Synthesis and Preliminary Anticancer Activity Assessment of N-Glycosides of 2-Amino-1,3,4-thiadiazoles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
Proposed Mechanism
2.2. Biological Evaluation and Anticancer Screening
2.2.1. Viability of Cancer Cell Lines
2.2.2. Cytostatic Effects on Cancer Cell Lines followed by Cell Cycle
2.2.3. Death Mechanism Induced in Cancer Lines
3. Materials and Methods
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. Cell Lines and Culture Conditions
3.2.2. Cytotoxicity Test by MTT Assay
3.2.3. Cell Cycle and Apoptosis Analysis
3.2.4. Statistical Analysis
Suplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Othman, A.A.; Kihel, M.; Amara, S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arab. J. Chem. 2019, 12, 1660–1675. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Xu, L.; Wang, Y.; Wan, J.; Liu, T.; Liu, W.; Wan, Y.; Zhang, B.; Wang, R.; Lim, Q. Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents. Drug Dev. Res. 2020, 81, 402–418. [Google Scholar] [CrossRef]
- Asif, M.; Abida. A mini review on thiadiazole compounds and their pharmacological interest. Int. J. Pharm. Chem. Anal. 2018, 5, 156–164. [Google Scholar] [CrossRef]
- Serban, G. Synthetic Compounds with 2-Amino-1,3,4-Thiadiazole Moiety Against Viral Infections. Molecules 2020, 25, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahadi, H.; Shokrzadeh, M.; Hosseini-khah, Z.; Ghassemi barghi, N.; Ghasemian, M.; Emadi, E.; Zargari, M.; Razzaghi-Asl, N.; Emami, S. Synthesis and biological assessment of ciprofloxacin-derived 1,3,4-thiadiazoles as anticancer agents. Bioorg. Chem. 2020, 105, 104383. [Google Scholar] [CrossRef] [PubMed]
- Szeliga, M. Thiadiazole derivatives as anticancer agents. Pharmacol. Rep. 2020, 72, 1079–1100. [Google Scholar] [CrossRef]
- Farahat, A.; Tawfik, S.S.; Liu, M. Antiviral activity of thiadiazoles, oxadiazoles, triazoles and thiazoles. ARKIVOC 2020, part i, 180–210. [Google Scholar] [CrossRef]
- Hu, Y.; Li, C.Y.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. 1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal, Agricultural, and Materials Chemistry. Chem. Rev. 2014, 114, 5572–5610. [Google Scholar] [CrossRef]
- Zong, G.; Zhao, H.; Jiang, R.; Zhang, J.; Liang, S.; Li, B.; Shi, Y.; Wang, D. Design, Synthesis and Bioactivity of Novel Glycosylthiadiazole Derivatives. Molecules 2014, 19, 7832–7849. [Google Scholar] [CrossRef] [Green Version]
- Nath, M.; Sulaxna; Song, X.; Eng, G. Synthesis, spectral and thermal studies of some organotin(IV) derivatives of 5-amino-3H-1,3,4-thiadiazole-2-thione. Spectrochim. Acta Part A 2006, 64, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Fahlisch, B.; Braun, R.; Schultz, K.W. A SimpIe Synthesis of 1,3,4-Thiadiazole. Angew. Chem. Intern. Edit. 1967, 6, 361–362. [Google Scholar] [CrossRef]
- Janowska, S.; Paneth, A.; Wujec, M. Cytotoxic Properties of 1,3,4-Thiadiazole Derivatives—A Review. Molecules 2020, 25, 4309. [Google Scholar] [CrossRef]
