Rhodamine B Photodegradation in Aqueous Solutions Containing Nitrogen Doped TiO2 and Carbon Nanotubes Composites
Abstract
:1. Introduction
2. Results
2.1. Optical Properties of the TiO2:N/CNTs Samples
- (i)
- 100–350 cm−1, which are assigned to the radial breathing mode [25]; the maxima of Raman lines are peaked in the cases of SWNTs, DWNTs, and SWNTs-COOH at 164 cm−1, 179 cm−1–264 cm−1–328 cm−1, and 166 cm−1, respectively; these Raman lines were often used to calculate the diameter of carbon nanotubes [25]. In this context, using (a) the equation ν (cm−1) = 248/d (nm) [25], the diameters of the SWNTs and SWNTs-COOH samples are calculated to be 1.51 nm and 1.49 nm, respectively; and (b) using the equations ΩRBM = 218.5/dinner + 15.9 cm−1 and d outer = dinner + 0.66 (nm) [26], the inner and outer diameters of DWNTs are equal to (b1) 0.7 nm and 1.36 nm, respectively, in the case of Raman line at 328 nm; (b2) 0.94 nm and 1.6 nm, respectively, in the case of Raman line at 264 cm−1; and (b3) 1.38 nm and 2.04 nm, respectively, in the case of Raman line at 179 cm−1.
- (ii)
- 1000–1600 cm−1, where are observed two Raman bands, labeled as the D and TM band, these being assigned to the disorder state or the defects in the graphitic lattice of carbon nanotubes and the tangential mode, respectively [25]. In the case of SWNTs, DWNTs, MWNTs, and SWNTs-COOH, the maximum of the D band is peaked at 1269, 1279, 1288, and 1281 cm−1, respectively, while the maximum of the TM band is situated at 1593, 1587, 1600, and 1593 cm−1, respectively.
2.2. Photocatalytic Properties of the TiO2:N/CNTs Samples
2.2.1. The Dependence of the RhB Photodegradation on CNT Concentrations in TiO2:N/SWNT Samples
2.2.2. Influence of the Carbon Nanotubes Type on the RhB Photodegradation
2.2.3. Mechanism of the RhB Photocatalytic Degradation Enhanced in the Presence of CNTs
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M.C.; Giamello, E. N-doped TiO2: Theory and experiment. Chem. Phys. 2007, 339, 44–56. [Google Scholar] [CrossRef]
- Mogal, S.I.; Gandhi, V.G.; Mishra, M.; Tripathi, S.; Shripathi, T.; Joshi, P.A.; Shah, D.O. Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 2014, 53, 5749–5758. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 1977, 99, 303–304. [Google Scholar] [CrossRef]
- McCullagh, C.; Robertson, J.M.C.; Bahnemann, D.W.; Robertson, P.K.J. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review. Res. Chem. Intermed. 2007, 33, 359–375. [Google Scholar] [CrossRef]
- Burda, C.; Lou, Y.; Chen, X.; Samia, A.C.S.; Stout, J.; Gole, J.L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Lett. 2003, 3, 1049–1051. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Yamamoto, S.; Miyashita, A.; Tanaka, S.; Sumita, T.; Asai, K. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. J. Appl. Phys. 2003, 93, 5156–5160. [Google Scholar] [CrossRef]
- Yamaki, T.; Umebayashi, T.; Sumita, T.; Yamamoto, S.; Maekawa, M.; Kawasuso, A.; Itoh, H. Fluorine doping in titanium dioxide by ion implantation technique. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 206, 254–258. [Google Scholar] [CrossRef]
- Cheng, C.; Sun, Y. Carbon doped TiO2 nanowire arrays with improved photoelectrochemical water splitting performance. Appl. Surf. Sci. 2012, 263, 273–276. [Google Scholar] [CrossRef]
- Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239. [Google Scholar] [CrossRef]
- Sukchom, W.; Chayantrakom, K.; Satiracoo, P.; Baowan, D. Three Possible Encapsulation Mechanics of TiO2 Nanoparticles into Single-Walled Carbon Nanotubes. J. Nanomater. 2011, 2011, 857864. [Google Scholar] [CrossRef]
- Zaib, Q.; Jouiad, M.; Ahmad, F. Ultrasonic Synthesis of Carbon Nanotube-Titanium Dioxide Composites: Process Optimization via Response Surface Methodology. ACS Omega 2019, 4, 535–545. [Google Scholar] [CrossRef]
