Current Advances towards 4-Hydroxybutyrate Containing Polyhydroxyalkanoates Production for Biomedical Applications
Abstract
:1. Introduction
2. Medical Application of P4HB
3. Microbial Synthesis of P4HB
3.1. Natural 4HB Polymer Producers and 4HB-CoA Supplying Pathway
3.2. Precursor Supplementation to Yield 4HB Copolymers
3.3. Microbial Synthesis of 4HB Terpolymer
3.4. Utilization of Low-Cost Substrate for 4HB Polymer Synthesis
3.5. Cultivation Parameters Affecting 4HB Polymer Synthesis
4. Metabolic Engineering to Synthesize 4HB Polymers
4.1. Construction of Recombinant E. coli to Synthesize 4HB Polymer
4.2. Engineering H. bluephagenesis TD01 for Synthesis of 4HB Polymer
4.3. Synthesis of 4HB Polymer in Other Microbes
5. Conclusion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Accinelli, C.; Saccà, M.L.; Mencarelli, M.; Vicari, A. Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere 2012, 89, 136–143. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, S.; Singh, D. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. Int. J. Biol. Macromol. 2020, 147, 1255–1267. [Google Scholar] [CrossRef]
- Reddy, C.S.K.; Ghai, R.; Kalia, V. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef]
- Chen, G.Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef] [PubMed]
- Steinbüchel, A.; Lütke-Eversloh, T. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 2003, 16, 81–96. [Google Scholar] [CrossRef]
- Huang, P.; Okoshi, T.; Mizuno, S.; Hiroe, A.; Tsuge, T. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp. Biosci. Biotechnol. Biochem. 2018, 82, 1615–1623. [Google Scholar] [CrossRef]
- McAdam, B.; Brennan Fournet, M.; McDonald, P.; Mojicevic, M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.L.; Perin, G.B.; Felisberti, M.I. Plasticization of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with an Oligomeric Polyester: Miscibility and Effect of the Microstructure and Plasticizer Distribution on Thermal and Mechanical Properties. ACS Omega 2021, 6, 3278–3290. [Google Scholar] [CrossRef]
- Han, J.; Wu, L.P.; Liu, X.B.; Hou, J.; Zhao, L.L.; Chen, J.Y.; Zhao, D.H.; Xiang, H. Biodegradation and biocompatibility of haloarchaea-produced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials 2017, 139, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Utsunomia, C.; Ren, Q.; Zinn, M. Poly (4-hydroxybutyrate): Current state and perspectives. Front. Bioeng. Biotechnol. 2020, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.P.; Badhwar, A.; Shah, D.V.; Rizk, S.; Eldridge, S.N.; Gagne, D.H.; Ganatra, A.; Darois, R.E.; Williams, S.F.; Tai, H.C.; et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications. J. Surg. Res. 2013, 184, 766–773. [Google Scholar] [CrossRef]
- Le Meur, S.; Zinn, M.; Egli, T.; Thöny-Meyer, L.; Ren, Q. Poly (4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microb. Cell Fact. 2013, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.Y.; Yuan, X.X.; Shi, Z.Y.; Meng, D.C.; Jiang, W.J.; Wu, L.P.; Chen, J.C.; Chen, G.Q. Hyperproduction of poly (4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb. Cell Fact. 2012, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.P.; Williams, S.F. Medical applications of poly-4-hydroxybutyrate: A strong flexible absorbable biomaterial. Biochem. Eng. J. 2003, 16, 97–105. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Chen, G.Q. Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif. Cells Blood Substit. Biotechnol. 