Optimization of Fluoride Adsorption on Acid Modified Bentonite Clay Using Fixed-Bed Column by Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Preparation of Sorbent
2.3. Fluoride Stock Solution Preparation
2.4. Fluoride Adsorption Studies
2.5. Design of Experimental Using Central Composite Design
3. Results and Discussions
3.1. Characterization of Acid-Treated Bentonite Adsorbent (ATB)
3.2. Statistical Analysis
Model Fitting and Analysis of Variance (ANOVA), Quadratic Model Equations, and Selected Model Diagnostic Test
3.3. Analysis of Variance (ANOVA)
3.4. Effect of Operating Condition on the Adosrption Performance of ATB
3.5. Interaction Effect of Process Variables
3.6. Optimization Using the Desirability Function
3.7. Model Validation
3.8. Comparison of Fluoride Adsorption Capacities between ATB and Different Clay-Based Adsorbents under Batch and Column Operations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Srimurali, M.; Pragathi, A.; Karthikeyan, J. A study on removal of fluorides from drinking water by adsorptiononto low-cost materials. Environ. Pollut. 1998, 99, 4. [Google Scholar] [CrossRef]
- Bharti, V.K. Fluoride Sources, Toxicity and Its Amelioration: A Review. Peertechz J. Environ. Sci. Toxicol. 2017, 2, 21–32. [Google Scholar] [CrossRef]
- Vithanage, M.; Bhattacharya, P. Fluoride in the environment: Sources, distribution and defluoridation. Environ. Chem. Lett. 2015, 13, 131–147. [Google Scholar] [CrossRef]
- Raju, N.J.; Dey, S.; Das, K. Fluoride contamination in groundwaters of Sonbhadra District, Uttar Pradesh, India. Creent Sci. 2009, 96, 979–985. [Google Scholar]
- Kofa, G.P.; Gomdje, V.H.; Telegang, C.; Koungou, S.N. Removal of Fluoride from Water by Adsorption onto Fired Clay Pots: Kinetics and Equilibrium Studies. J. Appl. Chem. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Paudyal, H.; Pangeni, B.; Inoue, K.; Kawakita, H.; Ohto, K.; Alam, S. Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV) loaded dried orange juice residue. Bioresour. Technol. 2013, 146, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, D.; Liu, B.; Gao, X.; Xu, W.; Liang, P.; Xu, Y. Adsorption of Fluoride from Aqueous Solution Using Low-Cost Bentonite/Chitosan Beads. Am. J. Anal. Chem. 2013, 4, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Zenasni, M.A.; Benfarhi, S.; Merlin, A.; Molina, S.; George, B.; Meroufel, B. Adsorption of Cu(II) on maghnite from aqueous solution: Effects of pH, initial concentration, interaction time and temperature. Nat. Sci. 2012, 4, 856–868. [Google Scholar] [CrossRef] [Green Version]
- Meroufel, B.; Omar, B.; Mohamed, B.; Benmoussa, Y.; Zenasni, M.A. Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. J. Mater. Environ. Sci. 2013, 4, 482–491. [Google Scholar]
- Ma, Y.; Shi, F.; Zheng, X.; Ma, J.; Gao, C. Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): Batch and column studies. J. Hazard. Mater. 2010, 185, 1073–1080. [Google Scholar] [CrossRef]
- Temuujin, J.; Senna, M.; Jadambaa, T.; Burmaa, D.; Erdenechimeg, S.; MacKenzie, K.J. Characterization and bleaching properties of acid-leached montmorillonite. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2006, 81, 688–693. [Google Scholar] [CrossRef]