- Flefel, E.M.; El-Sayed, W.A.; Mohamed, A.M.; El-Sofany, W.I.; Awad, H.M. Synthesis and Anticancer Activity of New 1-Thia-4-azaspiro[4.5]decane, Their Derived Thiazolopyrimidine and 1,3,4-Thiadiazole Thioglycosides. Molecules 2017, 22, 170. [Google Scholar] [CrossRef]
- Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem. 2015, 92, 156–177. [Google Scholar] [CrossRef] [PubMed]
- Horton, D.; Priebe, W.; Varela, O. Synthesis and antitumor activity of 2′-bromo- and 2′-chloro-3′-acetoxy-3′-deaminodaunorubicin analogs. Carbohydr. Res. 1985, 144, 305–315. [Google Scholar] [CrossRef]
- Horton, D.; Priebe, W.; Varela, O. Halogenation of 1,5-anhydrohex-1-enitols (glycals). Influence of the C-6 substituent. J. Org. Chem. 1986, 51, 3479–3485. [Google Scholar] [CrossRef]
- Horton, D.; Priebe, W.; Sznaidman, M. Iodoalkoxylation of 1,5-anhydro-2-deoxy-hex-1-enitols (glycals). Carbohydr. Res. 1990, 205, 71–86. [Google Scholar] [CrossRef]
- Vudhgiri, S.; Koude, D.; Veeragoni, D.K.; Misra, S.; Prasad, R.B.N.; Jala, R.C.R. Synthesis and biological evaluation of 5-fatty-acylamido-1, 3, 4-thiadiazole-2-thioglycosides. Bioorg. Med. Chem. Lett. 2017, 27, 3370–3373. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.; Sharma, A.; Kaundal, A. A Review on 1,3,4-Thiadiazole Derivatives. Indian J. Pharm. Sci. 2014, 4, 165–172. [Google Scholar]
- EL-Naggar, S.A.; El-Barbary, A.A.; Mansour, M.A.; Abdel-Shafy, F.; Talat, S. Anti-tumor Activity od Some 1,3,4-thiadiazoles and 1,2,4-triazune Derivatives against Ehrlichs Ascites Carcinoma. Int. J. Cancer Res. 2011, 7, 278–288. [Google Scholar] [CrossRef]
- Ibrahim, D.A. Synthesis and biological evaluation of 3,6-disubstituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as a novel class of potential anti-tumor agents. Eur. J. Med. Chem. 2009, 44, 2776–2781. [Google Scholar] [CrossRef] [PubMed]
- Karki, S.S.; Panjamurthy, K.; Kumar, S.; Nambiar, M.; Ramareddy, S.A.; Chiruvella, K.K.; Raghavan, S.C. Synthesis and biological evaluation of novel 2-aralkyl-5-substituted-6-(4′-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent anticancer agents. Eur. J. Med. Chem. 2011, 46, 2109–2116. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, N.M.; Chang, K.H.; Shah, K. Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles. Eur. J. Med. Chem. 2010, 45, 4664–4668. [Google Scholar] [CrossRef]
- Noolvi, M.N.; Patel, H.M.; Singh, N.; Gadad, A.K.; Cameotra, S.S.; Badiger, A. Synthesis and anticancer evaluation of novel 2-cyclopropylimidazo[2,1-b][1,3,4]-thiadiazole derivatives. Eur. J. Med. Chem. 2011, 46, 4411–4418. [Google Scholar] [CrossRef]
- Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Kharya, M.D. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors. Bioorganic Med. Chem. Lett. 2011, 21, 5735–5738. [Google Scholar] [CrossRef]
- Rzeski, W.; Matysiak, J.; Kandefer-Szerszeń, M. Anticancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound. Bioorganic Med. Chem. 2007, 15, 3201–3207. [Google Scholar] [CrossRef] [PubMed]
