The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, X.; Yang, L.; Zhang, H.; Xing, W.; Wang, Y.; Bai, P.; Zhang, L.; Hayakawa, K.; Toriba, A.; Wei, Y.; et al. Assessing approaches of human inhalation exposure to polycyclic aromatic hydrocarbons: A review. Int. J. Environ. Res. Public Health 2021, 18, 3124. [Google Scholar] [CrossRef]
- Scherer, G.; Frank, S.; Riedel, K.; Meger-Kossien, I.; Renner, T. Biomonitoring of Exposure to Polycyclic Aromatic Hydrocarbons of Nonoccupationally Exposed Persons. Cancer Epidemiol. Biomarkers Prev. 2000, 9, 373–380. [Google Scholar]
- Thai, P.K.; Li, Z.; Sjödin, A.; Fox, A.; Diep, N.B.; Binh, T.T.; Mueller, J.F. Biomonitoring of polycyclic aromatic hydrocarbons exposure in small groups of residents in Brisbane, Australia and Hanoi, Vietnam, and those travelling between the two cities. Chemosphere 2015, 139, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.K. Particle-bound polycyclic aromatic hydrocarbon in the atmosphere of heavy traffic areas in Greater Cairo, Egypt: Status, Source, and Human Health Risk Assessment. Atmosphere 2018, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Kwak, K.H.; Woo, S.H.; Kim, K.H.; Lee, S.B.; Bae, G.N.; Ma, Y., II; Sunwoo, Y.; Baik, J.J. On-road air quality associated with traffic composition and street-canyon ventilation: Mobile monitoring and CFD modeling. Atmosphere 2018, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Lhotka, R.; Pokorná, P.; Zíková, N. Long-term trends in PAH concentrations and sources at rural background site in Central Europe. Atmosphere 2019, 10, 687. [Google Scholar] [CrossRef] [Green Version]
- Mikel, D.K.; Aneja, V.P. Measurements and analysis of polycyclic aromatic hydrocarbons near a major interstate. Atmosphere 2016, 7, 131. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Harrison, R.; Komulainen, H.; Saborit, J.M.D. Polycyclic aromatic hydrocarbons. In WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010; pp. 289–346. ISBN 978 92 890 0213 4. [Google Scholar]
- Trojanowska, M.; Świetlik, R. Cancer risk assessment resulting from respiratory tracts exposure to benzo(a)pyrene in selected Polish cities. Environ. Med. 2013, 16, 14–22. (In Polish) [Google Scholar]
- 1AL-Alam, J.; Chbani, A.; Faljoun, Z.; Millet, M. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—A review. Environ. Sci. Pollut. Res. 2019, 26, 9391–9408. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Dutta, R.; Das, P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. Chemosphere 2020, 251, 126441. [Google Scholar] [CrossRef]
- Glad, M.; Bihari, N.; Jakšić, Ž.; Fafanđel, M. Comparison between resident and caged mussels: Polycyclic aromatic hydrocarbon accumulation and biological response. Mar. Environ. Res. 2017, 129, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Vaezzadeh, V.; Zakaria, M.P.; Bong, C.W.; Masood, N.; Mohsen Magam, S.; Alkhadher, S. Mangrove Oyster (Crassostrea belcheri) as a Biomonitor Species for Bioavailability of Polycyclic Aromatic Hydrocarbons (PAHs) from Sediment of the West Coast of Peninsular Malaysia. Polycycl. Aromat. Compd. 2019, 39, 470–485. [Google Scholar] [CrossRef]
- Rybak, J.; Olejniczak, T. Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environ. Sci. Pollut. Res. 2014, 21, 2313–2324. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, R.; Rybak, J.; Rogula-Kozłowska, W.; Bełcik, M.; Piekarska, K.; Jureczko, I. Mutagenicity of indoor air pollutants adsorbed on spider webs. Ecotoxicol. Environ. Saf. 2019, 171, 549–557. [Google Scholar] [CrossRef]
- Harmens, H.; Foan, L.; Simon, V.; Mills, G. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review. Environ. Pollut. 2013, 173, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Augusto, S.; Máguas, C.; Branquinho, C. Guidelines for biomonitoring persistent organic pollutants (POPs), usinglichens and aquatic mosses-A review. Environ. Pollut. 2013, 180, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Dai, C.; Zhou, Y.; Peng, H.; Yi, K.; Qin, P.; Luo, S.; Zhang, X. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: A review. Environ. Sci. Pollut. Res. 2018, 25, 16548–16566. [Google Scholar] [CrossRef]
