Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Synthesis of Nanoparticles
2.3. Catalytic Reaction
2.4. Apparatus
3. Results and Discussion
3.1. Effect of PVP Concentration on PGM-NP Formation
3.2. Effect of the Reducer on the Formation of PGM-NP
3.3. Two-Component Mixtures
3.4. Catalytic Properties of PGM-NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
References
- Trębacz, H.; Michno, P. Occurrence of platinum group metals in the environment and their use. Struct. Environ. 2017, 9, 283–298. [Google Scholar]
- Regel-Rosocka, M.; Rzelewska-Piekut, M.; Baczynska, M.; Janus, M.; Wisniewski, M. Removal of palladium(II) from aqueous chloride solutions with Cyphos phosphonium ionic liquids as metal ion carriers for liquid-liquid extraction and transport across polymer inclusion membranes. Physicochem. Probl. Miner. Process. 2015, 51, 621–631. [Google Scholar] [CrossRef]
- Wiecka, Z.; Rzelewska-Piekut, M.; Regel-Rosocka, M. Recovery of platinum group metals from spent automotive converters by leaching with organic and inorganic acids and extraction with quaternary phosphonium salts. Sep. Purif. Technol. 2021, 280, 119933. [Google Scholar] [CrossRef]
- Fornalczyk, A.; Saternus, M. Removal of Platinum group metals from the used catalytic converter. Metalurgija 2009, 48, 133–136. [Google Scholar]
- Johnson Matthey’s Platinum Group Metal Market. Available online: http://www.platinum.matthey.com (accessed on 1 October 2021).
- Kobylinski, T.P.; Taylor, B.W.; Young, J.E. Stabilized Ruthenium Catalysts for NOx Reduction. SAE Trans. 1974, 83, 1089–1095. [Google Scholar]
- Shelef, M.; Gandhi, H.S. The Reduction of Nitric Oxide in Automobile Emissions. Stabilisation of catalysts containing ruthenium. Platin. Met. Rev. 1974, 18, 2–14. [Google Scholar]
- Fesik, E.V.; Zarazhevskii, V.I.; Grebnev, V.V.; Mal’Chikov, G.D. Rhenium- and ruthenium-containing catalysts for neutralization of automobile exhaust. Kinet. Catal. 2013, 54, 626–631. [Google Scholar] [CrossRef]
- Wang, H.; Lu, J. A Review on Particle Size Effect in Metal-Catalyzed Heterogeneous Reactions. Chin. J. Chem. 2020, 38, 1422–1444. [Google Scholar] [CrossRef]
- Maity, P.; Gopinath, C.S.; Bhaduri, S.; Lahiri, G.K. Applications of a high performance platinum nanocatalyst for the oxidation of alcohols in water. Green Chem. 2009, 11, 554–561. [Google Scholar] [CrossRef]
- Liu, L.; Meira, D.M.; Arenal, R.; Concepcion, P.; Puga, A.; Corma, A. Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites? ACS Catal. 2019, 9, 10626–10639. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Guo, Y.; Xu, W.; Wang, Y.; Gong, X.; Guo, Y.; Guo, Y.; Lu, G. Catalytic properties of Pt/Al2O3 catalysts in the aqueous-phase reforming of ethylene glycol: Effect of the alumina support. Kinet. Catal. 2011, 52, 817–822. [Google Scholar] [CrossRef]
- Chen, X.; Hou, Y.; Wang, H.; Cao, Y.; He, J. Facile Deposition of Pd Nanoparticles on Carbon Nanotube Microparticles and Their Catalytic Activity for Suzuki Coupling Reactions. J. Phys. Chem. C 2008, 112, 8172–8176. [Google Scholar] [CrossRef]
- Ganesan, M.; Freemantle, R.G.; Obare, S.O. Monodisperse Thioether-Stabilized Palladium Nanoparticles: Synthesis, Characterization, and Reactivity. Chem. Mater. 2007, 19, 3464–3471. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Yang, X.; Duan, H.; Qi, H.; Su, Y.; Liang, B.; Tao, H.; Liu, B.; Chen, D.; et al. Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nat. Commun. 2020, 11, 3185. [Google Scholar] [CrossRef] [PubMed]
- Pellegatta, J.-L.; Blandy, C.; Collière, V.; Choukroun, R.; Chaudret, B.; Cheng, P.; Philippot, K. Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene. J. Mol. Catal. A Chem. 2002, 178, 55–61. [Google Scholar] [CrossRef]
- Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci. 2020, 55, 6195–6241. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; Alothman, Z.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ.—Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbain, R.; Othman, M.; Palaniandy, S. Preparation of iron oxide nanoparticles by mechanical milling. Miner. Eng. 2011, 24, 1–9. [Google Scholar] [CrossRef]