- Terzioglu, N.; Gürsoy, A. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-b][1,3,4]thiadiazole-5-carbohydrazide. Eur. J. Med. Chem. 2003, 38, 781–786. [Google Scholar] [CrossRef]
- Yang, X.H.; Wen, Q.; Zhao, T.T.; Sun, J.; Li, X.; Xing, M.; Lu, X.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents. Bioorganic Med. Chem. 2012, 20, 1181–1187. [Google Scholar] [CrossRef]
- Calvaresia, E.C.; Hergenrother, P.J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. 2013, 4, 2319–2333. [Google Scholar] [CrossRef] [Green Version]
- Priebe, W.; Szymanski, S.; Fokt, I.; Conrad, C.; Madden, T. Iodo-Hexose Compounds Useful to Treat Cancer. U.S. Patent No.: US 8,299,033, 2010. [Google Scholar]
- Gammon, D.W.; Sels, B.F. Other Methods for Glycoside Synthesis: Dehydro and Anhydro Derivatives. In Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; Demchenko, A.A., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 416–448. [Google Scholar]
- Veyrières, A. Special Problems in Glycosylation Reactions: 2-Deoxy Sugars. In Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G.W., Sinaý, P., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; pp. 367–405. [Google Scholar]
- Marzabadi, C.H.; Franck, R.W. The Synthesis of 2-Deoxyglycosides: 1988–1999. Tetrahedron 2000, 56, 8385–8417. [Google Scholar] [CrossRef]
- Hou, D.; Lowary, T.L. Recent advances in the synthesis of 2-deoxy-glycosides. Carbohydr. Res. 2009, 344, 1911–1940. [Google Scholar] [CrossRef]
- Bennett, C.S.; Galan, M.C. Methods for 2-Deoxyglycoside Synthesis. Chem. Rev. 2018, 118, 7931–7985. [Google Scholar] [CrossRef] [Green Version]
- Fokt, I.; Szymanski, S.; Skora, S.; Cybulski, M.; Madden, T.; Priebe, W. d-Glucose- and d-mannose-based antimetabolites. Part 2. Facile synthesis of 2-deoxy-2-halo-d-glucoses and -d-mannoses. Carbohydr. Res. 2009, 344, 1464–1473. [Google Scholar] [CrossRef]
- Kudelko, A.; Olesiejuk, M.; Luczynski, M.; Swiatkowski, M.; Sieranski, T.; Kruszynski, R. 1,3,4-Thiadiazole-Containing Azo Dyes: Synthesis, Spectroscopic Properties and Molecular Structure. Molecules 2020, 25, 2822. [Google Scholar] [CrossRef]
- Rae, D.R.; Belmont, P. Silver(I) Imidazolate. In Encyclopedia of Reagents for Organic Synthesis; John Wiley&Sons Ltd.: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Thiem, J.; Karl, H.; Schweitner, J. Synthese α-verknüpfter 2′-Deoxy-2′-iododisaccharide. Synthesis 1978, 9, 696–698. [Google Scholar] [CrossRef]
- Lemieux, R.U.; Fraser-Reid, B. The Mechanisms of the Halogenations and Halogenomethoxylations of D-Glucal Triacetate, D-Galactal Triacetate, and 3,4-Dihydropyran. Can. J. Chem. 1965, 45, 1460–1475. [Google Scholar] [CrossRef]
- Igarashi, K.; Honma, T.; Imagawa, T. Addition reactions of glycals. V. Solvent effects in the chlorine addition to D-glucal triacetate. J. Org. Chem. 1970, 35, 610–616. [Google Scholar] [CrossRef]
- Boullanger, P.; Descotes, G. Additions comparées des halogenès sur le 3,4,6-tri-O-acétyl-1,5-anhydro-1,5-didésoxy-, d-arabino-hex-1-énitol et l’analogue 3,4,6-tri-O-benzylé; effets de solvant sur la formation spécifique des dérivés 1,2-didésoxy-1,2-dihalogéno-α-d-glucopyranoses. Carbohydr. Res. 1976, 51, 55–63. [Google Scholar] [CrossRef]