- Carlberg, G.E.; Ofstad, E.B.; Drangsholt, H.; Steinnes, E. Atmospheric deposition of organic micropollutants in Norway studied by means of moss and lichen analysis. Chemosphere 1983, 12, 341–356. [Google Scholar] [CrossRef]
- Knulst, J.C.; Westling, H.O.; Brorstriom-Lunden, E. Airborne Organic Micropollutant Concentrations in Mosses and Humus as Indicators for Local Versus Long-Range Sources. Environ. Monit. Assess. 1995, 36, 75–91. [Google Scholar] [CrossRef]
- Foan, L.; Sablayrolles, C.; Elustondo, D.; Lasheras, E.; González, L.; Ederra, A.; Simon, V.; Santamaría, J.M. Reconstructing historical trends of polycyclic aromatic hydrocarbon deposition in a remote area of Spain using herbarium moss material. Atmos. Environ. 2010, 44, 3207–3214. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Swatson, K.; Mihály, E.; Lange, C.; Ernst, M.; Dela Cruz, M.; Price, M.J.; Mikkelsen, T.N.; Christensen, J.H.; Lundholm, N.; Rønsted, N. Biomonitoring of Polycyclic Aromatic Hydrocarbon Deposition in Greenland Using Historical Moss Herbarium Specimens Shows a Decrease in Pollution During the 20th Century. Front. Plant Sci. 2020, 11, 1085. [Google Scholar] [CrossRef]
- Foan, L.; Leblond, S.; Thöni, L.; Raynaud, C.; Santamaría, J.M.; Sebilo, M.; Simon, V. Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas-Characterization by multivariate analysis. Environ. Pollut. 2014, 184, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, A.; Nickel, S.; Schröder, W. (Persistent) Organic pollutants in Germany: Results from a pilot study within the 2015 moss survey. Environ. Sci. Eur. 2018, 30, 1–14. [Google Scholar] [CrossRef]
- Oishi, Y. Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan. Environ. Pollut. 2018, 330–338. [Google Scholar] [CrossRef]
- Yakovleva, E.; Gabov, D. Polyarenes accumulation in tundra ecosystem influenced by coal industry of Vorkuta. Polish Polar Res. 2020, 41, 237–268. [Google Scholar]
- Yakovleva, E.V.; Gabov, D.N.; Kondratenok, B.M.; Dubrovskiy, Y.A. Two-Year Monitoring of PAH in the Soils and Pleurozium schreberi under the Impact of Coal Mining. Polycycl. Aromat. Compd. 2021, 41, 2055–2070. [Google Scholar] [CrossRef]
- Godzik, B.; Szarek-Łukaszewska, G.; Kapusta, P.; Stȩpień, K. PAHs concentrations in Poland using moss Pleurozium schreberi as bioindicator. Polish Bot. J. 2014, 59, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Dolegowska, S.; Migaszewski, Z.M. PAH concentrations in the moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland). Ecotoxicol. Environ. Saf. 2011, 74, 1636–1644. [Google Scholar] [CrossRef]
- Wegener, J.W.M.; van Schaik, M.J.M.; Aiking, H. Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses. Environ. Pollut. 1992, 76, 15–18. [Google Scholar] [CrossRef]
- Viskari, E.L.; Rekilä, R.; Roy, S.; Lehto, O.; Ruuskanen, J.; Kärenlampi, L. Airborne pollutants along a roadside: Assessment using snow analyses and moss bags. Environ. Pollut. 1997, 97, 153–160. [Google Scholar] [CrossRef]
- Orliński, R. Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons: Concentrations profile and distribution along Warsaw main streets. Chemosphere 2002, 48, 181–186. [Google Scholar] [CrossRef]
- Ares, A.; Aboal, J.R.; Carballeira, A.; Giordano, S.; Adamo, P.; Fernández, J.A. Moss bag biomonitoring: A methodological review. Sci. Total Environ. 2012, 432, 143–158. [Google Scholar] [CrossRef]
- Foan, L.; Simon, V. Optimization of pressurized liquid extraction using a multivariate chemometric approach and comparison of solid-phase extraction cleanup steps for the determination of polycyclic aromatic hydrocarbons in mosses. J. Chromatogr. A 2012, 1256, 22–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Concha-Graña, E.; Muniategui-Lorenzo, S.; De Nicola, F.; Aboal, J.R.; Rey-Asensio, A.I.; Giordano, S.; Reski, R.; López-Mahía, P.; Prada-Rodríguez, D. Matrix solid phase dispersion method for determination of polycyclic aromatic hydrocarbons in moss. J. Chromatogr. A 2015, 1406, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Aboal, J.R.; Concha-Graña, E.; De Nicola, F.; Muniategui-Lorenzo, S.; López-Mahía, P.; Giordano, S.; Capozzi, F.; Di Palma, A.; Reski, R.; Zechmeister, H.; et al. Testing a novel biotechnological passive sampler for monitoring atmospheric PAH pollution. J. Hazard. Mater. 2020, 381, 120949. [Google Scholar] [CrossRef]
