Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement
Abstract
:1. Introduction
2. Chemical Profile of N. lappaceum
2.1. Peel
2.2. Seed
2.3. Pulp
3. Antioxidant Activities of N. lappaceum
4. Other Biological Activities of N. lappaceum
4.1. Anti-Neoplastic Effects
4.2. Anti-Microbial
4.3. Hypoglycemic Actions
4.4. Anti-Aging
5. Chemical Profile of N. ramboutan-ake
6. Antioxidant Activities of N. ramboutan-ake
7. Other Biological Activities of N. ramboutan-ake
7.1. Anti-Neoplastic Effects
7.2. Anti-Microbial
7.3. Hypoglycemic Actions
8. A Comparison of Studies Conducted on N. lappaceum and N. ramboutan-ake
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diaz, M.N.; Frei, B.; Vita, J.; Keaney, J. Antioxidants and Atherosclerotic Heart Disease. N. Engl. J. Med. 1997, 337, 408–416. [Google Scholar] [CrossRef]
- Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, R.M.; Hankinson, S.E.; Campos, H.; Spiegelman, D.; Zhang, S.; Colditz, G.; Willett, W.C.; Hunter, D.J. Plasma Carotenoids, Retinol, and Tocopherols and Risk of Breast Cancer. Am. J. Epidemiol. 2005, 161, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Davì, G.; Falco, A.; Patrono, C. Lipid Peroxidation in Diabetes Mellitus. Antioxid. Redox Signal. 2005, 7, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, C.A.; El-Gabalawy, H.S. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 2004, 6, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Boakye, A.A.; Wireko-Manu, F.D.; Agbenorhevi, J.K.; Oduro, I. Antioxidant Activity, Total Phenols and Phyto-chemical Constituents of Four Underutilised Tropical Fruits. Int. Food Res. J. 2015, 22, 262–268. [Google Scholar]
- Septembre-Malaterre, A.; Stanislas, G.; Douraguia, E.; Gonthier, M.-P. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem. 2016, 212, 225–233. [Google Scholar] [CrossRef]
- Chunglok, W.; Utaipan, T.; Somchit, N.; Lertcanawanichakul, M.; Sudjaroen, Y. Antioxidant and Antiproliferative Activities of Non-Edible Parts of Selected Tropical Fruits. Sains Malays. 2014, 43, 689–696. [Google Scholar]
- Can-Cauich, C.A.; Sauri-Duch, E.; Betancur-Ancona, D.; Chel-Guerrero, L.; González-Aguilar, G.A.; Cuevas-Glory, L.F.; Pérez-Pacheco, E.; Moo-Huchin, V.M. Tropical Fruit Peel Powders as Functional Ingredients: Evaluation of their Bi-oactive Compounds and Antioxidant Activity. J. Funct. Foods 2017, 37, 501–506. [Google Scholar] [CrossRef]
- Mejia, N.M.; Castro, J.P.; Ocampo, Y.C.; Salas, R.D.; Delporte, C.L.; Franco, L.A. Evaluation of Antioxidant Potential and Total Phenolic Content of Exotic Fruits Grown in Colombia. J. Appl. Pharm. Sci. 2020, 10, 50–58. [Google Scholar]
- Morton, J.F. Pulasan. In Fruits of Warm Climates; Echo Point Books & Media: Miami, FL, USA, 1987; pp. 256–266. [Google Scholar]
- Li, W.; Zeng, J.; Shao, Y. Rambutãn—Nephelium lappaceum. In Exotic Fruits; Academic Press: London, UK, 2018; pp. 369–375. [Google Scholar]
- Morton, J.F. Rambutan. In Fruits of Warm Climates; Echo Point Books & Media: Miami, FL, USA, 1987; pp. 262–265. [Google Scholar]