2009, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Van Rooijen, M.M.J.; Jairam, A.P.; Tollens, T.; Jørgensen, L.N.; de Vries Reilingh, T.S.; Piessen, G.; Köckerling, F.; Miserez, M.; Windsor, A.C.J.; Berrevoet, F.; et al. A post-market, prospective, multi-center, single-arm clinical investigation of Phasix™ mesh for VHWG grade 3 midline incisional hernia repair: A research protocol. BMC Surgery 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.R.; Deeken, C.R.; Martindale, R.G.; Rosen, M.J. Evaluation of a fully absorbable poly-4-hydroxybutyrate/absorbable barrier composite mesh in a porcine model of ventral hernia repair. Surg. Endosc. 2016, 30, 3691–3701. [Google Scholar] [CrossRef] [Green Version]
- Molina, C.P.; Hussey, G.S.; Liu, A.; Eriksson, J.; D’Angelo, W.A.; Badylak, S.F. Role of 4-hydroxybutyrate in increased resistance to surgical site infections associated with surgical meshes. Biomaterials 2021, 267, 120493. [Google Scholar] [CrossRef] [PubMed]
- Dvorin, E.L.; Wylie-Sears, J.; Kaushal, S.; Martin, D.P.; Bischoff, J. Quantitative Evaluation of Endothelial Progenitors and Cardiac Valve Endothelial Cells: Proliferation and Differentiation on Poly-glycolic acid/Poly-4-hydroxybutyrate Scaffold in Response to Vascular Endothelial Growth Factor and Transforming Growth Factor β1. Tissue Eng. 2003, 9, 487–493. [Google Scholar]
- Verhorstert, K.W.; Guler, Z.; de Boer, L.; Riool, M.; Roovers, J.P.W.; Zaat, S.A. In Vitro Bacterial Adhesion and Biofilm Formation on Fully Absorbable Poly-4-hydroxybutyrate and Nonabsorbable Polypropylene Pelvic Floor Implants. ACS Appl. Mater. Interfaces 2020, 12, 53646–53653. [Google Scholar] [CrossRef]
- Deeken, C.R.; Matthews, B.D. Characterization of the mechanical strength, resorption properties, and histologic characteristics of a fully absorbable material (Poly-4-hydroxybutyrate—PHASIX Mesh) in a porcine model of hernia repair. Int. Sch. Res. Not. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, H.; Iqbal, N.M.; Sipaut, C.S.; Abdullah, A.A.A. Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer with various monomer compositions by Cupriavidus sp. USMAA2-4. Appl. Biochem. Biotechnol. 2011, 164, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.H.; Song, J.J.; Yoon, S.C. Biosynthesis of copolyesters by Hydrogenophaga pseudoflava from various lactones. Can. J. Microbiol. 1995, 41, 60–67. [Google Scholar] [CrossRef]
- Söhling, B.; Gottschalk, G. Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri. J. Bacteriol. 1996, 178, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Sedlacek, P.; Pernicova, I.; Novackova, I.; Kourilova, X.; Kalina, M.; Kovalcik, A.; Koller, M.; Nebesarova, J.; Krzyzanek, V.; Hrubanova, K.; et al. Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers–2. Material study on the produced copolymers. Polymers 2020, 12, 1298. [Google Scholar] [CrossRef]
- Cesário, M.T.; Raposo, R.S.; de Almeida, M.C.M.; Van Keulen, F.; Ferreira, B.S.; Telo, J.P.; da Fonseca, M.M.R. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. Int. J. Biol. Macromol. 2014, 71, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Nakamura, S.; Hiramitsu, M.; Doi, Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Int. 1996, 39, 169–174. [Google Scholar] [CrossRef]
- Kimura, H.; Ohura, T.; Takeishi, M.; Nakamura, S.; Doi, Y. Effective microbial production of poly (4-hydroxybutyrate) homopolymer by Ralstonia eutropha H16. Polym. Int. 1999, 48, 1073–1079. [Google Scholar] [CrossRef]
