Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolic Engineering Strategies for PHB Production from Sucrose
2.2. Genetically Modified Promoter PnirB under Anaerobic Condition
2.3. Disruption of the Mixed Acid Fermentation Pathway
2.4. Production of PHB from Sucrose in Batch Fermentation
3. Materials and Methods
3.1. Bacterial Strains and Plasmids
3.2. Culture Medium and Growth Conditions
3.3. Real-Time Quantitative PCR
3.4. Electron Microscopy
3.5. Analytical Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martinez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef]
- Garrison, T.F.; Murawski, A.; Quirino, R.L. Bio-Based Polymers with Potential for Biodegradability. Polymers 2016, 8, 262. [Google Scholar] [CrossRef]
- Li, M.; Wilkins, M.R. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int. J. Biol. Macromol. 2020, 156, 691–703. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef]
- Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers 2019, 11, 1193. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and their blend in freshwater with Sediment. Molecules 2020, 25, 3946. [Google Scholar] [CrossRef]
- Chen, G.Q.; Jiang, X.R. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth. Syst. Biotechnol. 2017, 2, 192–197. [Google Scholar] [CrossRef]
- McAdam, B.; Brennan Fournet, M.; McDonald, P.; Mojicevic, M. Production of Polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef]
- Amadu, A.A.; Qiu, S.; Ge, S.; Addico, G.N.D.; Ameka, G.K.; Yu, Z.; Xia, W.; Abbew, A.W.; Shao, D.; Champagne, P.; et al. A review of biopolymer (Poly-beta-hydroxybutyrate) synthesis in microbes cultivated on wastewater. Sci. Total Environ. 2021, 756, 143729. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.C.; Ma, Y.M.; Chen, G.Q. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab. Eng. 2020, 58, 82–93. [Google Scholar] [CrossRef]
- Hermann, D.R.; Lilek, D.; Daffert, C.; Fritz, I.; Weinberger, S.; Rumpler, V.; Herbinger, B.; Prohaska, K. In situ based surface-enhanced Raman spectroscopy (SERS) for the fast and reproducible identification of PHB producers in cyanobacterial cultures. Analyst 2020, 145, 5242–5251. [Google Scholar] [CrossRef]
- Urtuvia, V.; Villegas, P.; Gonzalez, M.; Seeger, M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int. J. Biol. Macromol. 2014, 70, 208–213. [Google Scholar] [CrossRef]
- Mostafa, Y.S.; Alrumman, S.A.; Otaif, K.A.; Alamri, S.A.; Mostafa, M.S.; Sahlabji, T. Production and characterization of bioplastic by polyhydroxybutyrate accumulating erythrobacter aquimaris isolated from Mangrove Rhizosphere. Molecules 2020, 25, 179. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.C.; Chen, G.Q. Synthetic Biology of Polyhydroxyalkanoates (PHA). Adv. Biochem. Eng. Biotechnol. 2018, 162, 147–174. [Google Scholar] [CrossRef]
- Tang, X.; Chen, E.Y. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 2018, 9, 2345. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, G.B.; Kim, H.U.; Park, S.J.; Choi, J.I. Enhanced production of poly3hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. Int. J. Biol. Macromol. 2019, 131, 29–35. [Google Scholar] [CrossRef]
- Lin, J.H.; Lee, M.C.; Sue, Y.S.; Liu, Y.C.; Li, S.Y. Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly(3-hydroxybutyrate) (PHB) production. Appl. Microbiol. Biotechnol. 2017, 101, 6419–6430. [Google Scholar] [CrossRef]
- Tan, D.; Wang, Y.; Tong, Y.; Chen, G.Q. Grand challenges for industrializing Polyhydroxyalkanoates (PHAs). Trends Biotechnol. 2021, 39, 953–963. [Google Scholar] [CrossRef]
- Bedade, D.K.; Edson, C.B.; Gross, R.A. Emergent approaches to efficient and sustainable Polyhydroxyalkanoate Production. Molecules 2021, 26, 3463. [Google Scholar] [CrossRef]
