One-Pot Multicomponent Synthesis of Methoxybenzo[h]quinoline-3-carbonitrile Derivatives; Anti-Chagas, X-ray, and In Silico ADME/Tox Profiling Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sinthesis of 2-Amino-5,6-dihydro-4-(3 or 4-hydroxy-4 or 3-methoxyphenyl)-methoxybenzo[h]-quinoline-3-carbonitrile Derivatives (4–15)
No | R | R1 | R2 | Yield % a | Yield % b |
4 | H | OCH3 | OH | 86 | 92 |
5 | 7-OCH3 | OCH3 | OH | 81 | 89 |
6 | 8-OCH3 | OCH3 | OH | 84 | 94 |
7 | 9-OCH3 | OCH3 | OH | 82 | 91 |
8 | H | OH | OCH3 | - | 93 |
9 | 7-OCH3 | OH | OCH3 | - | 90 |
10 | 8-OCH3 | OH | OCH3 | - | 91 |
11 | 9-OCH3 | OH | OCH3 | - | 89 |
12 | H | OCH3 | - | 83 | |
13 | 7-OCH3 | OCH3 | - | 87 | |
14 | 8-OCH3 | OCH3 | - | 80 | |
15 | 9-OCH3 | OCH3 | - | 84 | |
a: Stepwise yield % [15]; b: Multicomponent process yield % for compounds 4–15. |
2.2. ADME/Tox Profile
2.3. Antiprotozoal In Vitro Activity
3. Materials and Methods
3.1. General Procedure for the Synthesis of 2-Amino-5,6-dihydro-4-(phenylsubstituted) benzo[h]quinoline-3-carbonitrile Derivatives 8–15
3.1.1. 2-Amino-5,6-dihydro-4-(4-hydroxy-3-methoxyphenyl)benzo[h]quinoline-3-carbonitrile (8)
3.1.2. 2-Amino-5,6-dihydro-4-(4-hydroxy-3-methoxyphenyl)7-methoxybenzo[h]quinoline-3-carbonitrile (9)
3.1.3. 2-Amino-5,6-dihydro-4-(4-hydroxy-3-methoxyphenyl)8-methoxybenzo[h]quinoline-3-carbonitrile (10)
3.1.4. 2-Amino-5,6-dihydro-4-(4-hydroxy-3-methoxyphenyl)9-methoxybenzo[h]quinoline-3-carbonitrile (11)
3.1.5. 2-Amino-4-[4-(benzyloxy)-3-methoxyphenyl]5,6-dihydrobenzo[h]quinoline-3-carbonitrile (12)
3.1.6. 2-Amino-4-[4-(benzyloxy)-3-methoxyphenyl]5,6-dihydro-7-methoxybenzo[h]quinoline-3-carbonitrile (13)
3.1.7. 2-Amino-4-[4-(benzyloxy)-3-methoxyphenyl]5,6-dihydro-8-methoxybenzo[h]quinoline-3-carbonitrile (14)
3.1.8. 2-Amino-4-[4-(benzyloxy)-3-methoxyphenyl]5,6-dihydro-9-methoxybenzo[h]quinoline-3-carbonitrile (15)
3.2. X-ray Analysis on Compound 6
3.3. Antiprotozoal In Vitro Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- van Huijsduijnen, R.H.; Guy, R.; Chibale, K.; Haynes, R.; Peitz, I.; Kelter, G.; Phillips, M.A.; Vennerstrom, J.L.; Yuthavong, Y.; Wells, T.N.C. Anticancer properties of distinct antimalarial drug classes. PLoS ONE 2013, 8, e82962. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.; Piñeros, D.M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2018, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, A.; Alex, J.M.; Chauhan, M.; Joshi, G.; Kumar, R. A review on pharmacophoric designs of antiproliferative agents. Med. Chem. Res. 2015, 24, 903–920. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Y.; Luo, Q.; Zhang, Y.; Wu, K.; Wang, F. Multi-targeted anticancer agents. Curr. Top. Med. Chem. 2017, 17, 3084–3098. [Google Scholar] [CrossRef]
- Islam, S.; Wang, C.; Zheng, J.; Paudyal, N.; Zhu, Y.; Sun, H. The potential role of tubeimosides in cancer prevention and treatment. Eur. J. Med. Chem. 2019, 162, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, L.E.; Morillo, C.A. American Trypanosomiasis (Chagas disease). Infect. Dis. Clin. North. Am. 2019, 33, 119–134. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 31 August 2021).
