The Implication of Low Dose Dimethyl Sulfoxide on Mitochondrial Function and Oxidative Damage in Cultured Cardiac and Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Cell Viability
2.1.1. Mitochondrial Bioenergetics
2.1.2. Mitochondrial Membrane Potential
2.1.3. Oxidative Stress
2.1.4. Apoptosis
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. In Vitro Models
4.3. Determination of Cell Viability
4.4. Assessment of Mitochondrial Respiratory Capacity
4.5. Assessing Changes in Mitochondrial Membrane Potential (ΔΨm)
4.6. Quantification of Reactive Oxygen Species (ROS)
4.7. Apoptosis Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability Statement
References
- Moskot, M.; Jakóbkiewicz-Banecka, J.; Kloska, A.; Piotrowska, E.; Narajczyk, M.; Gabig-Cimińska, M. The Role of Dimethyl Sulfoxide (DMSO) in Gene Expression Modulation and Glycosaminoglycan Metabolism in Lysosomal Storage Disorders on an Example of Mucopolysaccharidosis. Int. J. Mol. Sci. 2019, 20, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penazzi, L.; Lorengel, J.; Sündermann, F.; Golovyashkina, N.; Marre, S.; Mathis, C.M.; Lewejohann, L.; Brandt, R.; Bakota, L. DMSO modulates CNS function in a preclinical Alzheimer’s disease model. Neuropharmacology 2017, 113, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H.; et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Food & Drug Administration, U.S, C. for D.E. and, 2020. Q3C Tables and List Rev. 4 [WWW Document]. U.S. Food and Drug Administration. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q3c-tables-and-list-rev-4 (accessed on 6 October 2021).
- Brayton, C.F. Dimethyl sulfoxide (DMSO): A review. Cornell Veter 1986, 76, 61–90. [Google Scholar]
- Marks, P.A.; Breslow, R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007, 25, 84–90. [Google Scholar] [CrossRef]
- Parisi, A.; Alfieri, A.; Mazzella, M.; Mazzella, A.; Scognamiglio, M.; Scognamiglio, G.; Mascolo, N.; Cicala, C. Protective Effect of Dimethyl sulfoxide on Acute Myocardial Infarction in Rats. J. Cardiovasc. Pharmacol. 2010, 55, 106–109. [Google Scholar] [CrossRef]
- Akinci, B.; Sankella, S.; Gilpin, C.; Ozono, K.; Garg, A.; Agarwal, A.K. Progeroid syndrome patients with ZMPSTE24 deficiency could benefit when treated with rapamycin and dimethylsulfoxide. Mol. Case Stud. 2017, 3, a001339. [Google Scholar] [CrossRef] [Green Version]
- Tunçer, S.; Gurbanov, R.; Sheraj, I.; Solel, E.; Esentürk, O.; Banerjee, S. Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci. Rep. 2018, 8, 14828. [Google Scholar] [CrossRef] [PubMed]
- Budash, H.V.; Bilko, N.M. Embryonic and Induced Pluripotent Stem Cells and Their Differentiation in the Cardiomyocyte Direction in the Presence of Dimethyl Sulfoxide. Cytol. Genet. 2019, 53, 34–41. [Google Scholar] [CrossRef]
- Riegler, J.; Tiburcy, M.; Ebert, A.D.; Tzatzalos, E.; Raaz, U.; Abilez, O.J.; Shen, Q.; Kooreman, N.G.; Neofytou, E.; Chen, V.C.; et al. Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model. Circ. Res. 2015, 117, 720–730. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Liu, Y.; Zhou, Y.; Guo, J.; Wei, T.-T.; Liu, C.; Lee, B.; Chen, B.; Zhang, A.; Casey, K.M.; et al. Antitumor effects of iPSC-based cancer vaccine in pancreatic cancer. Stem Cell Rep. 2021, 16, 1468–1477. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.-C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc. Pharmacol. 2018, 100, 1–19. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Heims-Waldron, D.; Bezzerides, V.; Guatimosim, S.; Guo, Y.; Gu, F.; Zhou, P.; Lin, Z.; Ma, Q.; et al. Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation. Circ. Res. 2018, 122, 74–87. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Reczek, C.R.; Birsoy, K.; Kong, H.; Martinez-Reyes, I.; Wang, T.; Gao, P.; Sabatini, D.M.; Chandel, N.S. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat. Chem. Biol. 2017, 13, 1274–1279. [Google Scholar] [CrossRef]
- Monahan, D.S.; Almas, T.; Wyile, R.; Cheema, F.H.; Duffy, G.P.; Hameed, A. Towards the use of localised delivery strategies to counteract cancer therapy–induced cardiotoxicities. Drug Deliv. Transl. Res. 2021, 11, 1924–1942. [Google Scholar] [CrossRef] [PubMed]