- Ganesh, M.; Senthamarai, A.; Shanmughapriya, S.; Natarajaseenivasan, K. Effective production of low crystallinity Poly(3-hydroxybutyrate) by recombinant E. coli strain JM109 using crude glycerol as sole carbon source. Bioresour. Technol. 2015, 192, 677–681. [Google Scholar] [CrossRef]
- Sohn, Y.J.; Kim, H.T.; Baritugo, K.A.; Song, H.M.; Ryu, M.H.; Kang, K.H.; Jo, S.Y.; Kim, H.; Kim, Y.J.; Choi, J.I.; et al. Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. Int. J. Biol. Macromol. 2020, 149, 593–599. [Google Scholar] [CrossRef]
- Takahashi, R.Y.U.; Castilho, N.A.S.; Silva, M.; Miotto, M.C.; Lima, A.O.S. Prospecting for Marine Bacteria for Polyhydroxyalkanoate production on low-cost substrates. Bioengineering 2017, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Inan, K.; Sal, F.A.; Rahman, A.; Putman, R.J.; Agblevor, F.A.; Miller, C.D. Microbubble assisted polyhydroxybutyrate production in Escherichia coli. BMC Res. Notes 2016, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Izaguirre, J.K.; da Fonseca, M.M.R.; Fernandes, P.; Villaran, M.C.; Castanon, S.; Cesario, M.T. Upgrading the organic fraction of municipal solid waste to poly(3-hydroxybutyrate). Bioresour. Technol. 2019, 290, 121785. [Google Scholar] [CrossRef]
- Schilling, C.; Badri, A.; Sieber, V.; Koffas, M.; Schmid, J. Metabolic engineering for production of functional polysaccharides. Curr. Opin. Biotechnol. 2020, 66, 44–51. [Google Scholar] [CrossRef]
- Cardoso, L.O.B.; Karolski, B.; Gracioso, L.H.; do Nascimento, C.A.O.; Perpetuo, E.A. Increased P3HB accumulation capacity of methylorubrum sp. in response to discontinuous methanol addition. Appl. Biochem. Biotechnol. 2020, 192, 846–860. [Google Scholar] [CrossRef]
- Sabri, S.; Nielsen, L.K.; Vickers, C.E. Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain. Appl. Environ. Microbiol. 2013, 79, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Miranda De Sousa Dias, M.; Koller, M.; Puppi, D.; Morelli, A.; Chiellini, F.; Braunegg, G. Fed-Batch Synthesis of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from Sucrose and 4-hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering 2017, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Choi, S.; Kim, J.M.; Lee, S.Y. Mannheimia succiniciproducens phosphotransferase system for sucrose utilization. Appl. Environ. Microbiol. 2010, 76, 1699–1703. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.X.; Zheng, W.T.; Hou, X.; Liang, J.; Li, Z.J. Metabolic Engineering of Escherichia coli for Poly(3-hydroxybutyrate) Production under Microaerobic Condition. Biomed. Res. Int. 2015, 2015, 789315. [Google Scholar] [CrossRef]
- Su, Y.; Li, X.; Liu, Q.; Hou, Z.; Zhu, X.; Guo, X.; Ling, P. Improved poly-gamma-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour. Technol. 2010, 101, 4733–4736. [Google Scholar] [CrossRef]
- Membrillo-Hernandez, J.; Kwon, O.; De Wulf, P.; Finkel, S.E.; Lin, E.C. Regulation of adhE (encoding ethanol oxidoreductase) by the Fis protein in Escherichia coli. J. Bacteriol. 1999, 181, 7390–7393. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wang, H.; Chen, J.; Chen, G.Q. Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically. Appl. Microbiol. Biotechnol. 2014, 98, 10013–10021. [Google Scholar] [CrossRef]
- Jian, J.; Zhang, S.Q.; Shi, Z.Y.; Wang, W.; Chen, G.Q.; Wu, Q. Production of polyhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways. Appl. Microbiol. Biotechnol. 2010, 87, 2247–2256. [Google Scholar] [CrossRef]
- Harborne, N.R.; Griffiths, L.; Busby, S.J.; Cole, J.A. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol. Microbiol. 1992, 6, 2805–2813. [Google Scholar] [CrossRef]
- Park, S.J.; Jang, Y.A.; Noh, W.; Oh, Y.H.; Lee, H.; David, Y.; Baylon, M.G.; Shin, J.; Yang, J.E.; Choi, S.Y.; et al. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnol. Bioeng. 2015, 112, 638–643. [Google Scholar] [CrossRef]