- Gerten, D.; Salma, I.; Shafie, S.M.; Shariah, U.; Brooke, P.; Wong, W.W.W.; Norhayati, H. Traditional Knowledge and Practices Related to Genus Citrus, Garcinia, Mangifera and Nephelium in Malaysia. OALib 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thitilertdecha, N.; Teerawutgularg, A.; Kilburn, J.D.; Rakariyatham, N. Identification of Major Phenolic Compounds from Nephelium lappaceum L. and their Antioxidant Activities. Molecules 2010, 15, 1453–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, C.; Ascacio-Valdes, J.; Garza, H.; Wong-Paz, J.; Aguilar, C.N.; Martinez-Avila, G.C.; Castro-Lopez, C.; Aguilera, C.A. Polyphenolic Content, In Vitro Antioxidant Activity and Chemical Composition of Nephelium lappaceum L. (Mexican Rambutan) Husk. Asian Pac. J. Trop. Med. 2017, 10, 1201–1205. [Google Scholar] [CrossRef]
- Lee, Y.R.; Cho, H.M.; Park, E.J.; Zhang, M.; Doan, T.P.; Lee, B.W.; Cho, K.A.; Oh, W.K. Metabolite Profiling of Rambutan (Nephelium lappaceum L.) Seeds using UPLC-qTOF-MS/MS and Senomorphic Effects in Aged Human Dermal Fibroblasts. Nutrients 2020, 12, 1430. [Google Scholar] [CrossRef]
- Ascacio-Valdés, J.; Mendez-Flores, A.; Hérnandez-Almanza, A.; Sáenz-Galindo, A.; Morlett-Chávez, J.; Aguilar, C.N. Ultrasound-assisted extraction of antioxidant polyphenolic compounds from Nephelium lappaceum L. (Mexican variety) husk. Asian Pac. J. Trop. Med. 2018, 11, 676. [Google Scholar] [CrossRef]
- Nguyen, N.M.P.; Le, T.T.; Vissenaekens, H.; Gonzales, G.B.; Camp, J.V.; Smagghe, G.; Raes, K. In Vitro Antioxidant Activity and Phenolic Profiles of Tropical Fruit By-Products. Int. J. Food Sci. Technol. 2019, 54, 1169–1178. [Google Scholar] [CrossRef]
- Sun, L.P.; Zhang, H.L.; Huang, Z.Y.L. Preparation of Free, Soluble Conjugate, and Insoluble-Bound Phenolic Com-pounds from Peels of Rambutan (Nephelium lappaceum) and Evaluation of Antioxidant Activities In Vitro. J. Food Sci. 2012, 77, 198–204. [Google Scholar] [CrossRef]
- Phuong, N.N.M.; Le, T.T.; Van Camp, J.; Raes, K. Evaluation of antimicrobial activity of rambutan (Nephelium lappaceum L.) peel extracts. Int. J. Food Microbiol. 2020, 321, 108539. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Ooi, K.L. Antioxidant and α-Glucosidase Inhibitory Activities of 40 Tropical Juices from Malaysia and Identification of Phenolics from the Bioactive Fruit Juices of Barringtonia racemosa and Phyllanthus acidus. J. Agric. Food Chem. 2014, 62, 9576–9585. [Google Scholar] [CrossRef]
- Johnson, J.T.; Abam, K.I.; Ujong, U.P.; Odey, M.O.; Inekwe, V.U.; Dasofunjo, K.; Inah, G.M. Vitamins Composition of Pulp, Seed and Rind of Fresh and Dry Rambutan Nephelium lappaceum and Squash Cucurbita pepo L. Int. J. Sci. Technol. 2013, 2, 71–76. [Google Scholar]
- Monrroy, M.; Araúz, O.; García, J.R. Active Compound Identification in Extracts of N. lappaceum Peel and Evaluation of Antioxidant Capacity. J. Chem. 2020, 2020, 4301891. [Google Scholar] [CrossRef] [Green Version]
- Augustin, M.A.; Chua, B.C. Composition of Rambutan Seed. Pertanika 1998, 11, 211–215. [Google Scholar]