- Eren, E.; Afsin, B. Removal of basic dye using raw and acid activated bentonite samples. J. Hazard. Mater. 2009, 166, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Kalsido, A.W.; Kumar, A.; Tekola, B.; Mogessie, B.; Alemayehu, E. Evaluation of bentonite clay in modified and unmodified forms to remove fluoride from water. Water Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Sahu, J.N.; Acharya, J.; Meikap, B.C. Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J. Hazard. Mater. 2009, 172, 818–825. [Google Scholar] [CrossRef]
- Biswas, G.; Kumari, M.; Adhikari, K.; Dutta, S. Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal. Appl. Water Sci. 2017, 7, 4673–4690. [Google Scholar] [CrossRef] [Green Version]
- Mourabet, M.; Abdelhadi, E.R.; El Boujaady, H.; Bennani-Ziatni, M.; Abderrahim, T. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arab. J. Chem. 2014, 10, S3292–S3302. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.H.; Faraji, M.; Mohammadi, A.; Kamani, H. Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies. Korean J. Chem. Eng. 2016, 34, 454–462. [Google Scholar] [CrossRef]
- Ghorbani, F.; Kamari, S. Application of response surface methodology for optimization of methyl orange adsorption by Fe-grafting sugar beet bagasse. Adsorpt. Sci. Technol. 2016, 35, 317–338. [Google Scholar] [CrossRef]
- Ghorbani, F.; Younesi, H.; Ghasempouri, S.M.; Zinatizadeh, A.A.; Amini, M.; Daneshi, A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J. 2008, 145, 267–275. [Google Scholar] [CrossRef]
- Behbahani, M.; Alavi Moghaddam, M.R. Techno-Economical Evaluation of Fluoride Removal by Electrocoagulation Process: Optimization through Response Surface Methodology. Desalination 2011, 271, 209–218. [Google Scholar] [CrossRef]
- Fakhri, A. Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: Optimization using Response Surface Methodology. Process. Saf. Environ. Prot. 2014, 93, 1–8. [Google Scholar] [CrossRef]
- Fakhri, A.; Behrouz, S. Comparison studies of adsorption properties of MgO nanoparticles and ZnO-MgO nanocomposites for linezolid antibiotic removal from aqueous solution using response surface methodology. Process. Saf. Environ. Prot. 2014, 94, 37–43. [Google Scholar] [CrossRef]
- Kumar Gupta, V.; Agarwal, S.; Asif, M.; Fakhri, A.; Sadeghi, N. Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment. J. Colloid Interface Sci. 2017, 497, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, M.F.R.; Mamun, A.A.; Akbar, I. Application of response surface methodology (RSM) for optimization of color removal from POME by granular activated carbon. Int. J. Environ. Sci. Technol. 2014, 12, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Prakash Kumar, B.G.; Shivakamy, K.; Miranda, L.R.; Velan, M. Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. J. Hazard. Mater. 2006, 136, 922–929. [Google Scholar] [CrossRef]
- Bhatti, M.S.; Reddy, A.S.; Kalia, R.K.; Thukral, A.K. Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium. Desalination 2011, 269, 157–162. [Google Scholar] [CrossRef]
- Ghosh, S.B.; Bhaumik, R.; Mondal, N.K. Optimization study of adsorption parameters for removal of fluoride using aluminium-impregnated potato plant ash by response surface methodology. Clean Technol. Environ. Policy 2016, 18, 1069–1083. [Google Scholar] [CrossRef]