- Wei, X.X.; Shi, Z.Y.; Yuan, M.Q.; Chen, G.Q. Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 2009, 82, 703–712. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, H.; Jiang, X.; Chen, G.Q. Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng 2014, 25, 183–193. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Sirohi, R.; Prakash Pandey, J.; Kumar Gaur, V.; Gnansounou, E.; Sindhu, R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresour. Technol. 2020, 311, 123536. [Google Scholar] [CrossRef]
- Amaro, T.; Rosa, D.; Comi, G.; Iacumin, L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front. Microbiol. 2019, 10, 992. [Google Scholar] [CrossRef]
- Getachew, A.; Woldesenbet, F. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res. Notes 2016, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S. Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb. Technol. 2000, 27, 774–777. [Google Scholar] [CrossRef]
- Kumar, L.R.; Kaur, R.; Tyagi, R.D.; Drogui, P. Identifying economical route for crude glycerol valorization: Biodiesel versus polyhydroxy-butyrate (PHB). Bioresour. Technol. 2021, 323, 124565. [Google Scholar] [CrossRef]
Items | Descriptions | References |
---|---|---|
Strains | ||
E. coli S17-1 | recA pro hsdR RP4-2-Tc::Mu-Km::Tn7 integrated into the chromosome | [33] |
E. coli TOP10 | F-mcrAΔ(mrr-hsdRMS-mcrBC)φ80lacZΔM15ΔlacX74 recA1araΔ139Δ(ara-leu)7697galUgalKrpsL(Starr)endA1 nupG | Industry MTA |
E. coli DH 5α | F-Φ80lacZΔM15Δ(lacZYA-argF)U169recA1endA1 hsdR17(rk−, mk+) phoA supE44 thi-1 gyrA96 relA1 λ- | Industry MTA |
E. coli SA | E. coli S17-1 with the ackA-pta gene being knocked out | This study |
E. coli SAP | E. coli S17-1 with the ackA-pta and poxB genes being knocked out | This study |
E. coli SAPL | E. coli S17-1 with ackA-pta, poxB and ldhA genes being knocked out | This study |
Plasmids | ||
pBHR68 | A pBluescript II SK−derivative containing phbCAB operon from Ralstonia eutropha with native promoter, AmpR | [33] |
pBHR-PnirB | pBHR68 with the phbCAB operon under the control of the nirB anaerobic promoter | This study |
pBHR-P2nirB | pBHR68 with the phbCAB operon under the control of the cascaded promoter 2nirB | This study |
pBHR-P3nirB | pBHR68 with the phbCAB operon under the control of the cascaded promoter 3nirB | This study |
pBBR1MCS-2 | Broad-host-range plasmid, KanR | Industry MTA |
pMCS-sacC | pBBR1MCS-2 with the sacC gene from M. succiniciproducens MBEL55E, KanR | This study |
E. coli Strains a | CDW (g/L) b | PHB Concentration (g/L) b | PHB Content (wt.%) b |
---|---|---|---|
E. coli S17-1 (pBHR-P3nirB) | 1.52 ± 0.16 | 1.09 ± 0.07 | 72 ± 3 |
E. coli SA (pBHR-P3nirB) | 1.46 ± 0.10 | 1.12 ± 0.12 | 77 ± 7 |
E. coli SAP (pBHR-P3nirB) | 1.34 ± 0.11 | 1.13 ± 0.15 | 84 ± 5 |
E. coli SAPL (pBHR-P3nirB) | 1.90 ± 0.47 | 1.65 ± 0.36 | 87 ± 3 |
E. coli Strains a | CDW (g/L) b | PHB Concentration (g/L) b | PHB Content (wt.%) b |
---|---|---|---|
E. coli SAPL (pBHR-P3nirB, pMCS-sacC) | 1.71 ± 0.27 | 1.34 ± 0.20 | 79 ± 6 |
E. coli S17-1 (pBHR68, pMCS-sacC) | 1.57 ± 0.51 | 0.75 ± 0.19 | 49 ± 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zhou, Y.; Pei, W.; Jiang, Y.; Yan, X.; Wu, H. Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose. Molecules 2022, 27, 294. https://doi.org/10.3390/molecules27010294
Wu F, Zhou Y, Pei W, Jiang Y, Yan X, Wu H. Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose. Molecules. 2022; 27(1):294. https://doi.org/10.3390/molecules27010294
Chicago/Turabian StyleWu, Fangting, Ying Zhou, Wenyu Pei, Yuhan Jiang, Xiaohui Yan, and Hong Wu. 2022. "Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose" Molecules 27, no. 1: 294. https://doi.org/10.3390/molecules27010294
APA StyleWu, F., Zhou, Y., Pei, W., Jiang, Y., Yan, X., & Wu, H. (2022). Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose. Molecules, 27(1), 294. https://doi.org/10.3390/molecules27010294