- Thiem, J.; Klaffke, W. Syntheses of deoxy oligosaccharides. Top. Curr. Chem. 1990, 154, 285–332. [Google Scholar] [CrossRef]
- Nowacki, A.; Walczak, D.; Liberek, B. Fully acetylated 1,5-anhydro-2-deoxypent-1-enitols and 1,5-anhydro-2,6-dideoxyhex-1-enitols in DFT level theory conformational studies. Carbohydr. Res. 2012, 352, 177–185. [Google Scholar] [CrossRef]
- Danishefsky, S.J.; Bilodeau, M.T. Glycals in Organic Synthesis: The Evolution of Comprehensive Strategies for the Assembly of Oligosaccharides and Glycoconjugates of Biological Consequence. Angew. Chem. Int. Ed. 1996, 35, 1380–1419. [Google Scholar] [CrossRef]
- Dudkin, V.Y.; Miller, J.S.; Danishefsky, S.J. Chemical Synthesis of Normal and Transformed PSA Glycopeptides. J. Am. Chem. Soc. 2004, 126, 736–738. [Google Scholar] [CrossRef]
- Geng, X.; Dudkin, V.Y.; Mandal, M.; Danishefsky, S.J. In Pursuit of Carbohydrate-Based HIV Vaccines, Part 2: The Total Synthesis of High-Mannose-Type gp120 Fragments—Evaluation of Strategies Directed to Maximal Convergence. Angew. Chem. Int. Ed. 2004, 43, 2562–2565. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, P.P.; Kim, H.M.; Zatorski, A.; Park, T.K.; Ragupathi, G.; Livingston, P.O.; Live, D.; Danishefsky, S.J. Strategy in Oligosaccharide Synthesis: An Application to a Concise Total Synthesis of the KH-1(adenocarcinoma) Antigen. J. Am. Chem. Soc. 1998, 120, 1600–1614. [Google Scholar] [CrossRef]
- Kwon, O.; Danishefsky, S.J. Synthesis of Asialo GM1. New Insights in the Application of Sulfonamidoglycosylation in Oligosaccharide Assembly: Subtle Proximity Effects in the Stereochemical Governance of Glycosidation. J. Am. Chem. Soc. 1998, 120, 1588–1599. [Google Scholar] [CrossRef]
- Roberge, J.Y.; Beebe, X.; Danishefsky, S.J. Convergent Synthesis of N-Linked Glycopeptides on a Solid Support. J. Am. Chem. Soc. 1998, 120, 3915–3927. [Google Scholar] [CrossRef]
- Wang, Z.G.; Warren, J.D.; Dudkin, V.Y.; Zhang, X.; Iserloh, U.; Visser, M.; Eckhardt, M.; Seeberger, P.H.; Danishefsky, S.J. A highly convergent synthesis of an N-linked glycopeptide presenting the H-type 2 human blood group determinant. Tetrahedron 2006, 62, 4954–4978. [Google Scholar] [CrossRef]
- Nagorny, P.; Fasching, B.; Li, X.; Chen, G.; Aussedat, B.; Danishefsky, S.J. Toward Fully Synthetic Homogeneous β-Human Follicle-Stimulating Hormone (β-hFSH) with a Biantennary N-Linked Dodecasaccharide. Synthesis of β-hFSH with Chitobiose Units at the Natural Linkage Sites. J. Am. Chem. Soc. 2009, 131, 5792–5799. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Young, V.G., Jr.; Lohani, S.; Live, D.; Barany, G. Syntheses of TN building blocks Nα-(9-fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy-α-d-galactopyranosyl)-l-serine/l-threonine pentafluorophenyl esters: Comparison of protocols and elucidation of side reactions. Carbohydr. Res. 2005, 340, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Lafont, D.; Descotes, G. Synthèse de phosphoramidates de 2-désoxy-2-iodoglycosyles. Carbohydr. Res. 1987, 166, 195–209. [Google Scholar] [CrossRef]
