Microenvironmental regulation and potential clinical applications. Cells 2021, 10, 2272. [Google Scholar] [CrossRef]
- Gao, L.; Nie, X.; Gou, R.; Hu, Y.; Dong, H.; Li, X.; Lin, B. Exosomal ANXA2 derived from ovarian cancer cells regulates epithelial-mesenchymal plasticity of human peritoneal mesothelial cells. J. Cell. Mol. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ju, R.; Chen, X.; Zhang, S.; Liu, B.; Pei, H.; Tu, F.; Liu, J.; Yu, H. Plasma exosome-derived fragile-site associated tumor suppressor is a powerful predictor of prognosis in patients with ovarian cancer. Bosn. J. Basic Med. Sci. 2021, 7. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Zhu, Y.; Chen, X.; Chen, Y. Plasma exosomal caveolin-1 predicts poor prognosis in ovarian cancer. J. Cancer 2021, 12, 5005–5012. [Google Scholar] [CrossRef]
- Shenoy, G.N.; Loyall, J.; Maguire, O.; Iyer, V.; Kelleher, R.J., Jr.; Minderman, H.; Wallace, P.K.; Odunsi, K.; Balu-Iyer, S.V.; Bankert, R.B. Exosomes associated with human ovarian tumors harbor a reversible checkpoint of T-cell responses. Cancer Immunol. Res. 2018, 6, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, R.J., Jr.; Balu-Iyer, S.; Loyall, J.; Sacca, A.J.; Shenoy, G.N.; Peng, P.; Iyer, V.; Fathallah, A.M.; Berenson, C.S.; Wallace, P.K.; et al. Extracellular vesicles present in human ovarian tumor microenvironments induce a phosphatidylserine-dependent arrest in the t-cell signaling cascade. Cancer Immunol. Res. 2015, 3, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenoy, G.N.; Loyall, J.; Berenson, C.S.; Kelleher, R.J., Jr.; Iyer, V.; Balu-Iyer, S.V.; Odunsi, K.; Bankert, R.B. Sialic acid-dependent inhibition of T cells by exosomal ganglioside GD3 in ovarian tumor microenvironments. J. Immunol. 2018, 201, 3750–3758. [Google Scholar] [CrossRef] [Green Version]
- Tamkovich, S.N.; Yunusova, N.V.; Tugutova, E.; Somov, A.K.; Proskura, K.V.; Kolomiets, L.A.; Stakheeva, M.N.; Grigor’eva, A.E.; Laktionov, P.P.; Kondakova, I.V. Protease cargo in circulating exosomes of breast cancer and ovarian cancer patients. Asian Pac. J. Cancer Prev. 2019, 20, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Yunusova, N.V.; Zambalova, E.A.; Patysheva, M.R.; Kolegova, E.S.; Afanas’ev, S.G.; Cheremisina, O.V.; Grigor’eva, A.E.; Tamkovich, S.N.; Kondakova, I.V. Exosomal protease cargo as prognostic biomarker in colorectal cancer. Asian Pac. J. Cancer Prev. 2021, 22, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Berges, C.; Haberstock, H.; Fuchs, D.; Miltz, M.; Sadeghi, M.; Opelz, G.; Daniel, V.; Naujokat, C. Proteasome inhibition suppresses essential immune functions of human CD4+ T cells. Immunology 2008, 124, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.; Carbone, F.; Augusti, V.; Patrone, F.; Ballestrero, A.; Nencioni, A. Proteasome inhibitors as immunosuppressants: Biological rationale and clinical experience. Semin. Hematol. 2012, 49, 270–276. [Google Scholar] [CrossRef]