- Harahap, S.N.; Ramli, N.; Vafaei, N.; Said, M. Physicochemical and Nutritional Composition of Rambutan Anak Sekolah (Nephelium lappaceum L.) Seed and Seed Oil. Pak. J. Nutr. 2012, 11, 1073–1077. [Google Scholar] [CrossRef] [Green Version]
- Manaf, Y.N.; Marikkar, N.; Long, K.; Ghazali, H. Physico-Chemical Characterisation of the Fat from Red-Skin Rambutan (Nephellium lappaceum L.) Seed. J. Oleo Sci. 2013, 62, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Lourith, N.; Kanlayavattanakul, M.; Mongkonpaibool, K.; Butsaratrakool, T.; Chinmuang, T. Rambutan seed as a new promising unconventional source of specialty fat for cosmetics. Ind. Crop. Prod. 2016, 83, 149–154. [Google Scholar] [CrossRef]
- Ghobakhlou, F.; Ghazali, H.M.; Karim, R.; Mohammed, A.S. Characterization of three varieties of Malaysian rambutan seed oil. Rev. Esp. Nutr. Hum. Diet. 2020, 23, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Fila, W.O.; Johnson, J.T.; Edem, P.N.; Odey, M.O.; Ekam, V.S.; Ujong, U.P.; Eteng, O.E. Comparative Anti-Nutrients Assessment of Pulp, Seed and Rind of Rambutan (Nephelium lappaceum). Annal. Biol. Res. 2012, 3, 5151–5156. [Google Scholar]
- Kong, F.C.; Adzahan, N.M.; Karim, R.; Rukayadi, Y.; Ghazali, H.M. Selected Physicochemical Properties of Registered Clones and Wild Types Rambutan (Nephelium lappaceum L.) Fruits and Their Potentials in Food Products. Sains Malays. 2018, 47, 1483–1490. [Google Scholar] [CrossRef]
- Yunusa, A.K.; Abdullahi, N.; Rilwan, A.; Abdulkadir, A.R.; Dandago, M.A. DPPH Radical Scavenging Activity and Total Phenolic Content of Rambutan (Nephelium lappaceum) Peel and Seed. Annal. Food Sci. Technol. 2018, 19, 774–779. [Google Scholar]
- Bhat, R.S.; Al-Daihan, S. Antimicrobial activity of Litchi chinensis and Nephelium lappaceum aqueous seed extracts against some pathogenic bacterial strains. J. King Saud Univ. Sci. 2014, 26, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Soeng, S.; Evacuasiany, E.; Widowati, W.; Fauziah, N. Antioxidant and Hypoglycemic Activities of Extract and Frac-tions of Rambutan Seeds (Nephelium lappaceum L.). Biomed. Eng. 2015, 1, 13–18. [Google Scholar]
- Ong, P.K.C.; Acree, T.E.; Lavin, E.H. Characterization of Volatiles in Rambutan Fruit (Nephelium lappaceum L.). J. Agric. Food Chem. 1998, 46, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, U.; Cheng, H.M.; Masilamani, T.; Subramaniam, T.; Ling, L.T.; Radhakrishnan, A.K. Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants. Food Chem. 2008, 109, 54–63. [Google Scholar] [CrossRef]
- Thitilertdecha, N.; Teerawutgulrag, A.; Rakariyatham, N. Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT Food Sci. Technol. 2008, 41, 2029–2035. [Google Scholar] [CrossRef]
- López, L.L.V.; Guaranda, I.A.C.; Lavid, G.A.C.; Martínez, M.M. Pharmacognostic Study and Evaluation of the Antioxidant Capacity of the Fruit of Two Varieties of Nephelium lappaceum L. (Sapindaceae), (Rambutan). J. Pharm. Pharmacogn. Res. 2020, 8, 64–77. [Google Scholar]
- Leong, L.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Chingsuwanrote, P.; Muangnoi, C.; Parengam, K.; Tuntipopipat, S. Antioxidant and Anti-Inflammatory Activities of Durian and Rambutan Pulp Extract. Int. Food Res. J. 2016, 23, 939–947. [Google Scholar]
