Chemical Fingerprint Analysis and Quantitative Analysis of Saccharides in Morindae Officinalis Radix by HPLC-ELSD
Abstract
:1. Introduction
2. Results
2.1. Optimization of Extraction Conditions
2.2. Optimization of HPLC Condition
2.3. Method Validation of Quantitative Analysis
2.4. Analysis of Tims TOF
2.5. Method Validation of HPLC Fingerprint Analysis
2.6. HPLC Fingerprint Analysis
2.7. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Materials
3.2. Reagents
3.3. Preparation of Standard Solutions
3.4. Preparation of Sample Solutions
3.5. HPLC Condition
3.6. Tims TOF Conditions
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhao, X.; Wei, J.; Yang, M. Simultaneous analysis of iridoid glycosides and anthraquinones in morinda officinalis using UPLC-QqQ-MS/MS and UPLC-Q/TOF-MSE. Molecules 2018, 23, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xin, H.; Xu, Y.; Shen, Y.; He, Y.; Hsien, Y.; Lin, B.; Song, H.; Juan, L.; Yang, H.; et al. Morinda officinalis How—A comprehensive review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 213, 230–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Yang, H.; Liu, W.; Zhang, N.; Qin, L.; Xin, H. Monotropein isolated from the roots of Morinda offici-nalis increases osteoblastic bone formation and prevents bone loss in ovariectomized mice. Fitoterapia 2016, 110, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wu, L.; Li, L.; Chen, S. Monotropein exerts protective effects against IL-1β-induced apoptosis and catabolic responses on osteoarthritis chondrocytes. Int. Immunopharmacol. 2014, 23, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Huang, D.; Shen, X.; Qin, N.; Jiang, K.; Zhang, D.; Zhang, Q. Identification and characterization of a polysaccharide from the roots of Morinda officinalis, as an inducer of bone formation by up-regulation of target gene expression. Int. J. Biol. Macromol. 2019, 133, 446–456. [Google Scholar] [CrossRef]
- Chen, D.; Li, N.; Lin, L.; Long, H.; Lin, H.; Chen, J.; Zhang, H.; Zeng, C.; Liu, S. Confocal mirco-Raman spectroscopic analysis of the antioxidant protection mechanism of the oligosaccharides extracted from Morinda officinalis on human sperm DNA. J. Ethnopharmacol. 2014, 153, 119–124. [Google Scholar] [CrossRef]
- Qiu, Z.-K.; Liu, C.-H.; Gao, Z.-W.; He, J.-L.; Liu, X.; Wei, Q.-L.; Chen, J.-S. The inulin-type oligosaccharides extract from morinda officinalis, a traditional Chinese herb, ameliorated behavioral deficits in an animal model of post-traumatic stress disorder. Metab. Brain Dis. 2016, 31, 1143–1149. [Google Scholar] [CrossRef]
- Xu, L.Z.; Xu, D.F.; Han, Y.; Liu, L.J.; Sun, C.Y.; Deng, J.H.; Zhang, R.X.; Yuan, M.; Zhang, S.Z.; Li, Z.M.; et al. BDNF-GSK-3β-β-Catenin Pathway in the mPFC Is Involved in Antidepressant-Like Effects of Morinda officinalis Oligosac-charides in Rats. Int. J. Neuropsychopharmacol. 2016, 20, 83–93. [Google Scholar]
- Chen, D.-L.; Zhang, P.; Lin, L.; Zhang, H.-M.; Deng, S.-D.; Wu, Z.-Q.; Ou, S.; Liu, S.-H.; Wang, J.-Y. Protective effects of bajijiasu in a rat model of Aβ25-35-induced neurotoxicity. J. Ethnopharmacol. 2014, 154, 206–217. [Google Scholar] [CrossRef]