- Tecalco-Cruz, A.C.; Ramírez-Jarquín, J.O. Mechanisms that increase stability of estrogen receptor alpha in breast cancer. Clin. Breast Cancer 2017, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sannino, S.; Brodsky, J.L. Targeting protein quality control pathways in breast cancer. BMC Biol. 2017, 15, 109. [Google Scholar] [CrossRef] [Green Version]
- Yerlikaya, A.; Kanbur, E.; Stanley, B.A.; Tümer, E. The Ubiquitin-proteasome pathway and epigenetic modifications in cancer. Anticancer Agents Med. Chem. 2021, 21, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017. Ann. Oncol. 2017, 28, 1700–1712. [Google Scholar] [CrossRef]
- Babyshkina, N.; Vtorushin, S.; Dronova, T.; Patalyak, S.; Slonimskaya, E.; Kzhyshkowska, J.; Cherdyntseva, N.; Choynzonov, E. Impact of estrogen receptor α on the tamoxifen response and prognosis in luminal-A-like and luminal-B-like breast cancer. Clin. Exp. Med. 2019, 19, 547–556. [Google Scholar] [CrossRef]
- Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch. Pathol. Lab. Med. 2010, 134, e48–e72. [Google Scholar] [CrossRef]
- Lessey, B.A.; Palomino, W.A.; Apparao, K.B.; Young, S.L.; Lininger, R.A. Estrogen receptor-alpha (ER-alpha) and defects in uterine receptivity in women. Reprod. Biol. Endocrinol. 2006, 4 (Suppl. 1), S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunusova, N.V.; Patysheva, M.R.; Molchanov, S.V.; Zambalova, E.A.; Grigor’eva, A.E.; Kolomiets, L.A.; Ochirov, M.O.; Tamkovich, S.N.; Kondakova, I.V. Metalloproteinases at the surface of small extracellular vesicles in advanced ovarian cancer: Relationships with ascites volume and peritoneal canceromatosis index. Clin. Chim. Acta 2019, 494, 116–122. [Google Scholar] [CrossRef]
- Ben-Shahar, S.; Komlosh, A.; Nadav, E.; Shaked, I.; Ziv, T.; Admon, A.; DeMartino, G.N.; Reiss, Y. 26S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J. Biol. Chem. 1999, 274, 21963–21972. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Kantarjian, H.; Bekele, B.; Donahue, A.C.; Zhang, X.; Zhang, Z.J.; O’Brien, S.; Estey, E.; Estrov, Z.; Cortes, J.; et al. Proteasome enzymatic activities in plasma as risk stratification of patients with acute myeloid leukemia and advanced-stage myelodysplastic syndrome. Clin. Cancer Res. 2009, 15, 3820–3826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biological Sample | Enzymatic Activity, 103 U/mg Protein | Level of the 20S Proteasome (α + β), RU | |
---|---|---|---|
ChTL | CL | ||
Breast tissues (all subtypes), T1–2N0–1M0 | |||
Cancer tissues, n = 80 | 45.6 [19.8; 92.3] * | 53.4 [18.4; 197.2] * | 0.72 [0.3; 2.5] |
Adjacent tissues, n = 80 | 19.8 [10.3; 42.1] | 17.7 [8.3; 43.6] | 1.0 [0.3; 3.1] |
