Degradation of Neonicotinoids and Caffeine from Surface Water by Photolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Experimental
3. Results
3.1. Removal of a Mixture of Neonicotinoids and Caffeine by Direct Photolysis
3.2. Removal of a Mixture of Neonicotinoids and Caffeine by Indirect Photolysis
3.3. Ecotoxicity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chará-Serna, A.M.; Epele, L.B.; Morrissey, C.A.; Richardson, J.S. Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Sci. Total Environ. 2019, 692, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.L.; Coy, P.L.; Chen, D.; Ponder, J.; Jankowski, M. Multi-scale availability of neonicotinoid-treated seed for wildlife in an agricultural landscape during spring planting. Sci. Total Environ. 2019, 682, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Krämer, F.; Hüsken, R.; Krüdewagen, E.M.; Deuster, K.; Blagburn, B.; Straubinger, R.K.; Butler, J.; Fingerle, V.; Charles, S.; Settje, T.; et al. Prevention of transmission of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum by Ixodes spp. ticks to dogs treated with the Seresto® collar (imidacloprid 10% + flumethrin 4.5%). Parasitol. Res. 2020, 119, 299–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatta, A.F.; Myers, M.R.; Rugg, J.J.; Chapin, S.; Pullins, A.; King, V.L.; Rugg, D. Efficacy and safety of a combination of selamectin plus sarolaner for the treatment and prevention of flea infestations and the treatment of ear mites in cats presented as veterinary patients in the United States. Vet. Parasitol. 2019, 270, S3–S11. [Google Scholar] [CrossRef]
- Bonmatin, J.M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, E.A.D.; et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Gusmaroli, L.; Buttiglieri, G.; Petrovic, M. The EU watch list compounds in the ebro delta region: Assessment of sources, river transport, and seasonal variations. Environ. Pollut. 2019, 253, 606–615. [Google Scholar] [CrossRef]
- Li, S.; Wen, J.; He, B.; Wang, J.; Hu, X.; Liu, J. Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. Environ. Pollut. 2020, 263, 114371. [Google Scholar] [CrossRef]
- Su, D.; Ben, W.; Strobel, B.W.; Qiang, Z. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use. Sci. Total Environ. 2020, 712, 134525. [Google Scholar] [CrossRef]
- Barbera, A.C.; Leonardi, G.; Ferrante, M.; Zuccarello, P.; Maucieri, C. Effects of pharmaceuticals (Caffeine and Ibuprofen) and AMF inoculation on the growth and yield of Oryza sativa L. Agric. Water Manag. 2020, 232, 106005. [Google Scholar] [CrossRef]
- Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H. Biotransformation of caffeine, cotinine, and nicotine in stream sediments: Implications for use as wastewater indicators. Environ. Toxicol. Chem. 2007, 26, 1116–1121. [Google Scholar] [CrossRef] [Green Version]
- Struger, J.; Grabuski, J.; Cagampan, S.; Sverko, E.; McGoldrick, D.; Marvin, C.H. Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada. Chemosphere 2017, 169, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Tian, D.; Yi, X.; Zhang, T.; Ruan, J.; Wu, R.; Chen, C.; Huang, M.; Ying, G. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China. Chemosphere 2019, 217, 437–446. [Google Scholar] [CrossRef]
- Sjerps, R.M.A.; Kooij, P.J.F.; van Loon, A.; Van Wezel, A.P. Occurrence of pesticides in Dutch drinking water sources. Chemosphere 2019, 235, 510–518. [Google Scholar] [CrossRef]
- Sposito, J.C.V.; Montagner, C.C.; Casado, M.; Navarro-Martín, L.; Jut Solórzano, J.C.; Piña, B.; Grisolia, A.B. Emerging contaminants in Brazilian rivers: Occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere 2018, 209, 696–704. [Google Scholar] [CrossRef]
- Sadaria, A.M.; Supowit, S.D.; Halden, R.U. Mass Balance Assessment for Six Neonicotinoid Insecticides During Conventional Wastewater and Wetland Treatment: Nationwide Reconnaissance in United States Wastewater. Environ. Sci. Technol. 2016, 50, 6199–6206. [Google Scholar] [CrossRef]