- Setyawati, A.; Dewi, A.K.; Atho’Illah, M.F.; Lestari, U.; Lestari, S.R. The effect of rambutan (Nephelium lappaceum L.) peel extract on lipid peroxidation in liver of obese rats. KNE Life Sci. 2015, 2, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Ma, Q.; Guo, Y.; Sun, L. Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and d-galactose-induced aging mice. Food Chem. Toxicol. 2017, 108, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Lisdiana, L.; Nugrahaningsih, W.H.; Widyaningrum, P. The Effect of Rambutan Peel Extract (Nephelium lappaceum L) to Total Leukocyte and Histopathological of Rat Lungs Exposed by Cigarette Smoke. Sainteknol J. Sains Teknol. 2017, 15, 181–192. [Google Scholar]
- Xiao, J.; Liu, B.; Zhuang, Y. Effects of rambutan (Nephelium lappaceum) peel phenolics and Leu-Ser-Gly-Tyr-Gly-Pro on hairless mice skin photoaging induced by ultraviolet irradiation. Food Chem. Toxicol. 2019, 129, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Perumal, A.; AlSalhi, M.S.; Kanakarajan, S.; Devanesan, S.; Selvaraj, R.; Tamizhazhagan, V. Phytochemical Evalu-ation and Anticancer Activity of Rambutan (Nephelium lappaceum) Fruit Endocarp Extracts against Human Hepatocellular Carcinoma (HEPG-2) Cells. Saudi J. Biol. Sci. 2020, 28, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Riyanto, S.; Rohman, A. Antioxidant activities of Rambutan (Nephelium lappaceum L) peel in vitro. Food Res. 2017, 2, 119–123. [Google Scholar] [CrossRef]
- La, S.; Sia, C.M.; Akowuah, G.A.; Okechukwu, P.N.; Yim, H.S. The Effect of Extraction Conditions on Total Phenolic Content and Free Radical Scavenging Scapacity of Selected Tropical Fruits’ peel. Health Environ. J. 2013, 4, 80–102. [Google Scholar]
- Khaizil Emylia, Z.; Aina, S.N.; Dasuki, S.M. Preliminary Study on Anti-Proliferative Activity of Methanolic Extract of Nephelium lappaceum Peels towards Breast (MDA-MB-231), Cervical (HELA) and Osteosarcoma (MG-63) Cancer Cell Lines. Health Environ. J. 2013, 4, 66–79. [Google Scholar]
- Fang, E.F.; Ng, T.B. A Trypsin Inhibitor from Rambutan Seeds with Antitumor, Anti-HIV-1 Reverse Transcriptase, and Nitric Oxide-Inducing Properties. Appl. Biochem. Biotechnol. 2015, 175, 3828–3839. [Google Scholar] [CrossRef]
- Mohamed, S.; Hassan, Z.; Hamid, N.A. Antimicrobial Activity of Some Tropical Fruit Wastes (Guava, Starfruit, Banana, Papaya, Passionfruit, Langsat, Duku, Rambutan and Rambai). Pertanika J. Trop. Agric. Sci. 1994, 17, 219. [Google Scholar]
- Tadtong, S.; Athikomkulchai, S.; Worachanon, P.; Chalongpol, P.; Chaichanachaichan, P.; Sareedenchai, V. Anti-bacterial Activities of Rambutan Peel Extract. J. Health Res. 2011, 25, 35–37. [Google Scholar]
- Sekar, M.; Jaffar, F.N.A.; Zahari, N.H.; Mokhtar, N.; Zulkifli, N.A.; Kamaruzaman, R.A.; Abdullah, S. Comparative Evaluation of Antimicrobial Properties of Red and Yellow Rambutan Fruit Peel Extracts. Annu. Res. Rev. Biol. 2014, 4, 3869–3874. [Google Scholar] [CrossRef]