- Chari, R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2008, 41, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.R.; Sullivan, D.J.S., Jr. New uses for old drugs. Nat. Cell Biol. 2007, 448, 645–646. [Google Scholar] [CrossRef]
- Rodrigues, J.R.; Charris, J.; Ferrer, R.; Gamboa, N.; Angel, J.; Nitzsche, B.; Hoepfner, M.; Lein, M.; Jung, K.; Abramjuk, C. Effect of quinolinyl acrylate derivatives on prostate cancer in vitro and in vivo. Investig. New Drugs 2011, 30, 1426–1433. [Google Scholar] [CrossRef]
- Romero, J.A.; Acosta, M.E.; Gamboa, N.D.; Mijares, M.R.; De Sanctis, J.; Charris, J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem. 2018, 26, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, H.; Fernandez, E.; Rodrigues, J.; Mayora, S.; Martínez, G.; Celis, C.; De Sanctis, J.B.; Mijares, M.; Charris, J. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch. Pharm. 2021, 354, e2100002. [Google Scholar] [CrossRef] [PubMed]
- Mata, G.; Rodrigues, J.; Gamboa, N.; Charris, K.; Lobo, G.; Monasterios, M.; Avendano, M.; Lein, M.; Jung, K.; Abramjuk, C.; et al. Synthesis, antiproliferative, and antiangiogenic activities of Benzochromene and Benzoquinoline derivatives on prostate cancer in vitro. Lett. Drug Des. Discov. 2017, 14, 398–413. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Su, L.; Geng, J.; Liu, J.; Zhao, G. Developments in nonsteroidal antiandrogens targeting the androgen receptor. ChemMedChem 2010, 5, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Nasr, E.E.; Mostafa, A.S.; El-Sayed, M.A.A.; Massoud, M.A.M. Design, synthesis, and docking study of new quinoline derivatives as antitumor agents. Arch. Pharm. 2019, 352, e1800355. [Google Scholar] [CrossRef]
- Son, J.; Lee, S.Y. Small molecule DTDQ exerts anti-metastatic effects in DU145 human castration-resistant prostate cancer cells via modulations of ERK, JNK, p38 and c-Myc signaling pathways. Bioorg. Med. Chem. Lett. 2020, 30, 127223. [Google Scholar] [CrossRef] [PubMed]
- Charris, K.E.; Rodrigues, J.R.; Ramírez, H.; Fernandez-Moreira, E.; Ángel, J.E.; Charris, J.E. Synthesis of 5 H -indeno[1,2- b]pyridine derivatives: Antiproliferative and antimetastatic activities against two human prostate cancer cell lines. Arch. Pharm. 2021, 354, e2100092. [Google Scholar] [CrossRef]
- Otto, H.-H.; Rinus, O.; Schmelz, H. Zur Synthese von 4-Aryl-5,6-dihydro-benzo[h]chinolinen. Mon. Chem. Chem. Mon. 1979, 110, 115–119. [Google Scholar] [CrossRef]
- Jachak, M.N.; Kendre, D.B.; Avhale, A.B.; Toche, R.B.; Medhane, V.J. Synthesis of novel Benzochromene, Benzoquinoline, Benzochromenopyrimidine and Pyrimidobenzoquinoline derivatives. Org. Prep. Proced. Int. 2006, 38, 313–324. [Google Scholar] [CrossRef]
- Jachak, M.N.; Kendre, D.B.; Avhale, A.B.; Toche, R.B.; Sabnis, R.W. A novel synthesis of benzo[h]quinolines and study of their fluorescence properties. J. Heterocycl. Chem. 2007, 44, 1525–1528. [Google Scholar] [CrossRef]