- Cavalheiro, J.M.; Raposo, R.S.; de Almeida, M.C.M.; Cesário, M.T.; Sevrin, C.; Grandfils, C.; Da Fonseca, M.M.R. Effect of cultivation parameters on the production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and poly (3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour. Technol. 2012, 111, 391–397. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, B.S. Production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. New Biotechnol. 2011, 28, 719–724. [Google Scholar] [CrossRef]
- Chanprateep, S.; Kulpreecha, S. Production and characterization of biodegradable terpolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. J. Biosci. Bioeng. 2006, 101, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Steinbüchel, A.; Valentin, H.E.; Schönebaum, A. Application of recombinant gene technology for production of polyhydroxyalkanoic acids: Biosynthesis of poly (4-hydroxybutyric acid) homopolyester. J. Environ. Polym. Degrad. 1994, 2, 67–74. [Google Scholar] [CrossRef]
- Vigneswari, S.; Nik, L.A.; Majid, M.I.A.; Amirul, A.A. Improved production of poly (3-hydroxybutyrate-co-4-hydroxbutyrate) copolymer using a combination of 1, 4-butanediol and γ-butyrolactone. World J. Microbiol. Biotechnol. 2010, 26, 743–746. [Google Scholar] [CrossRef]
- Huong, K.H.; Teh, C.H.; Amirul, A.A. Microbial-based synthesis of highly elastomeric biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic. Int. J. Biol. Macromol. 2017, 101, 983–995. [Google Scholar] [CrossRef]
- Aziz, N.A.; Sipaut, C.S.; Abdullah, A.A.A. Improvement of the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolyester by manipulating the culture condition. J. Chem. Technol. Biotechnol. 2012, 87, 1607–1614. [Google Scholar] [CrossRef]
- Ramachandran, H.; Amirul, A.A. Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P (3HB-co-4HB). J. Chem. Technol. Biotechnol. 2013, 88, 1030–1038. [Google Scholar] [CrossRef]
- Hermann-Krauss, C.; Koller, M.; Muhr, A.; Fasl, H.; Stelzer, F.; Braunegg, G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, M.; Hesse, P.; Bona, R.; Kutschera, C.; Atlić, A.; Braunegg, G. Biosynthesis of high quality polyhydroxyalkanoate co-and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol. Symp. 2007, 253, 33–39. [Google Scholar] [CrossRef]
- Povolo, S.; Romanelli, M.G.; Basaglia, M.; Ilieva, V.I.; Corti, A.; Morelli, A.; Chiellini, E.; Casella, S. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. New Biotechnol. 2013, 30, 629–634. [Google Scholar] [CrossRef]
- Valentin, H.E.; Dennis, D. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J. Biotechnol. 1997, 58, 33–38. [Google Scholar] [CrossRef]
- Li, Z.J.; Shi, Z.Y.; Jian, J.; Guo, Y.Y.; Wu, Q.; Chen, G.Q. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab. Eng. 2010, 12, 352–359. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Z.Y.; Wu, Q.; Chen, G.Q. Microbial production of 4-hydroxybutyrate, poly-4-hydroxybutyrate, and poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by recombinant microorganisms. Appl. Microbiol. Biotechnol. 2009, 84, 909–916. [Google Scholar] [CrossRef]