- Sergazy, S.; Shulgau, Z.; Fedotovskikh, G.; Chulenbayeva, L.; Nurgozhina, A.; Nurgaziyev, M.; Krivyh, E.; Kamyshanskiy, Y.; Kushugulova, A.; Gulyayev, A.; et al. Cardioprotective effect of grape polyphenol extract against doxorubicin induced cardiotoxicity. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Razavi-Azarkhiavi, K.; Iranshahy, M.; Sahebkar, A.; Shirani, K.; Karimi, G. The Protective Role of Phenolic Compounds Against Doxorubicin-induced Cardiotoxicity: A Comprehensive Review. Nutr. Cancer 2016, 68, 892–917. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Silvestri, S.; Orlando, P.; Mxinwa, V.; Louw, J.; Tiano, L. The impact of dimethyl sulfoxide on oxidative stress and cytotoxicity in various experimental models. In Toxicology; Academic Press: Amsterdam, The Netherlands, 2021; pp. 243–261. [Google Scholar]
- Barteková, M.; Adameová, A.; Görbe, A.; Ferenczyová, K.; Pecháňová, O.; Lazou, A.; Dhalla, N.S.; Ferdinandy, P.; Giricz, Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free. Radic. Biol. Med. 2021, 169, 446–477. [Google Scholar] [CrossRef]
- Sirangelo, I.; Sapio, L.; Ragone, A.; Naviglio, S.; Iannuzzi, C.; Barone, D.; Giordano, A.; Borriello, M. Vanillin Prevents Doxorubicin-Induced Apoptosis and Oxidative Stress in Rat H9c2 Cardiomyocytes. Nutrients 2020, 12, 2317. [Google Scholar] [CrossRef] [PubMed]
- Sangweni, N.; Moremane, M.; Riedel, S.; Van Vuuren, D.; Huisamen, B.; Mabasa, L.; Barry, R.; Johnson, R. The Prophylactic Effect of Pinocembrin Against Doxorubicin-Induced Cardiotoxicity in an In Vitro H9c2 Cell Model. Front. Pharmacol. 2020, 11, 1172. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside Induces Breast Cancer Cells Apoptosis via ROS-Mediated NF-κB Signaling Pathway. Int. J. Mol. Sci. 2019, 21, 131. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.; Feser, R.; Nault, B.; Hunter, S.; Maiti, S.; Ugwuagbo, K.C.; Majumder, M. miR526b and miR655 Induce Oxidative Stress in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.-H.; Das, J.; Gurunathan, S.; Park, H.-W.; Song, H.; Park, C.; Kim, J.-H. The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: A mechanistic study. Theranostics 2017, 7, 4735–4752. [Google Scholar] [CrossRef]
- Yang, H.; Xie, Y.; Yang, D.; Ren, D. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget 2017, 8, 25310–25322. [Google Scholar] [CrossRef] [Green Version]
- Harper, M.-E.; Green, K.; Brand, M.D. The Efficiency of Cellular Energy Transduction and Its Implications for Obesity. Annu. Rev. Nutr. 2008, 28, 13–33. [Google Scholar] [CrossRef]
Flux Ratios (pmol/min/µg Protein) | Treatment | |||||
---|---|---|---|---|---|---|
Control | 0.001 | 0.009 | 0.067 | 0.5 | 3.7 | |
State apparent | 3.6 ± 0.1 | 3.5 ± 0.1 | 3.5 ± 0.1 | 3.7 ± 0.2 | 3.4 ± 0.1 | 3.5 ± 0.1 |
Respiratory control ratio | 6.96 ± 1.65 | 13.01 ± 0.79 # | 15.14 ± 1.84 ## | 11.99 ± 1.24 # | 11.38 ± 0.81 # | 4,90 ± 1.20 # |
Coupling efficiency | 0.91 ± 0.01 | 0.85 ± 0.04 | 0.79 ± 0.03 | 0.82 ± 0.01 | 0.83 ± 0.02 | 0.64 ± 0.03 ### |
Flux ratios (pmol/min/µg protein) | Treatment | |||||
---|---|---|---|---|---|---|
Control | 0.001 | 0.009 | 0.067 | 0.5 | 3.7 | |
State apparent | 3.58 ± 0.02 | 3.57 ± 0.02 | 3.57 ± 0.02 | 3.61 ± 0.01 | 3.65 ± 0.01 | 3.58 ± 0.08 |
Respiratory control ratio | 13.95 ± 1.04 | 12.12 ± 0.59 | 12.14 ± 0.56 | 14.66 ± 0.55 # | 15.23 ± 0.97 | 9.26 ± 1.23 # |
Coupling efficiency | 0.87 ± 0.01 | 0.85 ± 0.01 | 0.86 ± 0.01 | 0.83 ± 0.02 | 0.84 ± 0.02 | 0.79 ± 0.03 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangweni, N.F.; Dludla, P.V.; Chellan, N.; Mabasa, L.; Sharma, J.R.; Johnson, R. The Implication of Low Dose Dimethyl Sulfoxide on Mitochondrial Function and Oxidative Damage in Cultured Cardiac and Cancer Cells. Molecules 2021, 26, 7305. https://doi.org/10.3390/molecules26237305
Sangweni NF, Dludla PV, Chellan N, Mabasa L, Sharma JR, Johnson R. The Implication of Low Dose Dimethyl Sulfoxide on Mitochondrial Function and Oxidative Damage in Cultured Cardiac and Cancer Cells. Molecules. 2021; 26(23):7305. https://doi.org/10.3390/molecules26237305
Chicago/Turabian StyleSangweni, Nonhlakanipho F., Phiwayinkosi V. Dludla, Nireshni Chellan, Lawrence Mabasa, Jyoti R. Sharma, and Rabia Johnson. 2021. "The Implication of Low Dose Dimethyl Sulfoxide on Mitochondrial Function and Oxidative Damage in Cultured Cardiac and Cancer Cells" Molecules 26, no. 23: 7305. https://doi.org/10.3390/molecules26237305
APA StyleSangweni, N. F., Dludla, P. V., Chellan, N., Mabasa, L., Sharma, J. R., & Johnson, R. (2021). The Implication of Low Dose Dimethyl Sulfoxide on Mitochondrial Function and Oxidative Damage in Cultured Cardiac and Cancer Cells. Molecules, 26(23), 7305. https://doi.org/10.3390/molecules26237305