- Yao, Y.; Li, G.; Ciston, S.; Lueptow, R.M.; Gray, K.A. Photoreactive TiO2 /Carbon Nanotube Composites: Synthesis and Reactivity. Environ. Sci. Technol. 2008, 42, 4952–4957. [Google Scholar] [CrossRef]
- Wang, W.; Tadé, M.O.; Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater. Sci. 2018, 92, 33–63. [Google Scholar] [CrossRef]
- Chen, X.; Burda, C. The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped TiO2 Nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018–5019. [Google Scholar] [CrossRef] [PubMed]
- Mateescu, A.O.; Mateescu, G.; Burducea, I.; Mereuta, P.; Chirila, L.; Popescu, A.; Stroe, M.; Nila, A.; Baibarac, M. Textile materials treatment with mixture of TiO2: N and SiO2 nanoparticles for improvement of their self-cleaning properties. J. Nat. Fibers 2020. [Google Scholar] [CrossRef]
- Nguyen, K.C.; Ngoc, M.P.; Van Nguyen, M. Enhanced photocatalytic activity of nanohybrids TiO2/CNTs materials. Mater. Lett. 2016, 165, 247–251. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Mao, Y.; Xing, M.; Zhang, J. Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl. Catal. B Environ. 2015, 164, 352–359. [Google Scholar] [CrossRef]
- Hu, C.-C.; Hsu, T.-C.; Lu, S.-Y. Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment. Appl. Surf. Sci. 2013, 280, 171–178. [Google Scholar] [CrossRef]
- Nassoko, D.; Li, Y.-F.; Wang, H.; Li, J.-L.; Li, Y.-Z.; Yu, Y. Nitrogen-doped TiO2 nanoparticles by using EDTA as nitrogen source and soft template: Simple preparation, mesoporous structure, and photocatalytic activity under visible light. J. Alloys Compd. 2012, 540, 228–235. [Google Scholar] [CrossRef]
- Hemalatha, K.; Ette, P.M.; Madras, G.; Ramesha, K. Visible light assisted photocatalytic degradation of organic dyes on TiO2-CNT nanocomposites. J. Sol-Gel Sci. Technol. 2015, 73, 72–82. [Google Scholar] [CrossRef]
- Gao, B.; Chen, G.Z.; Puma, G.L. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B-Environ. 2009, 89, 503–509. [Google Scholar] [CrossRef]
- Yang, H.P.; Zhang, Y.C.; Fu, X.F.; Song, S.S.; Wu, J.M. Surface Modification of CNTs and Improved Photocatalytic Activity of TiO2-CNTs Heterojunction. Acta Phys.-Chim. Sin. 2013, 29, 1327–1335. [Google Scholar]
- Wang, W.D.; Serp, P.; Kalck, P.; Faria, J.L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A Chem. 2005, 235, 194–199. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R.; Hafner, J.H.; Lieber, C.M.; Junter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M.S. Structural (n,m) determination of isolated single-walled carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Villalpando-Perez Son, H.; Neizich, D.; Hsich, Y.P.; Kong, J.; Kim, Y.A.; Shimamoto, D.; Muramatsu, H.; Hayashi, T.; Endo, M.; Terrones, M.; et al. Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations. Nano Lett. 2008, 8, 3879. [Google Scholar] [CrossRef]
- Paul, K.K.; Giri, P.K. Role of surface plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@TiO2 nanorods under visible lilght. J. Phys. Chem. C 2017, 121, 20016–20030. [Google Scholar] [CrossRef]
- Choi, H.C.; Jung, Y.M.; Kim, S.B. Size effects in the Raman spectra of TiO2 nanoparaticles. Vib. Spectrosc. 2005, 37, 33. [Google Scholar] [CrossRef]
- Wang, H.Y.; Xu, X.J.; Wei, J.H.; Xiong, R.; Shi, J. Structure and Raman investigations of nitrogen-doped TiO2 nanotube arrays. Solid State Phenom. 2012, 181–182, 422–425. [Google Scholar]
- Baibarac, M.; Baltog, I.; Lefrant, S.; Mevellec, J.Y. Mechanico-chemical interaction of single-walled carbon nanotubes with different host matrices evidenced by SERS spectroscopy. Chem. Phys. Lett. 2005, 406, 222–227. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Marucci, A.; Empedocles, S.A.; Bawendi, M.G.; Hanlon, E.B.; Rao, A.M.; Eklund, C.; Smalley, R.E.; Dresselhaus, G.; Dresselhaus, M.S. Raman modes of metallic carbon nanotubes. Phys. Rev. B 1998, 58, R16016. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.G.; Faria, J.L. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. Photobiol. A Chem. 2003, 155, 133–143. [Google Scholar] [CrossRef]