- Lasemi, N.; Rupprechter, G. Chemical and Laser Ablation Synthesis of Monometallic and Bimetallic Ni-Based Nanoparticles. Catalysts 2020, 10, 1453. [Google Scholar] [CrossRef]
- Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Özgönül, E.; Oral, A. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition. Prog. Nat. Sci. 2015, 25, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Antoni, M.; Muench, F.; Kunz, U.; Bröetz, J.; Donner, W.; Ensinger, W. Electrocatalytic applications of platinum-decorated TiO2 nanotubes prepared by a fully wet-chemical synthesis. J. Mater. Sci. 2017, 52, 7754–7767. [Google Scholar] [CrossRef]
- Gołąbiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Michalska, M.; Jurga, S.; Zaleska-Medynska, A. The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method. Mol. Catal. 2017, 442, 154–163. [Google Scholar] [CrossRef]
- Yu, C.; Guo, X.; Muzzio, M.; Seto, C.T.; Sun, S. Self-Assembly of Nanoparticles into Two-Dimensional Arrays for Catalytic Applications. ChemPhysChem 2019, 20, 23–30. [Google Scholar] [CrossRef]
- Daruich De Souza, C.; Ribeiro Nogueira, B.; Rostelato, M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Haider, A.; Kang, I.-K. Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review. Adv. Mater. Sci. Eng. 2015, 2015, 165257. [Google Scholar] [CrossRef] [Green Version]
- Beyribey, B.; Çorbacioğlu, B.; Altin, Z. Synthesis of Platinum Particles from H2PtCl6 with Hydrazine as Reducing Agent. Gazi Univ. J. Sci. 2009, 22, 351–357. [Google Scholar]
- Liu, L.; Hu, J.; Wang, Y.T.; Wang, K.J.; Su, L. Preparation of Sub-Micrometre Size Platinum Particles via Chemical Reduction of Hexachloroplatinic Acid in Aqueous Solution. Adv. Mater. Res. 2014, 1058, 48–51. [Google Scholar] [CrossRef]
- Maji, T.; Banerjee, S.; Biswasa, M.; Mandal, T.K. In situ synthesis of ultra-small platinum nanoparticles using a water soluble polyphenolic polymer with high catalytic activity. RSC Adv. 2014, 4, 51745–51753. [Google Scholar] [CrossRef]
- Tajerian, T.; Monsefi, M.; Rowan, A. Simple chemistry drives controlled synthesis of platinum nanocrystal to micron size. J. Nanostruct. Chem. 2019, 9, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Huff, C.; Biehler, E.; Quach, Q.; Long, J.M.; Abdel-Fattah, T.M. Synthesis of highly dispersive platinum nanoparticles and their application in a hydrogen generation reaction. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125734. [Google Scholar] [CrossRef]
- Forte, F.; Riaño, S.; Binnemans, K. Dissolution of noble metals in highly concentrated acidic salt solutions. Chem. Commun. 2020, 56, 8230–8232. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xia, J.J. Preparation and Characterization of Platinum Nanorods Using Ascorbic Acid as the Reducing Agent. Adv. Mat. Res. 2013, 774–776, 577–580. [Google Scholar] [CrossRef]
- Farrell, B.P.; Lu, L.; Goia, D.V. Precipitation of silver/palladium alloy platelets from homogeneous solutions. J. Colloid Interface Sci. 2012, 376, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.; Mahmoud, M.; Mahrous, Y. Recovery and separation of palladium from spent catalyst. Appl. Catal. A Gen. 2006, 301, 182–186. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Nemoto, Y.; Yamauchi, Y. Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid. Chem. Mater. 2010, 22, 2835–2841. [Google Scholar] [CrossRef]
- Safo, I.A.; Werheid, M.; Dosche, C.; Oezaslan, M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 2019, 1, 3095–3106. [Google Scholar] [CrossRef] [Green Version]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [Green Version]
- Koushik, P.; Braja, G.B.; Kousik, S. Green coconut (Cocos nucifera Linn) shell extract mediated size controlled green synthesis of polyshaped gold nanoparticles and its application in catalysis. Appl. Nanosci. 2014, 4, 769–775. [Google Scholar]
- Ayad, A.I.; Luart, D.; Dris, A.O.; Guénin, E. Kinetic Analysis of 4-Nitrophenol Reduction by “Water-Soluble” Palladium Nanoparticles. Nanomaterials 2020, 10, 1169. [Google Scholar] [CrossRef]
- Yadav, H.M.; Lee, J.-J. One-pot synthesis of copper nanoparticles on glass: Applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J. Solid State Electrochem. 2018, 23, 503–512. [Google Scholar] [CrossRef]