- Rostinawati, T.; Tjitraresmi, A.; Wisnuputri, M.V. In vitro Activity of Rambutan Binjai (Nephelium lappaceum) Peel Extract from Indonesia to Methicillin-Resistant Staphylococcus aureus (MRSA). Dhaka Univ. J. Pharm. Sci. 2018, 17, 197–203. [Google Scholar] [CrossRef]
- Sulistiyaningsih, S.; Mudin, N.S.; Wicaksono, I.A.; Budiman, A. Antibacterial Activity of Ethanol Extract and Fraction of Rambutan Leaf (Nephelium lappaceum) against Pseudomonas aeruginosa Multiresistant. Nat. J. Physiol. Pharm. Pharmacol. 2018, 8, 257–261. [Google Scholar] [CrossRef]
- Nethaji, R.; Thooyavan, G.; Mullai Nilla, K.; Ashok, K. Phytochemical Profiling, Antioxidant and Antimicrobial Ac-tivity of Methanol Extract in Rambutan Fruit (Nephelium lappacium) Epicarp against the Human Pathogens. Int. J. Curr. Innov. Res. 2015, 1, 201–206. [Google Scholar]
- Palanisamy, U.D.; Ling, L.T.; Manaharan, T.; Appleton, D. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem. 2011, 127, 21–27. [Google Scholar] [CrossRef]
- Widowati, W.; Maesaroh, M.; Fauziah, N.; Erawijantari, P.P.; Sandra, F. Free Radical Scavenging and α-/β- Gluco-sidase Inhibitory Activities of Rambutan (Nephelium lappaceum L.) Peel Extract. Indones. Biomed. J. 2015, 7, 157–162. [Google Scholar] [CrossRef]
- Subramaniam, S.; Radhakrishnan, A.; Chakravarthi, S.; Palanisamy, U.D.; Haleagrahara, N. Antihyperglycemic Ef-fects of Nephelium lappaceum Rind Extract in High Fat-Induced Diabetic Rats. Int. J. Pharmacol. 2015, 11, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Guo, Y.; Sun, L.; Zhuang, Y. Anti-Diabetic Effects of Phenolic Extract from Rambutan Peels (Nephelium lappaceum) in High-Fat Diet and Streptozotocin-Induced Diabetic Mice. Nutrients 2017, 9, 801. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, M.; Khoo, J.J.; Palanisamy, U.D. Acute oral toxicity of the ellagitannin geraniin and a geraniin-enriched extract from Nephelium lappaceum L rind in Sprague Dawley rats. Heliyon 2019, 5, e02333. [Google Scholar] [CrossRef] [Green Version]
- Sekar, M. Rambutan fruits extract in aging skin. In Aging, 2nd ed.; Academic Press: London, UK, 2020; pp. 303–307. [Google Scholar]
- Sekar, M.; Sivalinggam, P.; Mahmad, A. Formulation and Evaluation of Novel Antiaging Cream Containing Rambutan Fruits Extract. Int. J. Pharm. Sci. Res. 2017, 8, 1056–1065. [Google Scholar]
- Fadhli, H.; Soeharto, A.B.R.; Windarti, T. Uji Aktivitas Antioksidan Kulit Buah Pulasan (Nephelium mutabile Blume) Dan Bunga Turi Putih (Sesbania grandiflora) Dengan Metoda DPPH. J. Katalisator 2018, 3, 114–124. [Google Scholar] [CrossRef]
- Sukemi, S.; Arung, E.T.; Kusuma, I.W.; Mingvanish, W. Antioxidant Activities of Crude Methanolic Extract of Nephelium ramboutan-ake (Labill.) Leenh. In Peel Pure and Applied Chemistry International Conference, Mulawarman University, Samarinda, Indonesia, 21–23 January 2015; The Chemical Society of Thailand: Bangkok, Thailand, 2015; pp. 123–127. [Google Scholar]
- Sopee, M.S.M.; Azlan, A.; Khoo, H.E. Comparison of antioxidants content and activity of Nephelium mutabile rind extracted using ethanol and water. J. Food Meas. Charact. 2019, 13, 1958–1963. [Google Scholar] [CrossRef]