- Kämpf, M.M.; Thöny-Meyer, L.; Ren, Q. Biosynthesis of poly (4-hydroxybutyrate) in recombinant Escherichia coli grown on glycerol is stimulated by propionic acid. Int. J. Biol. Macromol. 2014, 71, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.C.; Shi, Z.Y.; Wu, L.P.; Zhou, Q.; Wu, Q.; Chen, J.C.; Chen, G.Q. Production and characterization of poly (3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab. Eng. 2012, 14, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yin, J.; Ye, J.; Zhang, H.; Che, X.; Ma, Y.; Li, M.; Wu, L.P.; Chen, G.Q. Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour. Technol. 2017, 244, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Yin, J.; Ye, J.W.; Xiang, R.J.; Ning, Z.Y.; Huang, W.Z.; Chen, G.Q. Promoter engineering for enhanced P (3HB-co-4HB) production by Halomonas bluephagenesis. ACS Synth. Biol. 2018, 7, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Hu, D.; Che, X.; Jiang, X.; Li, T.; Chen, J.; Zhang, H.M.; Chen, G.Q. Engineering of Halomonas bluephagenesis for low cost production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab. Eng. 2018, 47, 143–152. [Google Scholar] [CrossRef]
- Ye, J.; Huang, W.; Wang, D.; Chen, F.; Yin, J.; Li, T.; Zhang, H.; Chen, G.Q. Pilot scale-up of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol. J. 2018, 13, 1800074. [Google Scholar] [CrossRef]
- Cal, A.J.; Kibblewhite, R.E.; Sikkema, W.D.; Torres, L.F.; Hart-Cooper, W.M.; Orts, W.J.; Lee, C.C. Production of polyhydroxyalkanoate copolymers containing 4-hydroxybutyrate in engineered Bacillus megaterium. Int. J. Biol. Macromol. 2021, 168, 86–92. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Bryant, D.A. Metabolic engineering of Synechococcus sp. PCC 7002 to produce poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-4-hydroxybutyrate. Metab. Eng. 2015, 32, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Segawa, A.; Kunioka, M. Biosynthesis and characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 1990, 12, 106–111. [Google Scholar] [CrossRef]
- Saito, Y.; Doi, Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 1994, 16, 99–104. [Google Scholar] [CrossRef]
- Kimura, H.; Yoshida, Y.; Doi, Y. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Pseudomonas acidovorans. Biotechnol. Lett. 1992, 14, 445–450. [Google Scholar] [CrossRef]
- Tamer, I.M.; Moo-Young, M.; Chisti, Y. Disruption of Alcaligenes latus for recovery of poly (β-hydroxybutyric acid): Comparison of high-pressure homogenization, bead milling, and chemically induced lysis. Ind. Eng. Chem. Res. 1998, 37, 1807–1814. [Google Scholar] [CrossRef]
- Hiramitsu, M.; Koyama, N.; Doi, Y. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Alcaligenes latus. Biotechnol. Lett. 1993, 15, 461–464. [Google Scholar] [CrossRef]
- Huong, K.H.; Kannusamy, S.; Lim, S.Y.H.; Amirul, A.A. Biosynthetic enhancement of single-stage poly (3-hydroxybutyrate-co-4-hydroxybutyrate) production by manipulating the substrate mixtures. J. Ind. Microbiol. Biotechnol. 2015, 42, 1291–1297. [Google Scholar] [CrossRef]
- Kimura, H.; Ohura, T.; Matsumoto, T.; Ikarashi, T. Effective biosynthesis of poly (3-hydoxy-butyrate-co-4-hydroxybutyrate) with high 4-hydroxybutyrate fractions by Wautersia eutropha in the presence of α-amino acids. Polym. Int. 2008, 57, 149–157. [Google Scholar] [CrossRef]
- Madden, L.A.; Anderson, A.J.; Asrar, J.; Berger, P.; Garrett, P. Production and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) synthesized by Ralstonia eutropha in fed-batch cultures. Polymer 2000, 41, 3499–3505. [Google Scholar] [CrossRef]
- Abd Aziz, N.; Huong, K.H.; Sipaut, C.S.; Amirul, A.A. A fed-batch strategy to produce high poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer yield with enhanced mechanical properties in bioreactor. Bioprocess Biosyst. Eng. 2017, 40, 1643–1656. [Google Scholar] [CrossRef]
