Investigating Antiarthritic Potential of Nanostructured Clove Oil (Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Method
2.2. Component Screening
2.3. Phase Diagram
2.4. Formulation Development
2.5. Formulation Characterization
2.5.1. Thermodynamic Stability
2.5.2. Entrapment Efficiency (EE)
2.5.3. Electron Microscopy
2.5.4. Size and Charge
2.5.5. Rheology
2.6. Drug Release
2.7. Skin Permeation and Retention
2.8. Product Stability
2.9. Pharmacological Evaluation
2.9.1. In Vitro Antiarthritic Activity
2.9.2. Freund’s Complete Adjuvant (FCA)-Induced Arthritis in Rats
2.9.3. Biochemical Analysis
2.9.4. Proinflammatory and Serum Markers
3. Materials and Methods
3.1. Drugs and Chemicals
3.2. Analytical Method
3.3. Phase Diagram
3.4. Formulation Development
3.5. Formulation Characterization
3.5.1. Thermodynamic Stability
3.5.2. Entrapment Efficiency
3.5.3. Electron Microscopy
3.5.4. Size and Charge
3.5.5. Rheology
3.6. Drug Release
3.7. Skin Permeation and Retention
3.8. Product Stability
3.9. Pharmacological Evaluation
3.9.1. Experimental Animals
3.9.2. In Vitro Antiarthritic Activity
3.9.3. FCA-Induced Arthritis in Rats
- Group I—CO-free NC was used as a topically applied control;
- Group II—no pharmacological therapy was given to the toxic control group, which had been treated with FCA.;
- Group III—treated group, which received 1.2 percent topically administered CO loaded NC (i.e., CONC);
- Group IV—positive control was 1.16 percent w/v diclofenac gel applied topically, as per normal marketed formulation.
3.9.4. Biochemical Analysis
3.9.5. Proinflammatory and Serum Markers
3.10. Statistical Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Littlejohn, E.A.; Monrad, S. Early diagnosis and treatment of rheumatoid arthritis. Prim. Care Clin. Off. Pr. 2018, 45, 237–255. [Google Scholar] [CrossRef]
- Singh, V.S.; Dhawale, S.C.; Shakeel, F.; Faiyazuddin, M.; Alshehri, S. Antiarthritic Potential of Calotropis procera leaf fractions in FCA-induced arthritic rats: Involvement of cellular inflammatory mediators and other biomarkers. Agriculture 2021, 11, 68. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. The immunology of rheumatoid arthritis. Nat. Immunol. 2021, 22, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gonzalez, M.D.C.; Peral-Garrido, M.L.; Calabuig, I.; Tovar-Sugrañes, E.; Jovani, V.; Bernabeu, P.; García-Sevila, R.; León-Ramírez, J.M.; Moreno-Perez, O.; Boix, V.; et al. Case series of acute arthritis during COVID-19 admission. Ann. Rheum. Dis. 2021, 80, e58. [Google Scholar] [CrossRef]
- Reddy, D.; Trost, L.W.; Lee, T.; Baluch, A.R.; Kaye, A.D. Rheumatoid arthritis: Current pharmacologic treatment and anesthetic considerations. Middle East J. Anesthesiol. 2007, 19, 311–335. [Google Scholar] [PubMed]
- Aletaha, D.; Amiro, S. Diagnosis and management of rheumatoid arthritis. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Coutant, F.; Miossec, P. Evolving concepts of the pathogenesis of rheumatoid arthritis with focus on the early and late stages. Curr. Opin. Rheumatol. 2020, 32, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Namekawa, T.; Wagner, U.G.; Goronzy, J.J.; Weyand, C.M. Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum. 1998, 41, 2108–2116. [Google Scholar] [CrossRef]