- Bustamante, J.; Liñero, O.; Arrizabalaga, I.; Carrero, J.A.; Arana, G.; Diego, A. De Sample pretreatment to differentiate between bioconcentration and atmospheric deposition of polycyclic aromatic hydrocarbons in mosses. Chemosphere 2015, 122, 295–300. [Google Scholar] [CrossRef]
- Capozzi, F.; Di Palma, A.; Adamo, P.; Spagnuolo, V.; Giordano, S. Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves. Atmos. Environ. 2017, 150, 45–54. [Google Scholar] [CrossRef]
- Capozzi, F.; Adamo, P.; Spagnuolo, V.; Giordano, S. Field comparison between moss and lichen PAHs uptake abilities based on deposition fluxes and diagnostic ratios. Ecol. Indic. 2021, 120, 106954. [Google Scholar] [CrossRef]
- Vingiani, S.; De Nicola, F.; Purvis, W.O.; Concha-Graña, E.; Muniategui-Lorenzo, S.; López-Mahía, P.; Giordano, S.; Adamo, P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: A Case Study in the Cities of Naples and London. Water Air Soil Pollut. 2015, 226, 1–12. [Google Scholar] [CrossRef]
- De Nicola, F.; Murena, F.; Costagliola, M.A.; Alfani, A.; Baldantoni, D.; Prati, M.V.; Sessa, L.; Spagnuolo, V.; Giordano, S. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon. Environ. Sci. Pollut. Res. 2013, 20, 4969–4979. [Google Scholar] [CrossRef] [Green Version]
- Foan, L.; Domercq, M.; Bermejo, R.; Santamaría, J.M.; Simon, V. Mosses as an integrating tool for monitoring PAH atmospheric deposition: Comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study. Chemosphere 2015, 119, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, F.; Sorrentino, M.C.; Di Palma, A.; Mele, F.; Arena, C.; Adamo, P.; Spagnuolo, V.; Giordano, S. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags. Ecol. Indic. 2020, 108, 105727. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Bu, Z.J.; Wang, S. Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay. Environ. Sci. Pollut. Res. 2018, 25, 18642–18650. [Google Scholar] [CrossRef]
- Astel, A.; Astel, K.; Biziuk, M. PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre moss exposed in the Gdańsk City Area. Environ. Sci. Pollut. Res. 2008, 15, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Kozielska, B.; Rogula-Kozłowska, W.; Klejnowski, K. Seasonal variations in health hazards from polycyclic aromatic hydrocarbons bound to submicrometer particles at three characteristic sites in the heavily polluted polish region. Atmosphere 2015, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Godzik, B. Use of bioindication methods in national, regional and local monitoring in Poland-changes in the air pollution level over several decades. Atmosphere 2020, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Vuković, G.; Aničić Uroševic, M.; Razumenić, I.; Kuzmanoski, M.; Pergal, M.; Škrivanj, S.; Popović, A. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos. Environ. 2014, 85, 31–40. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Olszowski, T.; Prokop, M.; Kłos, A. Application of mosses to identification of emission sources of polycyclic aromatic hydrocarbons. Ecol. Chem. Eng. S 2012, 19, 585–595. [Google Scholar]
- Jóźwiak, M.A.; Rybiński, P. Assessment of air pollution along express roads and motorways of varied traffic load with the use of bioindicators. Rocz. Świętokrzyski Seria B Nauki Przyr. Kieleckie Tow. Nauk. 2013, 34, 51–63. [Google Scholar]
- Rybinski, P.; Jozwiak, M. Bio-indicative assessment of motorway air pollution using thermal analysis. Polish J. Environ. Stud. 2014, 23, 1617–1625. [Google Scholar]
- Zechmeister, H.G.; Dullinger, S.; Hohenwallner, D.; Riss, A.; Hanus-Illnar, A.; Scharf, S. Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environ. Sci. Pollut. Res. 2006, 13, 398–405. [Google Scholar] [CrossRef]