- Rao, U.; Sridhar, R.; Sehgal, P.K. Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem. Eng. J. 2010, 49, 13–20. [Google Scholar] [CrossRef]
- Hou, J.; Han, J.; Cai, L.; Zhou, J.; Lü, Y.; Jin, C.; Liu, J.; Xiang, H. Characterization of genes for chitin catabolism in Haloferax mediterranei. Appl. Microbiol. Biotechnol. 2014, 98, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, J.; Mitra, R.; Gao, Q.; Cheng, F.; Xu, T.; Zuo, Z.; Xiang, H.; Han, J. Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Commun. Biol. 2021, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, F.; Hou, J.; Liu, X.; Li, M.; Liu, H.; Cai, L.; Zhang, B.; Chen, Y.; Zhou, J.; et al. Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly (3-hydroxybutyrate-co-3-hydroxyvalerate) producer. J. Bacteriol. 2012, 194, 4463–4464. [Google Scholar] [CrossRef] [Green Version]
- Vigneswari, S.; Vijaya, S.; Majid, M.I.A.; Sudesh, K.; Sipaut, C.S.; Azizan, M.N.M.; Amirul, A.A. Enhanced production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. J. Ind. Microbiol. Biotechnol. 2009, 36, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Huong, K.H.; Azuraini, M.J.; Aziz, N.A.; Amirul, A.A.A. Pilot scale production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties. J. Biosci. Bioeng. 2017, 124, 76–83. [Google Scholar] [CrossRef]
- Norhafini, H.; Huong, K.H.; Amirul, A.A. High PHA density fed-batch cultivation strategies for 4HB-rich P (3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. Int. J. Biol. Macromol. 2019, 125, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Azira, T.F.; Nursolehah, A.A.; Norhayati, Y.; Majid, M.I.A.; Amirul, A.A. Biosynthesis of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer by Cupriavidus sp. USMAA2-4 through two-step cultivation process. World J. Microbiol. Biotechnol. 2011, 27, 2287–2295. [Google Scholar] [CrossRef]
- Kucera, D.; Novackova, I.; Pernicova, I.; Sedlacek, P.; Obruca, S. Biotechnological production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyvalerate) terpolymer by Cupriavidus sp. DSM 19379. Bioengineering 2019, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Lee, B.H.; Kim, B.S. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem. Eng. J. 2005, 23, 169–174. [Google Scholar] [CrossRef]
- Chanprateep, S.; Katakura, Y.; Visetkoop, S.; Shimizu, H.; Kulpreecha, S.; Shioya, S. Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly (3-hydroxybutyrate-co-4-hydroxybutyrate) production. J. Ind. Microbiol. Biotechnol. 2008, 35, 1205–1215. [Google Scholar] [CrossRef]
- Raposo, R.S.; de Almeida, M.C.M.; da Fonseca, M.M.R.; Cesário, M.T. Feeding strategies for tuning poly (3-hydroxybutyrate-co-4-hydroxybutyrate) monomeric composition and productivity using Burkholderia sacchari. Int. J. Biol. Macromol. 2017, 105, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Hein, S.; Söhling, B.; Gottschalk, G.; Steinbüchel, A. Biosynthesis of poly (4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol. Lett. 1997, 153, 411–418. [Google Scholar] [CrossRef]
- Tripathi, L.; Wu, L.P.; Meng, D.; Chen, J.; Chen, G.Q. Biosynthesis and characterization of diblock copolymer of P (3-hydroxypropionate)-block-P (4-hydroxybutyrate) from recombinant Escherichia coli. Biomacromolecules 2013, 14, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Shi, Z.Y.; Meng, D.C.; Wu, Q.; Chen, J.C.; Chen, G.Q. Production of 3-hydroxypropionate homopolymer and poly (3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab. Eng. 2011, 13, 777–785. [Google Scholar] [CrossRef]