- Cronje, K.; Chetty, K.; Carsky, M.; Sahu, J.; Meikap, B. Optimization of chromium (VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 2011, 275, 276–284. [Google Scholar] [CrossRef]
- Yahaya, N.; Pakir, M.; Latiff, M.; Abustan, I.; Bello, O.; Ahmad, M. Process optimisation for Zn (II) removal by activated carbon prepared from rice husk using chemical activation. Int. J. Eng. Technol. 2010, 10, 132–136. [Google Scholar]
- Elibol, M. Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium. Process. Biochem. 2002, 38, 667–673. [Google Scholar] [CrossRef]
- Can, M.Y.; Kaya, Y.; Algur, O.F. Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris. Bioresour. Technol. 2006, 97, 1761–1765. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, E.; Altun, T.; Parlayici, S. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions. J. Hazard. Mater. 2009, 164, 982–986. [Google Scholar] [CrossRef]
- Chang, L.; Chen, S.; Li, X. Synthesis and properties of core-shell magnetic molecular imprinted polymers. Appl. Surf. Sci. 2012, 258, 6660–6664. [Google Scholar] [CrossRef]
- Cengeloglu, Y.; Kır, E.; Ersoz, M. Removal of Fluoride from Aqueous Solution by Using Red Mud. Sep. Purif. Technol. 2002, 28, 81–86. [Google Scholar] [CrossRef]
- Ben Amor, T.; Kassem, M.; Hajjaji, W.; Jamoussi, F.; Ben Amor, M.; Hafiane, A. Study of defluoridation of water using natural clay minerals. Clays Clay Miner. 2018, 66, 493–499. [Google Scholar] [CrossRef]
- Akafu, T.; Chimdi, A.; Gomoro, K. Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide. J. Anal. Methods Chem. 2019, 2019, 4831926. [Google Scholar] [CrossRef]
- Mudzielwana, R.; Gitari, W.; Akinyemi, S.A.; Msagati, T.A.M. Performance of Mn2+ modified Bentonite Clay for the Removal of Fluoride from Aqueous Solution. S. Afr. J. Chem. Suid-Afrik. Tydskr. Vir Chem. 2018, 71, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Vhahangwele, M.; Mugera, G.W.; Tholiso, N. Defluoridation of drinking water using Al3+-modified bentonite clay: Optimization of fluoride adsorption conditions. Toxicol. Environ. Chem. 2014, 96, 1294–1309. [Google Scholar] [CrossRef]
- Thakre, D.; Rayalu, S.; Kawade, R.; Meshram, S.; Subrt, J.; Labhsetwar, N. Magnesium incorporated bentonite clay for defluoridation of drinking water. J. Hazard. Mater. 2010, 180, 122–130. [Google Scholar] [CrossRef]
- Nagaraj, A.; Pillay, K.; Kumar, S.K.; Rajan, M. Dicarboxylic acid cross-linked metal ion decorated bentonite clay and chitosan for fluoride removal studies. RSC Adv. 2020, 10, 16791–16803. [Google Scholar] [CrossRef]
Name | Units | Type | Low | High |
---|---|---|---|---|
Initial influent fluoride Concentration (A) | mg/L | Factor | 2 | 20 |
Flow rate (B) | l/min | Factor | 6 | 20 |
Bed depth (C) | cm | Factor | 2 | 10 |
Fluoride removal (R) | % | Response | ||
Adsorption capacity (Q) | mg/g | Response |
Category | Run | Factors | R% | Qe (mg/g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | Observed | Anticipated | Residual | Observed | Anticipated | Residual | ||
Factorial points (8 runs) | 3 | 10 | 15 | 10 | 87 | 61.901 | −25.099 | 2.11 | 2.10825 | −0.00175 |
5 | 10 | 25 | 2 | 10 | −37.349 | −47.349 | 0.3 | 0.33295 | 0.03295 | |
14 | 5 | 15 | 2 | 55 | 41.31 | −13.69 | 1.3 | 1.21145 | −0.08855 | |