- Al-Mutairi, T.M.; Al-Hazimi, H.M.; El-Baih, F.E. One-pot multicomponent synthesis of some 5,6-dihydro-benzo[h]quinoline derivatives. J. Saudi Chem. Soc. 2009, 13, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Wang, J.; Li, Z.; Wang, X.; Zhou, Y. Cyclohexane-fused Pyridine derivatives with Photophysical properties: Synthesis by “Three-Component” domino reaction and structural optimization by DFT calculations. Heterocycles Int. J. Rev. Commun. Heterocycl. Chem. 2015, 91, 49. [Google Scholar] [CrossRef]
- Shi, F.; Tu, S.; Fang, F.; Li, T. One-pot synthesis of 2-amino-3-cyanopyridine derivatives under microwave irradiation without solvent. Arkivoc 2005, 2005, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Rong, L.; Han, H.; Jiang, H.; Tu, S. An efficient synthesis of indeno[1,2-b]pyridine and benzo[h]quinoline derivatives under solvent-free conditions. J. Heterocycl. Chem. 2009, 46, 465–468. [Google Scholar] [CrossRef]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2 1987, 2, S1–S19. [Google Scholar] [CrossRef]
- Cremer, D.; Pople, J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Domínguez-Villa, F.X.; Durán-Iturbide, N.A.; Ávila-Zárraga, J.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorganic Chem. 2021, 106, 104497. [Google Scholar] [CrossRef]
- Van de Waterbeemd, H. Comprehensive Medicinal Chemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 669–697. [Google Scholar]
- Zerroug, A.; Belaidi, S.; Brahim, B.I.; Sinha, L.; Chtita, S. Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as Anti-Alzheimer drugs. J. King Saud Univ. Sci. 2019, 31, 595–601. [Google Scholar] [CrossRef]
- Watanabe, R.; Esaki, T.; Kawashima, H.; Natsume-Kitatani, Y.; Nagao, C.; Ohashi, R.; Mizuguchi, K. Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Mol. Pharm. 2018, 15, 5302–5311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Rigaku, M.S.C. CrystalClear Version 1.3.6; Rigaku/MSC Inc.: The Woodlands, TX, USA, 2005. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGXsuite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Avila-Sorrosa, A.; Bando-Vázquez, A.Y.; Alvarez-Alvarez, V.; Suarez-Contreras, E.; Nieto-Meneses, R.; Nogueda-Torres, B.; Vargas-Díaz, M.E.; Díaz-Cedillo, F.; Reyes-Martínez, R.; Hernandez-Ortega, S.; et al. Synthesis, characterization and preliminary in vitro trypanocidal activity of N-arylfluorinated hydroxylated-Schiff bases. J. Mol. Struct. 2020, 1218, 128520. [Google Scholar] [CrossRef]
- Raether, W.; Michel, R.; Uphoff, M. Effects of dimethylsulfoxide and the deep-freezing process on the infectivity, motility, and ultrastructure of Trypanosoma cruzi. Parasitol. Res. 1988, 74, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Brener, Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev. Inst. Med. Trop. São Paulo 1962, 4, 389–396. [Google Scholar]
- Filardi, L.S.; Brener, Z. A rapid method for testing in vivo the susceptibility of different strains of Trypanosoma cruzi to active chemotherapeutic agents. Memórias Inst. Oswaldo Cruz 1984, 79, 221–225. [Google Scholar] [CrossRef] [PubMed]