- Pries, A.N.D.R.E.A.S.; Priefert, H.O.R.S.T.; Krüger, N.; Steinbüchel, A. Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly (beta-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. J. Bacteriol. 1991, 173, 5843–5853. [Google Scholar] [CrossRef] [Green Version]
- Syafiq, I.M.; Huong, K.H.; Shantini, K.; Vigneswari, S.; Abd Aziz, N.; Amirul, A.A.A.; Bhubalan, K. Synthesis of high 4-hydroxybutyrate copolymer by Cupriavidus sp. transformants using one-stage cultivation and mixed precursor substrates strategy. Enzyme Microb. Technol. 2017, 98, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.S.; Sudesh, K. Revelation of the ability of Burkholderi a sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express 2012, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaddo, K.B.; Mohamad, F.; Murugan, P.; Tan, J.S.; Sudesh, K.; Samian, M.R. Production of P (3HB-co-4HB) copolymer with high 4HB molar fraction by Burkholderia contaminans Kad1 PHA synthase. Biochem. Eng. J. 2020, 153, 107394. [Google Scholar] [CrossRef]
- Hori, K.; Kaneko, M.; Tanji, Y.; Xing, X.H.; Unno, H. Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl. Microbiol. Biotechnol. 2002, 59, 211–216. [Google Scholar] [PubMed]
- Valappil, S.P.; Peiris, D.; Langley, G.J.; Herniman, J.M.; Boccaccini, A.R.; Bucke, C.; Roy, I. Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. J. Biotechnol. 2007, 127, 475–487. [Google Scholar] [CrossRef]
- Hu, D.; Chung, A.L.; Wu, L.P.; Zhang, X.; Wu, Q.; Chen, J.C.; Chen, G.Q. Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules 2011, 12, 3166–3173. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Genetic Modifications | Substrate | Polymer Type | Content (wt% CDW) | Reference |
---|---|---|---|---|---|
Aneurinibacillus sp. H1 | -- | Glycerol and 1,4-butanediol | P(3HB-co-84 mol% 4HB) | -- | [25] |
Glycerol, valerate, and 1,4-butanediol | P(3HB-co-33 mol% 3HV-co-54 mol% 4HB) | -- | [25] | ||
Burkholderia sacchari | -- | Wheat straw hydrolysates and γ-butyrolactone | P(3HB-co-5 mol% 4HB) | 27 | [26] |
Cupriavidus necator | -- | Citrate, ammonium sulphate, and 4-hydroxybutyric acid | P4HB | 2 | [27] |
Propionic acid, ammonium sulphate, and 4-hydroxybutyric acid | P4HB | 34 | [28] | ||
Waste glycerol and γ-butyrolactone | P(3HB-co-21.5 mol% 4HB) | 17.9 | [29] | ||
Soyabean oil and γ-butyrolactone | P(3HB-co-10 mol% 4HB) | 80 | [30] | ||
Waste glycerol, propionic acid, and γ-butyrolactone | P(3HB-co-6 mol% 3HV-co-43.6 mol% 4HB) | 36.9 | [29] | ||
Fructose, Valerate, and 1,4-butanediol | P(3HB-co-16 mol% 3HV-co-51 mol% 4HB) | 30 | [31] | ||
C. nectar (PHB leaky mutant) | -- | 1,4-butanediol or 4-hydroxybutyric acid | P4HB | 10 | [32] |
Cupriavidus malaysiensis | -- | 1,4-butanediol and γ-butyrolactone | P(3HB-co-84 mol% 4HB) | 16 | [33] |
1,4-butanediol and 1,6-hexanediol | P(3HB-co-31~41 mol% 4HB) | 70 | [34] | ||
Oleic acid, 1-pentanol, and γ-butyrolactone | P(3HB-co-10 mol% 3HV-co-9 mol% 4HB) | 81 | [35] | ||
Cupriavidus sp. USMAHM13 | -- | Glycerine pitch and 1,4-butanediol | P(3HB-co-43 mol% 4HB) | 49 | [36] |
Comamonas acidovorans | -- | 1,4-butanediol or 4-hydroxybutyric acid | P4HB | 28 | [27] |
Haloferax mediterranei | -- | Crude glycerol and γ-butyrolactone | P(3HB-co-10 mol% 3HV-co-5 mol% 4HB) | 68.5 | [37] |