Ovarian tissues, T3NxM0 | |||
Cancer tissues, n = 30 | 30.0 [26.0; 45.2] ** | 57.3 [13.6; 127.4] ** | 1.7 [0.8; 2.9] ** |
Normal tissues, n = 10 | 13.0 [7.8; 15.6] | 21.3 [11.2; 51.4] | 1.0 [0.5; 2.0] |
Biological Samples | Enzymatic Activity, 103 U/mg Protein | Level of the 20S Proteasome (α + β), RU | |
---|---|---|---|
ChTL | CL | ||
Breast cancer tissue (Luminal B (HR + /HER2−) subtype) | |||
Cancer tissues, T1-2N0M0, n = 25 | 45.7 [28.7; 116.67] | 124.2 [29.3; 256.2] | 0.51 [0.3; 0.6] |
Cancer tissues, T1-2N1M0, n = 24 | 42.4 [18.52; 111.9] | 39.8 [23.8; 97.6] | 1.2 [0.9; 2.6] * |
Ovarian tissue | |||
Cancer tissues, n = 30 | 30.0 [26.0; 45.2] | 57.3 [13.6; 127.39] | 1.7 [0.5; 2.9] |
Peritoneal metastases, n = 20 | 60.5 [49.6; 66.6] ** | 79.7 [44.6; 120.5] ** | 1.9 [0.90; 3.18] |
Individuals | Level of the 20S Proteasome (α + β), RU | Median and Range of Exosomes Concentration × 107/mL |
---|---|---|
HFs, n = 39 | 1.00 [0.90; 1.12] | 16 [8; 20] |
BBTPs, n = 26 | 1.05 [0.95; 1.16] | 24 [20; 138] |
BCPs, n = 80 | 1.59 [1.22; 1.61] * | 21 [10; 180] |
BOTPs, n = 18 | 1.07 [0.85; 1.22] | 29 [17; 99] |
OCPs, n = 30 | 2.42 [1.60; 4.58] * | 22 [13; 154] |
Individuals | Level of the 20S Proteasome (α + β), RU |
---|---|
HFs, n = 39 | 1.00 [0.90; 1.12] |
Luminal B HER2-negative, n = 49 | 1.56 [1.22; 1.59] * |
Luminal B HER2-positive, n = 12 | 1.59 [1.52; 1.73] * |
TN, n = 19 | 1.94 [1.58; 2.67] *,** |
Patients | Ascites Volume | Level of the 20S Proteasome (α + β), RU | |
---|---|---|---|
Plasma | Ascites | ||
OCPs, n = 30 | <200 mL, n = 8 | 2.80 [2.38; 4.30] * | 2.9 [2.39; 3.87] * |
200–1000 mL, n = 8 | 2.10 [1.07; 3.90] | 1.10 [0.77; 2.50] | |
>1000 mL, n = 14 | 2.00 [0.56; 3.36] | 1.50 [0.88; 2.70] | |
BOTPs, n = 20 | 1.00 [0.87; 1.20] | 1.00 [0.75; 1.44] |
B | Standard Error | p | 95.0% Confidence Interval | ||
---|---|---|---|---|---|
Breast Cancer Tissues (All Subtypes) | |||||
Lymphovascular invasion | |||||
ChTL | 0.003 | 0.009 | 0.777 | 0.985 | 1.021 |
CL | 0.010 | 0.010 | 0.319 | 0.991 | 1.029 |
20S proteasome level | −0.032 | 0.016 | 0.546 | 0.938 | 1.099 |
Multicentric type of tumor growth | |||||
ChTL | −0.031 | 0.008 | 0.500 | 0.954 | 1.086 |
CL | −0.033 | 0.012 | 0.785 | 0.946 | 1.090 |
20S proteasome level | −0.033 | 0.013 | 0.913 | 0.943 | 1.093 |
Luminal B HER-2 negative subtype breast cancer tissues | |||||
Lymphogenic metastasis | |||||
ChTL | −0.005 | 0.244 | 0.983 | 0.616 | 1.606 |
CL | 0.047 | 0.306 | 0.877 | 0.576 | 1.908 |
20S proteasome level | 0.011 | 0.015 | 0.049 | 0.932 | 0.999 |
Plasma exosomes from BCPs | |||||
Molecular subtype | |||||
20S proteasome level | 0.266 | 0.117 | 0.038 | 0.017 | 0.515 |
Lymphovascular invasion | |||||
20S proteasome level | −0.664 | 0.341 | 0.071 | 0.264 | 1.004 |
Plasma exosomes from OCPs | |||||
Ascites volume | |||||