- Ling, L.T.; Radhakrishnan, A.K.; Subramaniam, T.; Palanisamy, U. Assessment of Antioxidant Capacity and Cyto-toxicity of Selected Malaysian Plants. Molecules 2010, 15, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Ikram, E.H.K.; Khoo, H.E.; Mhd Jalil, A.M.; Ismail, A.; Idris, S.; Azlan, A.; Mohd Nazri, H.S.; Mat Diton, N.A.; Mohd Mokhtar, R.A. Antioxidant Capacity and Total Phenolic Content of Malaysian Underutilised Fruits. J. Food Compos. Anal. 2009, 22, 388–393. [Google Scholar] [CrossRef]
- Chan, C.K.; Goh, B.H.; Kamarudin, M.N.A.; Kadir, H.A. Aqueous Fraction of Nephelium ramboutan-ake Rind Induces Mitochondrial-Mediated Apoptosis in HT-29 Human Colorectal Adenocarcinoma Cells. Molecules 2012, 17, 6633–6657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Fatisa, Y. Daya Antibakteri Estrak Kulit dan Biji Buah Pulasan (Nephelium mutabile) terhadap Staphylococcus aureus dan Escherichia coli Secara In Vitro. J. Peternak. 2013, 10, 31–38. [Google Scholar]
- Evaristus, N.A.; Abdullah, W.N.W.; Gan, C.-Y. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes. Peptides 2018, 102, 61–67. [Google Scholar] [CrossRef]
Compound | Group | References |
---|---|---|
Geraniin | Ellagitannin | Thitilertdecha et al. (2010) [17] Hernandez et al. (2017) [18] Lee et al. (2020) [19] Mendez-Flores et al. (2018) [20] Nguyen et al. (2019) [21] Phuong et al. (2020) [23] |
Corilagin | Ellagitannin | Thitilertdecha et al. (2010) [17] Hernandez et al. (2017) [18] Lee et al. (2020) [19] Mendez-Flores et al. (2018) [20] Phuong et al. (2020) [23] |
Ellagic acid | Ellagitannin | Thitilertdecha et al. (2010) [17] Hernandez et al. (2017) [18] Mendez-Flores et al. (2018) [20] Nguyen et al. (2019) [21] Phuong et al. (2020) [23] |
p-coumaric | Hydroxycinnamic acid | Sun et al. (2012) [22] |
Caffeic acid | Hydroxycinnamic acid | Sun et al. (2012) [22] |
Syringic acid | Hydroxybenzoic acid | Sun et al. (2012) [22] |
Gallic acid | Hydroxybenzoic acid | Lee et al. (2020) [19] Nguyen et al. (2019) [21] Sun et al. (2012) [22] |
Quercetin | Flavonoid | Phuong et al. (2020) [23] |
Rutin | Flavonoid | Sun et al. (2012) [22] Phuong et al. (2020) [23] |
Compound | Group | References |
---|---|---|
Octadic-9-enoic acid | Fatty acid | Harahap et al. (2012) [28] Manaf et al. (2013) [29] Lourith et al. (2016) [30] Ghobakhlou et al. (2019) [31] |
icosanoic acid | Fatty acid | Harahap et al. (2012) [28] Manaf et al. (2013) [29] Lourith et al. (2016) [30] Ghobakhlou et al. (2019) [31] |
Kaempferol 3-O-β-d-galactopyranosyl-7-O-α–l-rhamnopyranoside | Flavonoid | Lee et al. (2020) [19] |
Kaempferol 3-O-β-d-glucopyranosyl-7-O-α–l-rhamnopyranoside | Flavonoid | |
Kaempferol 3-O-α-l-arabinopyranosyl-7-O-α–l-rhamnopyranoside | Flavonoid | |
Kaempferol 3-O-rutinoside | Flavonoid | |
Astragalin | Flavonoid | |
Kaempferol 7-O-α-l-rhamnopyranoside | Flavonoid |
Compound | Group | References |
---|---|---|
Sucrose | Disaccharide | Chai et al. (2018) [33] |
Fructose | Monosaccharide | |
Glucose | ||
Citric acid | Organic acid | |
Lactic acid | ||
Ascorbic acid | Vitamin | Johnson et al. (2013) [25] Chai et al. (2018) [33] |