- Hong, G.; Zhou, L.; Shi, X.; He, W.; Wang, H.; Wei, Q.; Chen, P.; Qi, L.; Tickner, J.; Lin, L.; et al. Bajijiasu Abrogates Osteo-clast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT. Int. J. Mol. Sci. 2017, 18, 203. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-Q.; Chen, D.-L.; Lin, F.-H.; Lin, L.; Shuai, O.; Wang, J.-Y.; Qi, L.-K.; Zhang, P. Effect of bajijiasu isolated from Morinda officinalis F. C. how on sexual function in male mice and its antioxidant protection of human sperm. J. Ethnopharmacol. 2015, 164, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yi, Y.; Gao, C.; Hou, D.; Hu, J.; Zhao, M. Isolation of inulin-type oligosaccharides from Chinese traditional medi-cine: Morinda officinalis How and their characterization using ESI-MS/MS. J. Sep. Sci. 2010, 33, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hu, J.; Zhao, M. Isolation and quantitative determination of inulin-type oligosaccharides in roots of Morinda offici-nalis. Carbohyd. Polym. 2011, 83, 1997–2004. [Google Scholar] [CrossRef]
- Chi, L.; Chen, L.; Zhang, J.; Zhao, J.; Li, S.; Zheng, Y. Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda Officinalis. J. Pharm. Biomed. Anal. 2018, 156, 125–132. [Google Scholar] [CrossRef]
- Imahori, Y.; Kitamura, N.; Kobayashi, S.; Takihara, T.; Ose, K.; Ueda, Y. Changes in fructooligosaccaride composition and related enzyme activities of burdock root during low-temperature storage. Postharvest Biol. Technol. 2010, 55, 15–20. [Google Scholar] [CrossRef]
- Kuhn, R.C.; Filho, F.M. Separation of fructooligosaccharides using zeolite fixed bed columns. J. Chromatogr. B 2010, 878, 2023–2028. [Google Scholar] [CrossRef]
- Li, J.; Hu, D.; Zong, W.; Lv, G.; Zhao, J.; Li, S. Determination of Inulin-type Fructooligosaccharides in Edible Plants by High-Performance Liquid Chromatography with Charged Aerosol Detector. J. Agric. Food Chem. 2014, 62, 7707–7713. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China, 1st ed.; China Medical Science Press: Beijing, China, 2020; p. 83. [Google Scholar]
- Septyanti, C.; Batubara, I.; Rafi, M. HPLC Fingerprint Analysis Combined with Chemometrics for Authentication of Kaempferia galanga from Related Species. Indones. J. Chem. 2016, 16, 308. [Google Scholar] [CrossRef]
- Mohamad, R.; Fitri, H.; Kosim, D.L.; Eti, R.; Yudiwanti, W.; Sulistiyani; Kohsuke, H.; Prama, P.S. A combination of simulta-neous quantification of four triterpenes and fingerprint analysis using HPLC for rapid identification of Centella asiatica from its related plants and classification based on cultivation ages. Ind. Crop. Prod. 2018, 122, 93–97. [Google Scholar]
- Song, J.; Chen, F.; Liu, J.; Zou, Y.; Luo, Y.; Yi, X.; Meng, J.; Chen, X. Combinative Method Using Multi-components Quantitation and HPLC Fingerprint for Comprehensive Evaluation of Gentiana crassicaulis. Pharmacogn. Mag. 2017, 13, 180–187. [Google Scholar]
- Ma, F.L.; Li, Y.X.; Luo, W.H. HPLC-ELSD Fingerprint of Carbohydrate Constituents in Morindae Officinalis Radix and its Salt Processed Products. Chin. J. Exp. Tradit. Med. Formulae 2013, 19, 106–110. [Google Scholar]
- Wu, X.W.; Li, H.; Shao, Y.H.; Ding, P. Analysis of the Chemical Stability of Morinda Officinalis Oligosaccharides during Extraction. Chin. Pharm. J. 2014, 49, 102–105. [Google Scholar]