- Kidd, K.A.; Blanchfield, P.J.; Mills, K.H.; Palace, V.P.; Evans, R.E.; Lazorchak, J.M.; Flick, R.W. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. USA 2007, 104, 8897–8901. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.H.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef] [Green Version]
- Jjemba, P.K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol. Environ. Saf. 2006, 63, 113–130. [Google Scholar] [CrossRef]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Chen, B.; Bu, Y.; Chen, Y.; Ma, J.; Rosario-Ortiz, F.L. Photolysis and photocatalysis of haloacetic acids in water: A review of kinetics, influencing factors, products, pathways, and mechanisms. J. Hazard. Mater. 2020, 391, 122143. [Google Scholar] [CrossRef]
- Englert, D.; Zubrod, J.P.; Neubauer, C.; Schulz, R.; Bundschuh, M. UV-irradiation and leaching in water reduce the toxicity of imidacloprid-contaminated leaves to the aquatic leaf-shredding amphipod Gammarus fossarum. Environ. Pollut. 2018, 236, 119–125. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, Y.; Xu, X.; Huang, P.; Sun, H. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light. Sci. Total Environ. 2020, 724, 137913. [Google Scholar] [CrossRef]
- Kanwal, M.; Tariq, S.R.; Chotana, G.A. Photocatalytic degradation of imidacloprid by Ag-ZnO composite. Environ. Sci. Pollut. Res. 2018, 25, 27307–27320. [Google Scholar] [CrossRef] [PubMed]
- Nicol, E.; Varga, Z.; Vujovic, S.; Bouchonnet, S. Laboratory scale UV–visible degradation of acetamiprid in aqueous marketed mixtures—Structural elucidation of photoproducts and toxicological consequences. Chemosphere 2020, 248, 126040. [Google Scholar] [CrossRef]
- Peña, A.; Rodríguez-Liébana, J.A.; Mingorance, M.D. Persistence of two neonicotinoid insecticides in wastewater, and in aqueous solutions of surfactants and dissolved organic matter. Chemosphere 2011, 84, 464–470. [Google Scholar] [CrossRef]
- Lu, Z.; Challis, J.K.; Wong, C.S. Quantum Yields for Direct Photolysis of Neonicotinoid Insecticides in Water: Implications for Exposure to Nontarget Aquatic Organisms. Environ. Sci. Technol. Lett. 2015, 2, 188–192. [Google Scholar] [CrossRef]
- Yari, K.; Seidmohammadi, A.; Khazaei, M.; Bhatnagar, A.; Leili, M. A comparative study for the removal of imidacloprid insecticide from water by chemical-less UVC, UVC/TiO2 and UVC/ZnO processes. J. Environ. Health Sci. Eng. 2019, 17, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Acero, J.L.; Real, F.J.; Javier Benitez, F.; Matamoros, E. Degradation of neonicotinoids by UV irradiation: Kinetics and effect of real water constituents. Sep. Purif. Technol. 2019, 211, 218–226. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Zhang, B.; Yuan, M.; Ma, Y.; Kong, F. A facile strategy for photocatalytic degradation of seven neonicotinoids over sulfur and oxygen co-doped carbon nitride. Chemosphere 2020, 253, 126672. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Park, M.; Wu, S.; Lopez, I.J.; Ji, W.; Scheideler, J.; Snyder, S.A. Strategies for selecting indicator compounds to assess attenuation of emerging contaminants during UV advanced oxidation processes. Water Res. 2019, 166, 115030. [Google Scholar] [CrossRef]
- Solís, R.R.; Rivas, F.J.; Chávez, A.M.; Dionysiou, D.D. Peroxymonosulfate/solar radiation process for the removal of aqueous microcontaminants. Kinetic modeling, influence of variables and matrix constituents. J. Hazard. Mater. 2020, 400, 123118. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, C.; Guo, K.; Wu, Z.; Wang, L.; Hua, Z.; Fang, J. Kinetics and pathways of the degradation of PPCPs by carbonate radicals in advanced oxidation processes. Water Res. 2020, 185, 116231. [Google Scholar] [CrossRef]
- Oliveira, B.R.; Sanches, S.; Huertas, R.M.; Barreto Crespo, M.T.; Pereira, V.J. Treatment of a real water matrix inoculated with Aspergillus fumigatus using a photocatalytic membrane reactor. J. Membr. Sci. 2020, 598, 117788. [Google Scholar] [CrossRef]