- Skert, N.; Falomo, J.; Giorgini, L.; Acquavita, A.; Capriglia, L.; Grahonja, R.; Miani, N. Biological and artificial matrixes as pah accumulators: An experimental comparative study. Water Air Soil Pollut. 2010, 206, 95–103. [Google Scholar] [CrossRef]
- Ares, Á.; Ángel Fernández, J.; Ramón Aboal, J.; Carballeira, A. Study of the air quality in industrial areas of Santa Cruz de Tenerife (Spain) by active biomonitoring with Pseudoscleropodium purum. Ecotoxicol. Environ. Saf. 2011, 74, 533–541. [Google Scholar] [CrossRef]
- Vuković, G.; Urošević, M.A.; Pergal, M.; Janković, M.; Goryainova, Z.; Tomašević, M.; Popović, A. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): A moss bag case study. Environ. Sci. Pollut. Res. 2015, 22, 18956–18966. [Google Scholar] [CrossRef]
- Pochwała, S.; Gardecki, A.; Lewandowski, P.; Somogyi, V.; Anweiler, S. Developing of low-cost air pollution sensor—Measurements with the unmanned aerial vehicles in Poland. Sensors 2020, 20, 3582. [Google Scholar] [CrossRef]
- Olszowski, T. Influence of individual household heating on PM2.5 concentration in a rural settlement. Atmosphere 2019, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Svozilík, V.; Krakovská, A.S.; Bitta, J.; Jančík, P. Comparison of the air pollution mathematical model of pm10 and moss biomonitoring results in the Tritia region. Atmosphere 2021, 12, 656. [Google Scholar] [CrossRef]
- Sucharová, J.; Holá, M. PAH and PCB determination of the concentration gradient in moss Pleurozium schreberi near a highway, and seasonal variability at the background reference site. Int. J. Environ. Anal. Chem. 2014, 94, 712–727. [Google Scholar] [CrossRef]
- Yakovleva, E.V.; Gabov, D.N.; Beznosikov, V.A.; Kondratenok, B.M.; Dubrovskiy, Y.A. Accumulation of PAHs in Tundra Plants and Soils under the Influence of Coal Mining. Polycycl. Aromat. Compd. 2017, 37, 203–218. [Google Scholar] [CrossRef]
- Urošević, M.A.; Vuković, G.; Jovanović, P.; Vujičić, M.; Sabovljević, A.; Sabovljević, M.; Tomašević, M. Urban background of air pollution: Evaluation through moss bag biomonitoring of trace elements in Botanical garden. Urban For. Urban Green. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Van Gaalen, K.E.; Flanagan, L.B.; Peddle, D.R. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia 2007, 153, 19–28. [Google Scholar] [CrossRef]
- Giordano, S.; Sorbo, S.; Adamo, P.; Basile, A.; Spagnuolo, V.; Cobianchi, R.C. Biodiversity and Trace Element Content of Epiphytic Bryophytes in Urban andExtraurban Sites of Southern Italy. Plant Ecol. 2004, 170, 1–14. [Google Scholar] [CrossRef]
- Plaza-Bolaños, P.; Frenich, A.G.; Vidal, J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A 2010, 1217, 6303–6326. [Google Scholar] [CrossRef] [PubMed]
- Official Journal of the European Union Directive 2004/107/EC of the European Parliament and of the Council of 15/12/2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. Eur. Union 2005, L23, 3–16.
- Sapota, A. Polycyclic aromatic hydrocarbons (cyclohexane soluble tar substances). Documentation of proposed occupational exposure limit values (in Polish). Pod. Metod. Ocen. Środow. Przyr. 2002, 32, 179–208. [Google Scholar]
- Zechmeister, H.G.; Rivera, M.; Köllensperger, G.; Marrugat, J.; Künzli, N. Indoor monitoring of heavy metals and NO2 using active monitoring by moss and Palmes diffusion tubes. Environ. Sci. Eur. 2020, 32, 1–12. [Google Scholar] [CrossRef]
- Ryzhakova, N.K.; Rogova, N.S.; Borisenko, A.L. Research of Mosses Accumulation Properties Used for Assessment of Regional and Local Atmospheric Pollution. Environ. Res. Eng. Manag. 2014, 69, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Gorelova, S.V.; Frontasyeva, M.V.; Volkova, E.V.; Vergel, K.N.; Babicheva, D.E. Trace element accumulating ability of different moss species used to study atmospheric deposition of heavy metals in Central Russia: Tula region case study. Int. J. Biol. Biomed. Eng. 2016, 10, 271–285. [Google Scholar]
- ICP Vegetation. Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey. 2020. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf (accessed on 29 November 2021).