Whey sugar, valerate and γ-butyrolactone | P(3HB-co-21.8 mol% 3HV-co-5.1 mol% 4HB) | 87.5 | [38] | ||
Hydrogenophaga pseudoflava | -- | L-arabinose | P(3HB-co-1 mol% 3HV-co-5 mol% 4HB) | 45.3 | [23] |
Cheese whey | P(3HB-co-18.4 mol%-4HB-co-2.2 mol%-3HV) | 2.9 | [39] | ||
Recombinant E. coli | phaCAB gene cluster from C. necator and orfZ-sucD-4hbD from C. kluyveri were co-expressed. | Glucose | P(3HB-co-2.8 mol% 4HB) | 50 | [40] |
phaCAB gene cluster from C. necator, orfZ-sucD-4hbD from C. kluyveri were expressed; sad and gabD genes were knocked out. | Glucose | P(3HB-co-11.1 mol% 4HB) | 65.5 | [41] | |
phaCAB gene cluster and phaP1 gene from C. necator, orfZ-sucD-4hbD from C. kluyveri were expressed; sad and gabD genes were knocked out. | Glucose | P4HB | 68 | [13] | |
dhaT and aldD from P. putida KT2442, orfZ from C. kluyveri, and phaC1 from C. necator were expressed. | Glucose and 4-hydroxybutyric acid | P4HB | 83 | [42] | |
phaC from C. necator and orfZ from C. kluyveri were expressed. | Xylose and 4-hydroxybutyric acid | P4HB | 67 | [12] | |
Glycerol and propionic acid | P4HB | 80 | [43] | ||
orfZ from C. kluyveri, pcs’ from C. aurantiacus, dhaT and aldD from P. putida KT2442, and phaC1 from C. necator were expressed. | 1,3-propanediol and 1,4-butanediol | P (3HP-co-30 mol% 4HB) | 62.70 | [44] | |
Recombinant H. bluephagenesis | orfZ gene from C. kluyveri was chromosomally integrated. | Glucose and γ-butyrolactone | P(3HB-co-16mol% 4HB) | 61 | [45] |
Engineering the promoter driving expression of chromosomally integrated orfZ gene from C. kluyveri. | Glucose and γ-butyrolactone | P(3HB-co-11mol% 4HB) | 80 | [46] | |
ogdA, sucD, 4hbd and orfZ were introduced; gabD genes were knocked out. | Glucose | P(3HB-co-17 mol% 4HB) | 60.5 | [47] | |
orfZ chromosomally integrated. | Glucose and γ-butyrolactone | P(3HB-co-11.6 mol% 4HB) | 73.8 | [48] | |
Waste gluconate and γ-butyrolactone | P(3HB-co-12.4 mol% 4HB) | 70.6 | [48] | ||
Recombinant C. necator | dhaT and aldD from P. putida KT2442 were expressed. | Fructose, 1,4-butanediol and 4-hydroxybutyric acid | P(3HB-co-13 mol% 4HB) | 49 | [42] |
Recombinant Bacillus megaterium | sucD, 4hbD, and orfZ from C. necator under xylose inducible promoter was introduced. | Glucose with xylose as inducer | P(3HB-co-11 mol% 4HB) | ~50 | [49] |
Recombinant Synechococcus sp. PCC 7002 | phaABEC operon from Chlorogloeopsis fritschii; gbd1 and cat2 from Porphyromonas gingivalis and native ogdA were introduced; ccmR gene was deleted. | Light and CO2 | P(3HB-co-12 mol% 4HB) | 4.5 | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, R.; Xiang, H.; Han, J. Current Advances towards 4-Hydroxybutyrate Containing Polyhydroxyalkanoates Production for Biomedical Applications. Molecules 2021, 26, 7244. https://doi.org/10.3390/molecules26237244
Mitra R, Xiang H, Han J. Current Advances towards 4-Hydroxybutyrate Containing Polyhydroxyalkanoates Production for Biomedical Applications. Molecules. 2021; 26(23):7244. https://doi.org/10.3390/molecules26237244
Chicago/Turabian StyleMitra, Ruchira, Hua Xiang, and Jing Han. 2021. "Current Advances towards 4-Hydroxybutyrate Containing Polyhydroxyalkanoates Production for Biomedical Applications" Molecules 26, no. 23: 7244. https://doi.org/10.3390/molecules26237244
APA StyleMitra, R., Xiang, H., & Han, J. (2021). Current Advances towards 4-Hydroxybutyrate Containing Polyhydroxyalkanoates Production for Biomedical Applications. Molecules, 26(23), 7244. https://doi.org/10.3390/molecules26237244