- Lanzarini-Lopes, M.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere 2017, 188, 304–311. [Google Scholar] [CrossRef]
- Li, T.; Albee, B.; Alemayehu, M.; Diaz, R.; Ingham, L.; Kamal, S.; Rodriguez, M.; Bishnoi, S.W. Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 2010, 398, 689–700. [Google Scholar] [CrossRef]
- Martín de Vidales, M.J.; Millán, M.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater. Sep. Purif. Technol. 2017, 175, 428–434. [Google Scholar] [CrossRef]
- Indermuhle, C.; Martín de Vidales, M.J.; Sáez, C.; Robles, J.; Cañizares, P.; García-Reyes, J.F.; Molina-Díaz, A.; Comninellis, C.; Rodrigo, M.A. Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere 2013, 93, 1720–1725. [Google Scholar] [CrossRef]
- Sánchez, A.; Llanos, J.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. On the applications of peroxodiphosphate produced by BDD-electrolyses. Chem. Eng. J. 2013, 233, 8–13. [Google Scholar] [CrossRef]
- Baena-Nogueras, R.M.; González-Mazo, E.; Lara-Martín, P.A. Degradation kinetics of pharmaceuticals and personal care products in surface waters: Photolysis vs biodegradation. Sci. Total Environ. 2017, 590–591, 643–654. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Gu, Z.; Zhang, A. Comparison study on microwave irradiation-activated persulfate and hydrogen peroxide systems in the treatment of dinitrodiazophenol industrial wastewater. Chemosphere 2020, 242, 125139. [Google Scholar] [CrossRef]
- Vilhunen, S.; Puton, J.; Virkutyte, J.; Sillanpaa, M. Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2. Environ. Technol. 2011, 32, 865–872. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Meinertz, J.R.; Greseth, S.L.; Gaikowski, M.P.; Schmidt, L.J. Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system. Sci. Total Environ. 2008, 392, 225–232. [Google Scholar] [CrossRef]
Pollutant | DP | 5 mg dm−3 | 10 mg dm−3 | 15 mg dm−3 | 30 mg dm−3 | 60 mg dm−3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K (min−1) | R2 | K (min−1) | R2 | K (min−1) | R2 | K (min−1) | R2 | K (min−1) | R2 | K (min−1) | R2 | |
Caffeine | 0.0007 | 0.99 | 0.07 | 0.99 | 0.11 | 0.99 | 0.30 | 0.99 | 0.33 | 0.99 | 0.33 | 0.99 |
Thiamethoxam | 2.64 | 0.99 | 3.38 | 0.99 | 3.37 | 0.99 | 2.66 | 0.98 | 2.25 | 0.99 | 2.33 | 0.99 |
Clothianidin | 1.68 | 0.99 | 1.98 | 0.99 | 2.03 | 0.99 | 1.48 | 0.99 | 1.52 | 0.99 | 1.54 | 0.99 |
Imidacloprid | 1.44 | 0.99 | 1.68 | 0.99 | 1.74 | 0.99 | 1.35 | 0.99 | 1.33 | 0.99 | 1.29 | 0.99 |
Pollutant | DP | 5 mg dm−3 | 10 mg dm−3 | 15 mg dm−3 | 30 mg dm−3 | 60 mg dm−3 |
---|---|---|---|---|---|---|
Caffeine | 45,634.9 | 456.3 | 290.4 | 106.5 | 96.8 | 96.8 |
Thiamethoxam | 12.1 | 9.5 | 9.5 | 12.0 | 14.2 | 13.7 |
Clothianidin | 19.0 | 16.1 | 15.7 | 21.6 | 21.0 | 20.7 |
Imidacloprid | 22.2 | 19.0 | 18.4 | 23.7 | 24.0 | 24.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raschitor, A.; Romero, A.; Sanches, S.; Pereira, V.J.; Crespo, J.G.; Llanos, J. Degradation of Neonicotinoids and Caffeine from Surface Water by Photolysis. Molecules 2021, 26, 7277. https://doi.org/10.3390/molecules26237277
Raschitor A, Romero A, Sanches S, Pereira VJ, Crespo JG, Llanos J. Degradation of Neonicotinoids and Caffeine from Surface Water by Photolysis. Molecules. 2021; 26(23):7277. https://doi.org/10.3390/molecules26237277
Chicago/Turabian StyleRaschitor, Alexandra, Alberto Romero, Sandra Sanches, Vanessa J. Pereira, Joao G. Crespo, and Javier Llanos. 2021. "Degradation of Neonicotinoids and Caffeine from Surface Water by Photolysis" Molecules 26, no. 23: 7277. https://doi.org/10.3390/molecules26237277
APA StyleRaschitor, A., Romero, A., Sanches, S., Pereira, V. J., Crespo, J. G., & Llanos, J. (2021). Degradation of Neonicotinoids and Caffeine from Surface Water by Photolysis. Molecules, 26(23), 7277. https://doi.org/10.3390/molecules26237277