- Wang, Y.S.; Lin, D.G.; Lin, J.H. Summary of Experimental Design Methods for Optimization of Complex Prescription of Chinese Medicine. Acta Vet. Zootech. Sin. 2021, 52, 565–575. [Google Scholar]
- Yang, X.; Song, J.P.; Guan, Y.Z.; Wang, Q.; Lin, L.; Lin, W.D.; Gu, S.X. Optimization of the Extraction Technology for Oligosaccharides of Morinda Officinalis by Response Surface Methodology. China Pharm. 2015, 34, 4847–4850. [Google Scholar]
- Ma, J.C.; He, W. Optimization of Extraction Technology of Oligosaccharides in Morinda Officinalis by Orthogonal Test. China Pharm. 2012, 23, 4453–4455. [Google Scholar]
Level | Factor | ||
---|---|---|---|
A Temperature (°C) | B Solvent–Solid Ratio (mL/g) | C Ethanol Concentration (%) | |
1 | 80 | 20 | 40 |
2 | 90 | 25 | 50 |
3 | 100 | 30 | 60 |
No. | A Temperature | B Solvent–Solid Ratio | C Ethanol Concentration | Sucrose (%) | Kestose (%) | Nystose (%) | Overall Desirability |
---|---|---|---|---|---|---|---|
1 | 2 | 1 | 3 | 1.57 | 0.76 | 2.11 | 0.91 |
2 | 2 | 3 | 2 | 1.17 | 0.64 | 1.91 | 0.51 |
3 | 1 | 3 | 3 | 1.68 | 0.71 | 2.07 | 0.85 |
4 | 3 | 3 | 1 | 0.84 | 0.62 | 1.85 | 0.30 |
5 | 1 | 1 | 1 | 0.73 | 0.58 | 1.71 | 0.08 |
6 | 2 | 2 | 1 | 1.08 | 0.77 | 2.06 | 0.66 |
7 | 3 | 1 | 2 | 1.09 | 0.61 | 1.61 | 0.13 |
8 | 3 | 2 | 3 | 1.09 | 0.52 | 1.72 | 0.13 |
9 | 1 | 2 | 2 | 1.11 | 0.65 | 1.78 | 0.42 |
k1 | 0.45 | 0.37 | 0.35 | ||||
k2 | 0.69 | 0.40 | 0.36 | ||||
k3 | 0.19 | 0.55 | 0.63 | ||||
R | 0.51 | 0.18 | 0.28 |
Compo-nent | Regression Equation | r | Linear Range (mg/mL) | LOQ (μg/mL) | LOD (μg/mL) |
---|---|---|---|---|---|
Sucrose | LgY = 1.127 lgX + 3.114 | 0.9995 | 0.67–9.36 | 2.5 | 1.1 |
Kestose | LgY = 1.102 lgX + 3.2269 | 0.9998 | 0.64–9.01 | 3.1 | 1.4 |
Nystose | LgY = 0.962 lgX + 3.7433 | 0.9995 | 0.64–8.93 | 4.8 | 2.1 |
Component | System Adaptability (n = 6) | Repeatability (n = 6) | Stability (n = 7) | Recovery (n = 9) | |
---|---|---|---|---|---|
RSD (%) | RSD (%) | RSD (%) | Mean (%) | RSD (%) | |
Sucrose | 2.53 | 1.09 | 3.06 | 99.12 | 3.59 |
Kestose | 1.57 | 2.94 | 2.75 | 101.72 | 1.26 |
Nystose | 1.21 | 2.75 | 2.25 | 96.70 | 2.24 |
No. | tR (min) | [M-H]−/[M-2H]2− | Error (ppm) | Molecular Weight | Molecular Formula | Identification |
---|---|---|---|---|---|---|
1 | 1.8 | 341.1090 | 0.29 | 342.1162 | C12H22O11 | Sucrose |
2 | 2.4 | 503.1618 | 0.00 | 504.1690 | C18H32O16 | Kestose |
3 | 3.1 | 665.2155 | 1.35 | 666.2218 | C24H42O21 | Nystose |
4 | 3.9 | 827.2675 | 0.12 | 828.2747 | C30H52O26 | Fructofuranosylnystose |
6 | 4.6 | 989.3186 | −1.62 | 990.3275 | C36H62O31 | Fructooligosaccharide (DP6) |
8 | 5.5 | 1151.3694 | −3.21 | 1152.3803 | C42H72O36 | Fructooligosaccharide (DP7) |
9 | 6.2 | 1313.4215 | −3.35 | 1314.4332 | C48H82O41 | Fructooligosaccharide (DP8) |
10 | 6.9 | 1475.4748 | −2.64 | 1476.4860 | C54H92O46 | Fructooligosaccharide (DP9) |
11 | 7.6 | 1637.5290 | −1.53 | 1638.5388 | C60H102O51 | Fructooligosaccharide (DP10) |
12 | 8.2 | 1799.5829 | −0.78 | 1800.5916 | C66H112O56 | Fructooligosaccharide (DP11) |
13 | 8.7 | 980.3144 | −0.51 | 1962.6444 | C72H122O61 | Fructooligosaccharide (DP12) |