15 | 10 | 15 | 2 | 25 | −6.975 | −31.975 | 0.6 | 0.38445 | −0.21555 | |
16 | 5 | 15 | 10 | 95 | 82.706 | −12.294 | 2.45 | 2.35525 | −0.09475 | |
17 | 5 | 25 | 10 | 68 | 49.786 | −18.214 | 1.6 | 1.75375 | 0.15375 | |
19 | 5 | 25 | 2 | 35 | 9.886 | −25.114 | 0.9 | 0.83995 | −0.06005 | |
20 | 10 | 25 | 10 | 76 | 30.031 | −45.969 | 1.8 | 1.82675 | 0.02675 | |
Central point (5 runs) | 2 | 7.5 | 20 | 6 | 86.5 | 58.322 | −28.178 | 2.11 | 2.096175 | −0.01383 |
6 | 7.5 | 20 | 6 | 87 | 58.322 | −28.678 | 2.11 | 2.096175 | −0.01383 | |
11 | 7.5 | 20 | 6 | 88.6 | 58.322 | −30.278 | 2.3 | 2.096175 | −0.20383 | |
13 | 7.5 | 20 | 6 | 89 | 58.322 | −30.678 | 1.3 | 2.096175 | 0.796175 | |
1 | 7.5 | 20 | 6 | 87 | 58.322 | −28.678 | 2.1 | 2.096175 | −0.00383 | |
Axial points (6) | 8 | 7.5 | 12 | 6 | 76 | 60.9836 | −15.0164 | 1.3 | 1.572735 | 0.272735 |
4 | 3 | 20 | 6 | 85 | 69.5 | −15.5 | 2 | 1.9596 | −0.0404 | |
7 | 12 | 20 | 6 | 55 | 8.264 | −46.736 | 1.3 | 1.281 | −0.019 | |
9 | 7.5 | 20 | 1 | 20 | 1.5795 | −18.4205 | 0.5 | 0.816925 | 0.316925 | |
12 | 7.5 | 20 | 13 | 61.3215 | 61.3215 | 2.45 | 2.358325 | −0.09168 | ||
18 | 7.5 | 25 | 6 | 33.6485 | 33.6485 | 1.1 | 1.626425 | 0.526425 |
% Fluoride Removal | Adsorption Capacity (q) | |||
---|---|---|---|---|
Source of Variance | F-Value | p-Value Prob > F | F-Value | p-Value Prob > F |
Model | 110.29 | <0.0001 | 23.84 | <0.0001 |
A | 59.62 | <0.0001 | 13.1 | <0.0047 |
B | 77.32 | <0.0001 | 9.23 | 0.0125 |
C | 645.56 | <0.0001 | 137.25 | <0.0001 |
AB | 4.04 | 0.0723 * | 1.34 | 0.2744 * |
AC | 27.69 | 0.0004 | 4.39 | 0.0625 * |
BC | 0.082 | 0.7800 * | 0.69 | 0.4262 * |
A2 | 38.63 | <0.0001 | 0.824 | <0.0166 |
B2 | 83.39 | <0.0001 | 35.63 | <0.0001 |
C2 | 167.63 | <0.0001 | 23.89 | 0.0006 |
Lack of fit | 4.88 | 0.0533 * | 1.38 | 0.3961 * |
Name | Goal | Lower | Upper | |||
---|---|---|---|---|---|---|
Limit | Limit | Weight | Weight | Importance | ||
Initial Fluoride Concentration | is in range | 5 | 10 | 1 | 1 | 2 |
Flow Rate | is in range | 15 | 25 | 1 | 1 | 3 |
Bed Depth | is in range | 2 | 10 | 1 | 1 | 3 |
Fluoride Removal | maximize | 50 | 100 | 10 | 1 | 3 |
Adsorption Capacity | maximize | 0.3 | 2.45 | 1 | 1 | 3 |
Number | Initial Fluoride Concentration | Flow Rate | Bed Depth | Fluoride Removal | Adsorption Capacity | Desirability | |
---|---|---|---|---|---|---|---|
1 | 6.84 | 18.22 | 8.59 | 100.505 | 2.46218 | 1 | |
2 | 7.17 | 18 | 8.67 | 100.513 | 2.45742 | 1 | |
3 | 5.51 | 17.2 | 8.88 | 100.069 | 2.45474 | 1 | Selected |
4 | 5.92 | 17.68 | 8.75 | 100.548 | 2.46739 | 1 | |
5 | 6.62 | 17.01 | 8.78 | 101.153 | 2.46102 | 1 | |
6 | 5.87 | 17.25 | 9.11 | 100.762 | 2.47643 | 1 | |
7 | 6.83 | 18.38 | 9.98 | 100.797 | 2.51664 | 1 | |
8 | 7.36 | 18.85 | 9.15 | 100.321 | 2.47696 | 1 | |
9 | 6.9 | 16.46 | 9.86 | 101.19 | 2.48363 | 1 | |
10 | 7.92 | 16.91 | 9.67 | 100.408 | 2.45459 | 1 | |
11 | 7.81 | 16.65 | 9.81 | 100.504 | 2.45688 | 1 | |
12 | 7.21 | 16.71 | 9.18 | 101.107 | 2.45836 | 1 | |
13 | 7.94 | 16.75 | 9.82 | 100.305 | 2.45293 | 1 | |
14 | 7.61 | 18.92 | 9.73 | 100.282 | 2.49188 | 1 | |
15 | 5.81 | 16.62 | 9.06 | 100.661 | 2.45847 | 1 | |
16 | 7.52 | 18.47 | 9.66 | 100.755 | 2.49698 | 1 | |
17 | 7.08 | 18.29 | 9.73 | 101.104 | 2.5106 | 1 | |