No | Log P | MW | Hba | Hbd | Rotb | Viol | LogSw | %HIA | FU | CLtot | LD50 |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 3.29 | 343.4 | 4 | 2 | 2 | 0 | −4.218 | 97.90 | 0.034 | 0.469 | 2.518 |
5 | 3.30 | 373.4 | 5 | 2 | 3 | 0 | −4.384 | 99.55 | 0.059 | 0.506 | 2.507 |
6 | 3.28 | 373.4 | 5 | 2 | 3 | 0 | −4.078 | 100 | 0.086 | 0.434 | 2.558 |
7 | 3.27 | 373.4 | 5 | 2 | 3 | 0 | −4.104 | 100 | 0.102 | 0.448 | 2.543 |
8 | 3.27 | 343.4 | 4 | 2 | 2 | 0 | −4.229 | 94.79 | 0.040 | 0.458 | 2.514 |
9 | 3.29 | 373.4 | 5 | 2 | 3 | 0 | −4.304 | 96.43 | 0.067 | 0.495 | 2.522 |
10 | 3.28 | 373.4 | 5 | 2 | 3 | 0 | −4.184 | 100 | 0.077 | 0.437 | 2.498 |
11 | 3.27 | 373.4 | 5 | 2 | 3 | 0 | −4.187 | 100 | 0.095 | 0.451 | 2.504 |
12 | 4.84 | 433.5 | 5 | 1 | 5 | 0 | −5.217 | 97.69 | 0.210 | 0.530 | 3.875 |
13 | 4.83 | 463.5 | 6 | 1 | 6 | 0 | −4.736 | 98.56 | 0.253 | 0.570 | 3.119 |
14 | 4.84 | 463.5 | 6 | 1 | 6 | 0 | −5.079 | 96.95 | 0.225 | 0.465 | 3.096 |
15 | 4.82 | 463.5 | 6 | 1 | 6 | 0 | −4.893 | 96.19 | 0.240 | 0.514 | 3.177 |
Trypanosoma cruzi | Trypanosoma cruzi | |||||
---|---|---|---|---|---|---|
NINOA Strain LC (mg/mL) | INC-5 Strain LC (mg/mL) | |||||
No. | 5 | 10 | 50 | 5 | 10 | 50 |
Nfx | 18.3 | 31 | 37.5 | 0 | 20 | 30 |
Bnz | 23.3 | 33.6 | 35.9 | 0 | 5 | 15 |
4 | 28.7 | 29.7 | 29.9 | 0 | 10 | 17 |
5 | 22 | 25.8 | 32.9 | 21 | 22 | 27 |
6 | 36.5 | 37.9 | 45 | 20 | 30 | 36 |
7 | 15.4 | 22 | 23 | 21.6 | 25.6 | 28.2 |
8 | 35.5 | 39.2 | 39.9 | 20.1 | 21.1 | 28 |
9 | 42.1 | 44.2 | 37.5 | 10 | 27 | 30 |
10 | 33.3 | 33.5 | 18.3 | 24 | 33 | 28 |
11 | 31.3 | 35.7 | 28.6 | 4 | 13.7 | 14.6 |
12 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 14 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, H.; Charris, K.; Fernandez-Moreira, E.; Nogueda-Torres, B.; Capparelli, M.V.; Ángel, J.; Charris, J. One-Pot Multicomponent Synthesis of Methoxybenzo[h]quinoline-3-carbonitrile Derivatives; Anti-Chagas, X-ray, and In Silico ADME/Tox Profiling Studies. Molecules 2021, 26, 6977. https://doi.org/10.3390/molecules26226977
Ramírez H, Charris K, Fernandez-Moreira E, Nogueda-Torres B, Capparelli MV, Ángel J, Charris J. One-Pot Multicomponent Synthesis of Methoxybenzo[h]quinoline-3-carbonitrile Derivatives; Anti-Chagas, X-ray, and In Silico ADME/Tox Profiling Studies. Molecules. 2021; 26(22):6977. https://doi.org/10.3390/molecules26226977
Chicago/Turabian StyleRamírez, Hegira, Katiuska Charris, Esteban Fernandez-Moreira, Benjamín Nogueda-Torres, Mario V. Capparelli, Jorge Ángel, and Jaime Charris. 2021. "One-Pot Multicomponent Synthesis of Methoxybenzo[h]quinoline-3-carbonitrile Derivatives; Anti-Chagas, X-ray, and In Silico ADME/Tox Profiling Studies" Molecules 26, no. 22: 6977. https://doi.org/10.3390/molecules26226977
APA StyleRamírez, H., Charris, K., Fernandez-Moreira, E., Nogueda-Torres, B., Capparelli, M. V., Ángel, J., & Charris, J. (2021). One-Pot Multicomponent Synthesis of Methoxybenzo[h]quinoline-3-carbonitrile Derivatives; Anti-Chagas, X-ray, and In Silico ADME/Tox Profiling Studies. Molecules, 26(22), 6977. https://doi.org/10.3390/molecules26226977