14 | 9.2 | 1061.3396 | −1.70 | 2124.6973 | C78H132O66 | Fructooligosaccharide (DP13) |
15 | 9.7 | 1142.3656 | −1.93 | 2286.7501 | C84H142O71 | Fructooligosaccharide (DP14) |
16 | 10.1 | 1223.3907 | −2.86 | 2448.8029 | C90H152O76 | Fructooligosaccharide (DP15) |
17 | 10.5 | 1304.4175 | −2.38 | 2610.8557 | C96H162O81 | Fructooligosaccharide (DP16) |
18 | 10.9 | 1385.4434 | −2.60 | 2772.9085 | C102H172O86 | Fructooligosaccharide (DP17) |
19 | 11.2 | 1466.4713 | −1.43 | 2934.9613 | C108H182O91 | Fructooligosaccharide (DP18) |
Sample | Sucrose (%) | Kestose (%) | Nystose (%) |
---|---|---|---|
C1 | 1.21 ± 0.03 | 1.02 ± 0.02 | 2.38 ± 0.02 |
C2 | 1.50 ± 0.03 | 1.37 ± 0.02 | 3.45 ± 0.05 |
C3 | 1.21 ± 0.03 | 1.24 ± 0.03 | 3.10 ± 0.04 |
C4 | 1.71 ± 0.04 | 1.50 ± 0.03 | 3.72 ± 0.10 |
C5 | 3.44 ± 0.06 | 2.44 ± 0.05 | 4.99 ± 0.14 |
C6 | 3.84 ± 0.10 | 1.74 ± 0.05 | 4.51 ± 0.05 |
C7 | 2.86 ± 0.05 | 1.97 ± 0.04 | 4.45 ± 0.11 |
C8 | 4.56 ± 0.02 | 1.83 ± 0.00 | 3.98 ± 0.04 |
C9 | 3.32 ± 0.06 | 2.22 ± 0.01 | 4.89 ± 0.04 |
C10 | 2.91 ± 0.06 | 1.55 ± 0.03 | 3.93 ± 0.03 |
Eigenvalue | Variance Contribution Rate, % | Cumulative Variance Contribution Rate, % | |
---|---|---|---|
PC1 | 16.429 | 65.715 | 65.715 |
PC2 | 5.215 | 20.859 | 86.574 |
PC3 | 1.813 | 7.250 | 93.824 |
Sample | Score of PC1 | Score of PC2 | Score of PC3 |
---|---|---|---|
C1 | 4.658 | 1.298 | −2.573 |
C2 | 6.104 | 0.426 | 1.164 |
C3 | 3.438 | −2.970 | −0.059 |
C4 | 4.254 | 0.648 | 1.732 |
C5 | −3.067 | 3.312 | 0.432 |
C6 | −2.442 | −1.801 | −0.844 |
C7 | −3.232 | 0.183 | −0.638 |
C8 | −4.302 | −1.791 | 1.798 |
C9 | −2.816 | 3.358 | −0.127 |
C10 | −2.595 | −2.664 | −0.886 |
Source | Collected Date | The Roots |
---|---|---|
Gaoliang village | 2018.10 | R1 |
Dazhai village | 2018.10 | R2 |
Zhongxiong village | 2018.10 | R3 |
Luoyang village | 2018.10 | R4 |
Guancun village | 2018.10 | R5 |
Shashui village | 2018.10 | R6 |
Dajiang village | 2018.10 | R7 |
Jinshan village | 2018.10 | R8 |
Wanxing village | 2018.10 | R9 |
Yunli village | 2018.10 | R10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Cai, Y.; Shen, J.; Ma, E.; Zhao, Z.; Yang, D.; Yang, X.; Xu, X. Chemical Fingerprint Analysis and Quantitative Analysis of Saccharides in Morindae Officinalis Radix by HPLC-ELSD. Molecules 2021, 26, 7242. https://doi.org/10.3390/molecules26237242
Sun H, Cai Y, Shen J, Ma E, Zhao Z, Yang D, Yang X, Xu X. Chemical Fingerprint Analysis and Quantitative Analysis of Saccharides in Morindae Officinalis Radix by HPLC-ELSD. Molecules. 2021; 26(23):7242. https://doi.org/10.3390/molecules26237242
Chicago/Turabian StyleSun, Hongmei, Yini Cai, Jie Shen, Enyao Ma, Zhimin Zhao, Depo Yang, Xiuwei Yang, and Xinjun Xu. 2021. "Chemical Fingerprint Analysis and Quantitative Analysis of Saccharides in Morindae Officinalis Radix by HPLC-ELSD" Molecules 26, no. 23: 7242. https://doi.org/10.3390/molecules26237242
APA StyleSun, H., Cai, Y., Shen, J., Ma, E., Zhao, Z., Yang, D., Yang, X., & Xu, X. (2021). Chemical Fingerprint Analysis and Quantitative Analysis of Saccharides in Morindae Officinalis Radix by HPLC-ELSD. Molecules, 26(23), 7242. https://doi.org/10.3390/molecules26237242