Niacin | Johnson et al. (2013) [25] | |
Riboflavin | ||
Thiamine |
Part | Solvent | TPC | Antioxidant Assay | ABTS * (IC50) | FRAP * | DPPH * (IC50) | % of Activity | References |
---|---|---|---|---|---|---|---|---|
Pulp | Ethanol | - | ABTSDPPH | - | - | - | 70 | Leong and Shui (2002) [41] |
Peel Leaf Pulp Seed Peel Leaf Pulp Seed | Aqueous Ethanol | 300.0 a 108.0 a - - 762.0 a 390.0 a - - | DPPH ABTS Galvinoxyl Superoxide anion Lipid autooxidation Pro-oxidant assay | 16.5 f 24.5 f - - 1.7 f 12.2 f - - | - | 18 f 33 f - - 3.7 f 16 f - - | 47.5 28.2 - - 41.4 6.6 - - | Palanisamy et al. (2008) [38] |
Peel Seed | Ether Methanol Aqueous Ether Methanol Aqueous | 293.3 b 542.2 b 393.2 b 7.4 b 58.5 b 3.3 b | FRAP β-carotene Linoleic peroxidation DPPH | - | - | 17.3 f 4.94 f 9.67 f - - - | - | Thitilertdecha et al. (2008) [39] |
Peel | Ethanol | 213.76 a | FRAP DPPH OH scavenging Lipid Peroxidation Nitrite scavenging | - | - | 3.55 f | - | Sun et al. (2012) [22] |
Peel Seed | Methanol | 104.6 a 124.14 a | DPPH ABTS | - | - | - | Chunglok et al. (2014) [9] | |
Pulp | Aqueous | 223.75 c | DPPH FRAP Metal Chelating | - | 96.85 h | - | 3.39 | Sulaiman and Ooi (2014) [24] |
Pulp | Ethanol | - | H2O2 scavenging assay | - | - | - | 25 | Chingsuwanrote et al. (2016) [42] |
Peel | Aqueous | 457.0 a | ABTS FRAP | 38.24 f | 0.203 i | - | - | Hernandez et al. (2017) [18] |
Peel | Ethanol | 487.67 a | ABTS DPPH Lipid oxidation inhibition | - | - | - | 92.50 73.73 91.74 | Mendez-Flores et al. (2018) [20] |
Peel | Methanol Petroleum ether Chloroform Ethyl acetate Aqueous | - | ABTS FRAP | 0.76 f 6.98 f 0.76 f 0.77 f 0.52 f (Binjai) | 864.53 j 132.29 j 883.76 j 1424.9 j 328.31 j (Aceh) | - | - | Mistriyani et al. (2018) [48] |
Peel Seed | Ethanol Aqueous Ethanol Aqueous | 244.00 a 49.92 a 27.1 a 7.93 a | DPPH | - | - | 24.99 f 144.59 f - - | 95.73 80.25 1.67 1.90 | Yunusa et al. (2018) [34] |
Peel Seed | Methanol Methanol | 12.68 d 0.12 d | ABTS FRAP DPPH | 54.09 g 0.32 g | 66.05 k 0.39 k | 46.38 g 0.11 g | - - | Nguyen et al. (2019) [21] |
Peel | Hydroalcoholic | 23.98 e | ABTS FRAP DPPH | 651.70 f | 1407.81 l | 9.72 f | 94.22 90.82 | Lopez et al. (2020) [20] |
Peel | Acidic 1% Alkaline 1% Aqueous Ethanol Hydroethanolic 60% | 231 a 262 a 280 a 208 a 340 a | ABTS DPPH | - | - | - | - | Monrroy et al. (2020) [26] |
Peel | 80% Ethanol | 397.06 a | DPPH Nitric oxide scavenging β-carotene | - | - | 8.87 f | - 64.88 98.19 | La et al. (2013) [49] |
Part | Antimicrobial Activities | MIC (mg/mL) | Zone of Inhibition (mm) | References |
---|---|---|---|---|
Peel | Staphylococcus aureus Bacillus cereus Proteus vulgarius Salmonella typhi Bacillus subtilis Escherichia coli Candida lipolytica | 0.5 1.0 1.0 0.5 1.0 1.0 0.5 | 27 14 15 26 15 15 30 | Mohamed et al. (1994) [53] |
Peel | Pseudomonas aeruginosa Vibrio cholera Enterococcus faecalis Staphylococcus aureus Staphylococcus epidermidis | 62.5 15.6 15.6 31.2 2.0 | 7.75 17.25 11.75 8.50 16.50 | Thitilertdecha et al. (2008) [39] |
Peel | Staphylococcus aureus Methicillin-resistant S. aureus (MRSA) Streptococcus mutans | - - - | 20.2 19.2 8.5 | Tadtong et al. (2011) [53] |