- Gammon, D.W.; Kinfe, H.H.; De Vos, D.E.; Jacobs, P.A.; Sels, B.F. A simple, efficient alternative for highly stereoselective iodoacetoxylation of protected glycals. Tetrahedron Lett. 2004, 45, 9533–9536. [Google Scholar] [CrossRef]
- Bellucci, G.; Chiappe, C.; D’Andrea, F.; Lo Moro, G. Stereoelectronic control in two-step additions to tri-O-benzyl-d-glucal initiated by electrophilic halogens. Tetrahedron 1997, 53, 3417–3424. [Google Scholar] [CrossRef]
- Boschi, A.; Chiappe, C.; De Rubertis, A.; Ruasse, M.F. Substituent Dependence of the Diastereofacial Selectivity in Iodination and Bromination of Glycals and Related Cyclic Enol Ethers. J. Org. Chem. 2000, 65, 8470–8477. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, R.U.; Hendriks, K.B.; Stick, R.V.; James, K. Halide ion catalyzed glycosidation reactions Syntheses of.alpha.-linked disaccharides. J. Am. Chem. Soc. 1975, 97, 4056–4062. [Google Scholar]
- van Well, R.M.; Ravindranathan Kartha, K.P.; Field, R.A. Iodine Promoted Glycosylation with Glycosyl Iodides: α-Glycoside Synthesis. J. Carbohydr. Chem. 2005, 24, 463–474. [Google Scholar] [CrossRef]
- Priebe, W.; Grynkiewicz, G. Formation and Reactions of Glycal Derivatives. In Glycoscience: Chemistry and Chemical Biology I–III; Fraser-Reid, B.O., Tatsuta, K., Thiem, J., Eds.; Springer: Berlin, Germany, 2001; pp. 749–783. [Google Scholar]
- Gervay, J. Glycosyl Iodides in Organic Chemistry. In Organic Synthesis: Theory and Applications; JAI Press Monograph Series; JAI Press: Greenwich, CT, USA, 1998; Volume 4, pp. 121–153. [Google Scholar]
- Meloncelli, P.J.; Martin, A.D.; Lowary, T.L. Glycosyl iodides. History and recent Advances. Carbohydr. Res. 2009, 344, 1110–1122. [Google Scholar] [CrossRef]
- Byczek-Wyrostek, A.; Kitel, R.; Rumak, K.; Skonieczna, M.; Kasprzycka, A.; Walczak, W. Simple 2(5H)-furanone derivatives with selective cytotoxicity towards non-small cell lung cancer cell line A549—Synthesis, structure-activity relationship and biological evaluation. Eur. J. Med. Chem. 2018, 150, 687–697. [Google Scholar] [CrossRef]
- Mielanczyk, A.; Mrowiec, K.; Kupczak, M.; Mielanczyk, Ł.; Scieglinska, D.; Gogler-Piglowska, A.; Michalski, M.; Gabriel, A.; Neugebauer, D.; Skonieczna, M. Synthesis and in vitro cytotoxicity evaluation of star-shaped polymethacrylic conjugates with methotrexate or acitretin as potential antipsoriatic prodrugs. Eur. J. Pharmacol. 2020, 866, 172804–172816. [Google Scholar] [CrossRef]
- Nackiewicz, J.; Kliber-Jasik, M.; Skonieczna, M. A novel pro-apoptotic role of zinc octacarboxyphthalocyanine in melanoma me45 cancer cell’s photodynamic therapy (PDT). J. Photochem. Photobiol. B Biol. 2019, 190, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Skonieczna, M.; Hudy, D.; Hejmo, T.; Buldak, R.J.; Adamiec, M.; Kukla, M. The adipokine vaspin reduces apoptosis in human hepatocellular carcinoma (Hep-3B) cells, associated with lower levels of NO and superoxide anion. BMC Pharmacol. Toxicol. 2019, 20, 58–66. [Google Scholar] [CrossRef] [PubMed]