20S proteasome level | −0.006 | 0.017 | 0.058 | 0.133 | 0.656 |
Ascites exosomes from OCPs | |||||
Ascites volume | |||||
20S proteasome level | −0.066 | 0.135 | 0.056 | 0.764 | 0.995 |
Luminal B | Triple Negative, n = 19 | Total Patients, n = 80 | ||
---|---|---|---|---|
HER-2 Negative, n = 49 | HER-2 Positive, n = 12 | |||
Tumor stage | ||||
T1 | 15 (31%) | 4 (33%) | 7 (37%) | 26 (33%) |
T2 | 34 (69%) | 8 (64%) | 12 (63%) | 54 (67%) |
Nodal status | ||||
N0 | 25 (51%) | 5(42%) | 13(68%) | 43 (54%) |
N1 | 24 (49%) | 7 (58%) | 6 (32%) | 37(46%) |
Tumor Grade | ||||
G2 | 49 (100%) | 12 (100%) | 19 (100%) | 80 (100%) |
Lymphovascular invasion | ||||
Positive | 10 (20%) | 2 (17%) | 4(21%) | 16 (20%) |
Negative | 39 (80%) | 10 (83%) | 15(79%) | 64(80%) |
Multicentric type of tumor growth | ||||
Positive | 8(16%) | 3 (25%) | 0(0%) | 11(14%) |
Negative | 41(84%) | 9(75%) | 19(100%) | 69(86%) |
BRCA status | ||||
Negative | 49 (100%) | 12 (100%) | 19 (100%) | 80 (100%) |
BOTPs, n = 20 | OCPs, n = 30 | |
---|---|---|
Histology | ||
Serous | 30 (100%) | |
Other | 20 (100%) | |
FIGO (2013) staging | ||
I-II | 16 (80%) | |
IIIB | 4 (20%) | 5 (17%) |
IIIC | 25 (83%) | |
Tumor Grade | ||
High-grade | 30(100%) | |
Not specify | 20 (100%) | |
BRCA status | ||
Negative | ||
Not specify | 20 (100%) | 30 (100%) |
Ascites volume | ||
<200 mL | 8 (26.5%) | |
200–1000 mL | 8 (27.5%) | |
>1000 mL | 14 (47%) | |
Not specify | 20 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yunusova, N.; Kolegova, E.; Sereda, E.; Kolomiets, L.; Villert, A.; Patysheva, M.; Rekeda, I.; Grigor’eva, A.; Tarabanovskaya, N.; Kondakova, I.; et al. Plasma Exosomes of Patients with Breast and Ovarian Tumors Contain an Inactive 20S Proteasome. Molecules 2021, 26, 6965. https://doi.org/10.3390/molecules26226965
Yunusova N, Kolegova E, Sereda E, Kolomiets L, Villert A, Patysheva M, Rekeda I, Grigor’eva A, Tarabanovskaya N, Kondakova I, et al. Plasma Exosomes of Patients with Breast and Ovarian Tumors Contain an Inactive 20S Proteasome. Molecules. 2021; 26(22):6965. https://doi.org/10.3390/molecules26226965
Chicago/Turabian StyleYunusova, Natalia, Elena Kolegova, Elena Sereda, Larisa Kolomiets, Alisa Villert, Marina Patysheva, Irina Rekeda, Alina Grigor’eva, Natalia Tarabanovskaya, Irina Kondakova, and et al. 2021. "Plasma Exosomes of Patients with Breast and Ovarian Tumors Contain an Inactive 20S Proteasome" Molecules 26, no. 22: 6965. https://doi.org/10.3390/molecules26226965
APA StyleYunusova, N., Kolegova, E., Sereda, E., Kolomiets, L., Villert, A., Patysheva, M., Rekeda, I., Grigor’eva, A., Tarabanovskaya, N., Kondakova, I., & Tamkovich, S. (2021). Plasma Exosomes of Patients with Breast and Ovarian Tumors Contain an Inactive 20S Proteasome. Molecules, 26(22), 6965. https://doi.org/10.3390/molecules26226965