- Świsłowski, P.; Kosior, G.; Rajfur, M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ. Sci. Pollut. Res. 2021, 28, 10068–10076. [Google Scholar] [CrossRef]
- European Commission. EN 12341:2014 Ambient Air-Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2,5 Mass Concentration of Suspended Particulate Matter; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Šraj Kržič, N.; Gaberščik, A. Photochemical efficiency of amphibious plants in an intermittent lake. Aquat. Bot. 2005, 83, 281–288. [Google Scholar] [CrossRef]
- Zar, J. Biostatistical Analysis, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2010; ISBN 9780131008465. [Google Scholar]
- StatSoft Inc Statistica (Data Analysis Software System); Version 13; TIBCO Software Inc.: Tulsa, OK, USA, 2017.
Acronym | CPAH [µg/g] |
---|---|
PHE | 28.5 |
ANT | 6.28 |
FLT | 143 |
PYR | 137 |
CHR | 123 |
BEN(a) | 138 |
BEN(b) | 144 |
BEN(k) | 41.6 |
BEN(a)PYR | 91.3 |
IND | 73.9 |
DIB | 15.0 |
Mean of PAHs Concentration [ng/g] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species | ACY | FLR | PHE | ANT | FLT | PYR | CHR | BEN(a) | BEN(b) | Time of Exposure | References * |
P. schreberi | 88.0 | 69.5 | 908 | 60.2 | 1043 | 853 | 111 | 343 | 116 | 12 weeks | This study |
S. fallax | 49.4 | 53.1 | 665 | <10.0 | 717 | 566 | <10.0 | 144 | 62.9 | 12 weeks | This study |
D. polysetum | 57.1 | 57.1 | 1093 | 53.0 | 1077 | 718 | 81.6 | 220 | 77.5 | 12 weeks | This study |
H. splendens | 23 | 24 | 413 | 59 | 708 | 835 | 313 | 188 | 290 | 4 weeks | [52] |
H. cupressiforme | n.d. | n.d. | 84 | 14 | 273 | 327 | 27 | 50 | 18 | 3 weeks | [53] |
H. cupressiforme | n.d. | n.d. | 14.7 | 2.11 | 31.5 | 43.3 | 13.6 | 19.7 | n.d. | 4 weeks | [41] |
H. cupressiforme | n.d. | 2.28 | 35.4 | <DL | 29.9 | 17.6 | 11.6 | 1.19 | 5.07 | 6 weeks | [38] |
H.cupressiforme | −1.7 ** | −2.9 ** | 16 | 0.3 | 25.6 | 29.9 | 11.7 | 3.7 | 2.8 | 6 weeks | [43] |
H.cupressiforme | 10 | 26 | 367 | 9.34 | 309 | 232 | 57 | 12 | 17 | 6 weeks | [39] |
P. purum | n.d. | 15.1 | 60.6 | 6.06 | 57.6 | 208 | 14.5 | 5.30 | n.d | 8 weeks | [54] |
S. girgensohnii | 10.4 | 14.6 | 90.4 | 10.2 | 206 | 175.9 | 181.5 | 42.3 | 92.4 | 8 weeks | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świsłowski, P.; Hrabák, P.; Wacławek, S.; Liskova, K.; Antos, V.; Rajfur, M.; Ząbkowska-Wacławek, M. The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol. Molecules 2021, 26, 7258. https://doi.org/10.3390/molecules26237258
Świsłowski P, Hrabák P, Wacławek S, Liskova K, Antos V, Rajfur M, Ząbkowska-Wacławek M. The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol. Molecules. 2021; 26(23):7258. https://doi.org/10.3390/molecules26237258
Chicago/Turabian StyleŚwisłowski, Paweł, Pavel Hrabák, Stanisław Wacławek, Klára Liskova, Vojtěch Antos, Małgorzata Rajfur, and Maria Ząbkowska-Wacławek. 2021. "The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol" Molecules 26, no. 23: 7258. https://doi.org/10.3390/molecules26237258
APA StyleŚwisłowski, P., Hrabák, P., Wacławek, S., Liskova, K., Antos, V., Rajfur, M., & Ząbkowska-Wacławek, M. (2021). The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol. Molecules, 26(23), 7258. https://doi.org/10.3390/molecules26237258