Entry | Solvent | Iodine Donor | Yield |
a | THF | - | n.r. |
b | CH2Cl2/DMF | - | n.r. |
c | CH2Cl2/DMSO | - | n.r. |
d | CH2Cl2 | 1eq of I2 | traces |
e | CH2Cl2/DMF | 1eq of I2 | traces |
f | CH2Cl2/DMSO | 1eq of I2 | traces |
g | THF | 0.5eq of I2 | n.r. |
h | THF | 1eq of I2 | 35%(α/β=1:9) |
i | THF | 2eq of I2 | 71%(α/β = 1:11) |
j | THF | 2eq of NIS | 30%(α/β=1:1) |
Entry | Glycal (1) | Nucleophile (2) | Product (3) | Yield (%) | Ratio (α/β) |
a | 71 | 1/11 | |||
b | 47 | 1/1.7 | |||
c | 55 | 1/99 | |||
d | 49 | 1/99 | |||
e | 51 | 1/99 | |||
f | 68 | 4.4/1 | |||
g | 58 | 1/1.3 | |||
h | 69 | 1/99 | |||
i | 72 | 2.3/1 | |||
j | 62 | 3.8/1 | |||
k | 45 | 4/1 | |||
l | 58 | 1.4/1 | |||
m | 42 | 1/1 |
Compound | MCF-7 | HCT116 | HeLa | ||||||
---|---|---|---|---|---|---|---|---|---|
MTT (Compound conc. 100 µM) | Cells in sub-G1 Phase | Early Apoptotic Cells | MTT (Compound conc. 100 µM) | Cells in sub-G1 Phase | Early Apoptotic Cells | MTT (Compound conc. 100 µM) | Cells in sub-G1 Phase | Early Apoptotic Cells | |
3a | (-) | ↑↑ | ↓ | ↓ | ↑ | ↑↑ | (-) | ↑↑↑ | ↑↑↑ |
3b | (-) | ↑↑ | ↓ | ↓ | ↑ | ↑↑ | ↓ | ↑↑↑ | ↑↑ |
3c | ↓↓ | ↑↑ | ↑ | ↓↓ | ↑ | (-) | ↓↓ | ↑↑↑ | ↑↑ |
3f | (-) | ↑ | ↓ | ↓ | (-) | ↑↑ | ↓ | ↑↑↑ | ↑↑ |
3g | (-) | ↓ | ↓ | ↓ | (-) | ↑↑ | ↓ | ↑↑↑ | ↑↑ |
3h | (-) | ↑ | ↓ | (-) | ↑ | ↓ | ↓ | ↑↑↑ | ↑↑ |
3j | ↓↓ | ↑ | ↓ | ↓ | ↑↑ | ↑↑ | ↓ | ↑↑↑ | ↑↑ |
3l | ↓ | (-) | ↓ | ↓ | ↑↑ | ↑↑ | (-) | ↑↑↑ | ↑↑ |
3m | (-) | (-) | ↓ | ↓ | ↑ | ↑ | ↓ | ↑↑↑ | ↑↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurawska, K.; Stokowy, M.; Kapica, P.; Olesiejuk, M.; Kudelko, A.; Papaj, K.; Skonieczna, M.; Szeja, W.; Walczak, K.; Kasprzycka, A. Synthesis and Preliminary Anticancer Activity Assessment of N-Glycosides of 2-Amino-1,3,4-thiadiazoles. Molecules 2021, 26, 7245. https://doi.org/10.3390/molecules26237245
Żurawska K, Stokowy M, Kapica P, Olesiejuk M, Kudelko A, Papaj K, Skonieczna M, Szeja W, Walczak K, Kasprzycka A. Synthesis and Preliminary Anticancer Activity Assessment of N-Glycosides of 2-Amino-1,3,4-thiadiazoles. Molecules. 2021; 26(23):7245. https://doi.org/10.3390/molecules26237245
Chicago/Turabian StyleŻurawska, Katarzyna, Marcin Stokowy, Patryk Kapica, Monika Olesiejuk, Agnieszka Kudelko, Katarzyna Papaj, Magdalena Skonieczna, Wiesław Szeja, Krzysztof Walczak, and Anna Kasprzycka. 2021. "Synthesis and Preliminary Anticancer Activity Assessment of N-Glycosides of 2-Amino-1,3,4-thiadiazoles" Molecules 26, no. 23: 7245. https://doi.org/10.3390/molecules26237245
APA StyleŻurawska, K., Stokowy, M., Kapica, P., Olesiejuk, M., Kudelko, A., Papaj, K., Skonieczna, M., Szeja, W., Walczak, K., & Kasprzycka, A. (2021). Synthesis and Preliminary Anticancer Activity Assessment of N-Glycosides of 2-Amino-1,3,4-thiadiazoles. Molecules, 26(23), 7245. https://doi.org/10.3390/molecules26237245