- Ershov, B.G.; Abkhalimov, E.V.; Solovova, R.D.; Roldughina, V.I. Gold nanoparticles in aqueous solutions: Influence of size and pH on hydrogen dissociative adsorption and Au(III) ion reduction. Phys. Chem. Chem. Phys. 2016, 18, 13459–13466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, W.-X.; Zuo, X.-B.; Liu, H.-F. Study on the interaction between polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles. Chin. J. Polym. Sci. 2008, 26, 23–33. [Google Scholar] [CrossRef]
- Kim, C.; Lee, H. Change in the catalytic reactivity of Pt nanocubes in the presence of different surface-capping agents. Catal. Commun. 2009, 10, 1305–1309. [Google Scholar] [CrossRef]
- Walbrück, K.; Kuellmer, F.; Witzleben, S.; Guenther, K. Synthesis and Characterization of PVP-Stabilized Palladium Nanoparticles by XRD, SAXS, SP-ICP-MS, and SEM. J. Nanomater. 2019, 2019, 4758108. [Google Scholar] [CrossRef]
- Martínez-Abad, A. Silver-based antimicrobial polymers for food packaging. In Multifunctional and Nanoreinforced Polymers for Food Packaging; Lagarón, J.M., Ed.; Woodhead Publishing: Shawston, Cambridge, UK, 2011; pp. 347–367. [Google Scholar]
- Yu, J.; Guo, Y.; She, S.; Miao, S.; Ni, M.; Zhou, W.; Liu, M.; Shao, Z. Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Adv. Mater. 2018, 30, e1800047. [Google Scholar] [CrossRef]
- Hurtado, R.B.; Cortez-Valadez, M.; Flores-Lopez, N.S.; Flores-Acosta, M. Agglomerates of Au-Pt bimetallic nanoparticles: Synthesis and antibacterial activity. Gold Bull. 2020, 53, 93–100. [Google Scholar] [CrossRef]
- Martins, C.A.; Fernández, P.S.; Troiani, H.E.; Martins, M.E.; Arenillas, A.; Camara, G.A. Agglomeration and Cleaning of Carbon Supported Palladium Nanoparticles in Electrochemical Environment. Electrocatalysis 2014, 5, 204–212. [Google Scholar] [CrossRef]
- Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E.R.; Weinkauf, S.; Stimming, U. Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 2005, 7, 385–393. [Google Scholar] [CrossRef]
- Zeng, X.; Koshizaki, N.; Sasaki, T. A direct comparison of sizes characterized by TEM and AFM for Fe2O3 nanoparticles prepared by laser ablation. Appl. Phys. A 1999, 69, S253–S255. [Google Scholar] [CrossRef]
- Premkumar, T.; Lee, K.; Geckeler, K.E. Shape-tailoring and catalytic function of anisotropic gold nanostructures. Nanoscale Res. Lett. 2011, 6, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reducer | P, % | |||
---|---|---|---|---|
Pt | Pd | Rh | Ru | |
Molar ratio of PGM:PVP:reducer 1:1:1 | ||||
AA | 69.7 | 33.7 | 38.1 | 63.1 |
NaBH4 | 75.0 | 99.5 | 87.3 | 72.2 |
HCOONa | 72.8 | 99.6 | 51.5 | 67.7 |
Molar ratio of PGM:PVP:reducer 1:1:2 | ||||
AA | 85.1 | 4.8 | 38.3 | 63.4 |
NaBH4 | 76.9 | 92.5 | 85.3 | 65.6 |
HCOONa | 72.8 | 99.5 | 65.3 | 61.5 |
Reducer | Particle Size, nm | |||
---|---|---|---|---|
Pt | Pd | Rh | Ru | |
Molar ratio of PGM:PVP:reducer 1:1:1 | ||||
AA | 39.5 | 10.7 | 16.5 | 33.5 |
NaBH4 | 8.1 | 20.9 | 40.5 | 3.6 |
Molar ratio of PGM:PVP:reducer 1:1:2 | ||||
AA | 46.9 | 3.1 | 52.1 | 88.3 |
NaBH4 | 3.2 | 3.2 | 5.2 | 53.3 |
Molar ratio of PGM:PVP:reducer 1:5:2 | ||||
AA | 40.3 | 14.9 | 23.9 | 39.3 |
NaBH4 | 7.3 | 36.3 | 5.4 | 43.7 |
Reducer | P, % | |||||
---|---|---|---|---|---|---|
Pt/Pd | Pt/Rh | Pt/Ru | Pd/Rh | Pd/Ru | Rh/Ru | |
AA | 60.1/11.5 | 67.6/37.0 | 76.1/60.1 | 4.5/56.8 | 4.1/56.9 | 34.9/54.8 |
NaBH4 | 78.6/99.5 | 75.2/57.4 | 71.5/63.8 | 98.2/74.2 | 99.6/67.7 | 49.3/51.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzelewska-Piekut, M.; Wiecka, Z.; Regel-Rosocka, M. Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts. Molecules 2022, 27, 390. https://doi.org/10.3390/molecules27020390
Rzelewska-Piekut M, Wiecka Z, Regel-Rosocka M. Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts. Molecules. 2022; 27(2):390. https://doi.org/10.3390/molecules27020390
Chicago/Turabian StyleRzelewska-Piekut, Martyna, Zuzanna Wiecka, and Magdalena Regel-Rosocka. 2022. "Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts" Molecules 27, no. 2: 390. https://doi.org/10.3390/molecules27020390
APA StyleRzelewska-Piekut, M., Wiecka, Z., & Regel-Rosocka, M. (2022). Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts. Molecules, 27(2), 390. https://doi.org/10.3390/molecules27020390