18 | 7.18 | 17.21 | 9.4 | 101.391 | 2.48524 | 1 | |
19 | 6.06 | 18.46 | 8.91 | 100.239 | 2.47605 | 1 | |
20 | 6.74 | 16.43 | 9.74 | 101.228 | 2.48135 | 1 | |
21 | 7.63 | 16.68 | 9.89 | 100.795 | 2.47035 | 1 | |
22 | 6.12 | 18.26 | 9.7 | 100.351 | 2.50193 | 1 | |
23 | 8.19 | 17.5 | 9.84 | 100.019 | 2.4607 | 1 | |
24 | 6.4 | 16.53 | 8.83 | 101.059 | 2.45055 | 1 | |
25 | 6.8 | 18.35 | 9.86 | 100.924 | 2.51484 | 1 | |
26 | 5.71 | 17.94 | 8.98 | 100.142 | 2.47162 | 1 | |
27 | 6.67 | 18 | 9.04 | 101.159 | 2.48933 | 1 | |
28 | 7.39 | 16.8 | 9.54 | 101.136 | 2.47189 | 1 | |
29 | 7.12 | 17.55 | 9.11 | 101.255 | 2.48051 | 1 | |
30 | 5.8 | 16.75 | 9.09 | 100.657 | 2.46263 | 1 | |
31 | 6.01 | 17.44 | 8.97 | 100.89 | 2.47735 | 1 | |
32 | 7.88 | 18.57 | 9.7 | 100.251 | 2.48316 | 1 | |
33 | 6.04 | 17.7 | 8.98 | 100.821 | 2.48062 | 1 | |
34 | 6.31 | 16.68 | 9.31 | 101.251 | 2.47734 | 1 | |
35 | 6.76 | 19.15 | 9.5 | 100.194 | 2.49312 | 1 | |
36 | 5.51 | 16.65 | 9.2 | 100.072 | 2.45363 | 1 | |
37 | 6.04 | 16.48 | 9.12 | 100.927 | 2.46062 | 1 | |
38 | 6.34 | 17.6 | 9.33 | 101.24 | 2.49749 | 1 | |
39 | 7.51 | 17.05 | 9.53 | 101.083 | 2.47487 | 1 |
Flowrate (mL/min) | Bed Depth (cm) | Concentrations (mg/L) | Experimental | Theoretical | Percentage Error | |||
---|---|---|---|---|---|---|---|---|
qe, (mg/g) | R (%) | qe, (mg/g) | R (%) | qe, (mg/g) | R (%) | |||
17.2 | 8.88 | 5.51 | 2.2 | 99.05 | 2.46 | 100 | 2.43 | 1 |
Adsorbent | Mode of Operation | Adsorption Capacity (mg/g) | References |
---|---|---|---|
Fired Clay Pots | Batch | 1.6 | [5] |
Granular Acid-Treated Bentonite (GHB) | Batch and Column | 0.094 | [10] |
Acid Activated Red Mud (Powdered) | Batch | 5.06 | [34] |
Tunisian Kaolinite | Batch | 1.48 | [35] |
Diatomite Modified with Aluminum Hydroxide | Batch | 1.67 | [36] |
Mn2+-Modified Bentonite Clay | Batch | 0.08 | [37] |
Al3+-modified Bentonite Clay | Batch | 5.7 | [38] |
Magnesium Incorporated Bentonite Clay | Batch | 2.26 | [39] |
Dicarboxylic Acid (Malic Acid (A)), Metal Ion Decorated Bentonite Clay (BC) Modified with Chitosan (CS) | Batch | 9.87 | [40] |
Acid-Treated Bentonite (ATB) | Column | 2.46 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsido, A.W.; Meshesha, B.T.; Behailu, B.M.; Alemayehu, E. Optimization of Fluoride Adsorption on Acid Modified Bentonite Clay Using Fixed-Bed Column by Response Surface Method. Molecules 2021, 26, 7112. https://doi.org/10.3390/molecules26237112
Kalsido AW, Meshesha BT, Behailu BM, Alemayehu E. Optimization of Fluoride Adsorption on Acid Modified Bentonite Clay Using Fixed-Bed Column by Response Surface Method. Molecules. 2021; 26(23):7112. https://doi.org/10.3390/molecules26237112
Chicago/Turabian StyleKalsido, Adane Woldemedhin, Beteley Tekola Meshesha, Beshah M. Behailu, and Esayas Alemayehu. 2021. "Optimization of Fluoride Adsorption on Acid Modified Bentonite Clay Using Fixed-Bed Column by Response Surface Method" Molecules 26, no. 23: 7112. https://doi.org/10.3390/molecules26237112
APA StyleKalsido, A. W., Meshesha, B. T., Behailu, B. M., & Alemayehu, E. (2021). Optimization of Fluoride Adsorption on Acid Modified Bentonite Clay Using Fixed-Bed Column by Response Surface Method. Molecules, 26(23), 7112. https://doi.org/10.3390/molecules26237112