Peel | Streptococcus pyogenes Staphylococcus aureus | - - | 10 12 | Sekar et al. (2014) [54] |
Seed | Streptococcus pyogenes Bacillus subtilis Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa | 15 - - - - | 12 12 13 6.5 10 | Bhat and Al-daihan (2014) [35] |
Peel | Escherichia coli Klebsiella pneumonia Proteus vulgarius Aspergillus fumigatus | - - - - | 14 13 15 15 | Nethaji et al. (2015) [57] |
Peel | Methicillin-resistant S. aureus (MRSA) | - | 23.4 | Rostinawati et al. (2018) [55] |
Leaf | Pseudomonas aeruginosa multi-resistant | - | 20.53 | Sulistiyaningsih et al. (2018) [56] |
Peel | Staphylococcus aureus Listeria monocytogenes Escherichia coli Vibrio campbellii Vibrio parahaemolyticus Vibrio anguillarum Pseudomonas aeruginosa Salmonella enteritidis Candida albicans | - - - - - - - - | - - - - - - - - | Phuong et al. (2020) [23] |
Part | Solvent | TPC | Antioxidant Assay | FRAP * | DPPH * (IC50) | Galvinoxyl (IC50) | Lipid Peroxidation (IC50) | H2O2 (IC50) | % Activity | References |
---|---|---|---|---|---|---|---|---|---|---|
Pulp | Methanol | 433.78 a | -Carotene bleaching | - | - | - | - | - | 76.58 | Ikram et al. (2009) [69] |
Leaf | Ethanol Aqueous | 127.00 b 53.00 b | ABTS * Galvinoxyl DPPH Lipid peroxidation | - - | 0.24 f 3.70 f | 0.05 f 0.80 f | 0.30 f 3.13 f | - - | - - - - | Ling et al. (2010) [68] |
Pulp | Aqueous | 199.07 c | DPPH FRAP Metal chelating | 73.06 d | - | - | - | - | - - 72.78 | Sulaiman and Ooi (2014) [24] |
Peel | Methanol | 306.04 b | DPPH H2O2 scavenging FRAP Ferrous chelating Hydroxyl radical scavenging | - | 0.019 f | - | - | 0.153 f | - - - 14.48 14.28 | Sukemi et al. (2015) [66] |
Peel | n- hexane Ethyl acetate Methanol | - | DPPH | - | >1000 g 468.24 g 57.389 g | - | - | - | 36.74 82.92 95.77 | Fadhli et al. (2018) [65] |
Peel | Ethanol Aqueous | 1.00 b 1.07 b | DPPH FRAP | 0.476 e 0.508 e | - | - | - | - | 88.90 80.40 | Sopee et al. (2019) [67] |
Aspects | N. lappaceum | N. ramboutan-ake | ||||||
---|---|---|---|---|---|---|---|---|
Seed | Pulp | Leaf | Rind/ Peel | Seed | Pulp | Leaf | Rind/ Peel | |
Antioxidants | √ | √ | √ | √ | √ | √ | √ | |
Anti-neoplastic | √ | √ | √ | |||||
Anti-microbial | √ | √ | √ | √ | √ | |||
Hypoglycemic | √ | √ | ||||||
Anti-aging | √ | √ | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsong, J.L.; Goh, L.P.W.; Gansau, J.A.; How, S.-E. Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement. Molecules 2021, 26, 7005. https://doi.org/10.3390/molecules26227005
Tsong JL, Goh LPW, Gansau JA, How S-E. Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement. Molecules. 2021; 26(22):7005. https://doi.org/10.3390/molecules26227005
Chicago/Turabian StyleTsong, Jia Ling, Lucky Poh Wah Goh, Jualang Azlan Gansau, and Siew-Eng How. 2021. "Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement" Molecules 26, no. 22: 7005. https://doi.org/10.3390/molecules26227005
APA StyleTsong, J. L., Goh, L. P. W., Gansau, J. A., & How, S. -E. (2021). Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement. Molecules, 26(22), 7005. https://doi.org/10.3390/molecules26227005