- Ghaffari, M.; Tan, P.Y.; Oruc, M.E.; Tan, O.K.; Tse, M.S.; Shannon, M. Effect of ball milling on the characteristics of nano structure SrFeO3 powder for photocatalytic degradation of methylene blue under visible light irradiation and its reaction kinetics. Catal. Today 2011, 161, 70–77. [Google Scholar] [CrossRef]
- Chanu, L.A.; Singh, W.J.; Singh, K.J.; Devi, K.N. Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys. 2019, 12, 1230–1237. [Google Scholar] [CrossRef]
- Stobiecka, M.; Hepel, M. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 1131–1139. [Google Scholar] [CrossRef]
- Ding, J.; Zhong, Q.; Zhang, S. A new insight into catalytic ozonation with nanosized Ce-Ti oxides for NOx removal: Confirmation of Ce-O-Ti for active sites. Ind. Eng. Chem. Res. 2015, 54, 2012–2022. [Google Scholar] [CrossRef]
- Wang, Q.L.; Zhang, J.C.; Tang, M.H.; Peng, Y.Q.; Du, C.C.; Yan, J.H.; Lu, S.Y. Influence of Functionalized Carbon Nanotubes on Catalytic Activity of V2O5/TiO2-CNTs for 1, 2-Dichlorobenzene Oxidation. Environ. Prog. Sustain. 2019, 38, 13221. [Google Scholar] [CrossRef]
- Nila, A.; Baibarac, M.; Udrescu, A.; Smaranda, I.; Mateescu, A.; Mateescu, G.; Mereuta, P.; Negrila, C.C. Photoluminescence and structural properties of the nitrogen doped TiO2 and the influence of SiO2 and Ag nanoparticles. J. Phys. Condens. Matter 2019, 31, 375201. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Pyrgiotakis, G.; Lee, S.H.; Sigmund, W.M. Advanced Photocatalysis with Anatase Nano-Coated Multi-Walled Carbon Nanotubes. MRS Proc. 2005, 876, R5.7. [Google Scholar] [CrossRef]
- Shi, X.; Yang, X.; Wang, S.; Wang, S.; Zhang, Q.; Wang, Y. Photocatalytic degradation of rhodamine B dye with MWCNT/TiO2/C60 composites by a hydrothermal method. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 65–69. [Google Scholar] [CrossRef]
Samples | Labeled Name in the Study |
---|---|
TiO2:N | Sample T |
TiO2:N/0.25 wt.% SWNTs | Sample S1 |
TiO2:N/2.5 wt.% SWNTs | Sample S2 |
TiO2:N/5 wt.% SWNTs | Sample S3 |
TiO2:N/2.5 wt.% SWNTs-COOH | Sample SC |
TiO2:N/2.5 wt.% DWNTs | Sample D |
TiO2:N/2.5 wt.% MWNTs | Sample M |
Sample Name | (min−1) | (min−1) | (min−1) | |||
---|---|---|---|---|---|---|
T | 0.00364 | 0.9935 | 0.0023 | 0.9913 | 0.0008 | 0.9864 |
S1 | 0.0047 | 0.9832 | 0.0028 | 0.9958 | 0.0006 | 0.7878 |
S2 | 0.0055 | 0.9895 | 0.0034 | 0.9906 | 0.0008 | 0.9451 |
S3 | 0.0044 | 0.9795 | 0.0029 | 0.9943 | 0.0004 | 0.7059 |
Sample Name | k1 (min−1) | k2 (min−1) | k3 (min−1) | |||
---|---|---|---|---|---|---|
S2 | 0.0055 | 0.9895 | 0.0034 | 0.9906 | 0.0008 | 0.9451 |
D | 0.0046 | 0.9958 | 0.0364 | 0.9951 | 0.0011 | 0.5745 |
M | 0.0084 | 0.9911 | 0.0273 | 0.9968 | 0.0009 | 0.8635 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udrescu, A.; Florica, S.; Chivu, M.; Mercioniu, I.; Matei, E.; Baibarac, M. Rhodamine B Photodegradation in Aqueous Solutions Containing Nitrogen Doped TiO2 and Carbon Nanotubes Composites. Molecules 2021, 26, 7237. https://doi.org/10.3390/molecules26237237
Udrescu A, Florica S, Chivu M, Mercioniu I, Matei E, Baibarac M. Rhodamine B Photodegradation in Aqueous Solutions Containing Nitrogen Doped TiO2 and Carbon Nanotubes Composites. Molecules. 2021; 26(23):7237. https://doi.org/10.3390/molecules26237237
Chicago/Turabian StyleUdrescu, Adelina, Stefania Florica, Madalina Chivu, Ionel Mercioniu, Elena Matei, and Mihaela Baibarac. 2021. "Rhodamine B Photodegradation in Aqueous Solutions Containing Nitrogen Doped TiO2 and Carbon Nanotubes Composites" Molecules 26, no. 23: 7237. https://doi.org/10.3390/molecules26237237
APA StyleUdrescu, A., Florica, S., Chivu, M., Mercioniu, I., Matei, E., & Baibarac, M. (2021). Rhodamine B Photodegradation in Aqueous Solutions Containing Nitrogen Doped TiO2 and Carbon Nanotubes Composites. Molecules, 26(23), 7237. https://doi.org/10.3390/molecules26237237