- Gupta, R.K.; Hussain, T.; Panigrahi, G.; Das, A.; Singh, G.N.; Sweety, K.; Faiyazuddin, M.; Rao, C.V. Hepatoprotective effect of Solanum xanthocarpum fruit extract against CCl4 induced acute liver toxicity in experimental animals. Asian Pac. J. Trop. Med. 2011, 4, 964–968. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Mujeeb, M.; Aeri, V.; Mir, S.R.; Faiyazuddin, M.; Shakeel, F. Anti-inflammatory and antioxidant activity of Ficus carica Linn. leaves. Nat. Prod. Res. 2012, 26, 460–465. [Google Scholar] [CrossRef]
- Kildeaa, K.A.; Allanb, G.L.; Kearney, R.E. Accumulation and clearance of the anaesthetics clove oil and AQUI-S™ from the edible tissue of silver perch (Bidyanus bidyanus). Aquaculture 2004, 232, 265–277. [Google Scholar] [CrossRef]
- Milind, P.; Deepa, K. Clove: A champion spice. Int. J. Res. Ayur. Pharm. 2011, 2, 47–54. [Google Scholar]
- Alam, P.; Ansari, M.J.; Anwer, M.K.; Raish, M.; Kamal, Y.K.T.; Shakeel, F. Wound healing effects of nanoemulsion containing clove essential oil. Art. Cells Nanomed. Biotechnol. 2017, 45, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Pramod, K.; Ansari, S.H.; Ali, J. Eugenol: A natural compound with versatile pharmacological actions. Nat. Prod. Commun. 2010, 5, 1999–2006. [Google Scholar] [CrossRef] [Green Version]
- Briozzo, J.L.; Chirife, J.; Herzage, L.; D’Aquino, M. Antimicrobial activity of clove oil dispersed in a concentrated sugar solution. J. Appl. Bacteriol. 1989, 66, 69–75. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; He, J.J. Pharmacological action of clove oil and its application in oral care products. Oral Care Ind. 2009, 19, 23–24. [Google Scholar]
- Kim, S.S.; Oh, O.J.; Min, H.Y.; Park, E.J.; Kim, Y.; Park, H.J.; Han, Y.N.; Lee, S.K. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 2003, 73, 337–348. [Google Scholar] [CrossRef]
- Baldisserotto, B.; Parodi, T.V.; Stevens, E.D. Lack of postexposure analgesic efficacy of low concentrations of eugenol in zebrafish. Vet. Anaes. Anal. 2018, 45, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, E.; Xiao, M.; Chen, C.; Xu, W. Study of anti-inflammatory activities of α-d-glucosylated eugenol. Arch. Pharm. Res. 2013, 36, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, S.; Udupa, N. Effect of some penetration enhancers on the permeation of glibenclamide and glipizide through mouse skin. Pharmazie 2003, 58, 891–894. [Google Scholar]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid.-Based Compl. Altern. Med. 2014, 2014, E651593. [Google Scholar] [CrossRef] [Green Version]
- Faiyazuddin, M.; Baboota, S.; Ali, J.; Ahuja, A.; Ahmad, S. Characterization and in vitro bioactive studies of lemongrass oil phytonanoemulsion system in the treatment of acne vulgaris. Int. J. Essen. Oil Ther. 2009, 3, 13–21. [Google Scholar]
- Rathod, S.; Joshi, A.; Ray, D.; Aswal, V.K.; Verma, G.; Bahadur, P.; Tiwari, S. Changes in aggregation properties of TPGS micelles in the presence of sodium cholate. Coll. Surf. A 2021, 610, E125938. [Google Scholar] [CrossRef]
- Souto, E.B.; Müller, R.H. Lipid nanoparticles: Effect on bioavailability and pharmacokinetic changes. Handb. Exp. Pharmacol. 2010, 197, 115–141. [Google Scholar]
- Montenegro, L. Lipid-based nanoparticles as carriers for dermal delivery of antioxidants. Curr. Drug Metab. 2017, 18, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- De Sousa Marcial, S.P.; Carneiro, G.; Leite, E.A. Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment. J. Nanopart. Res. 2017, 19, E340. [Google Scholar] [CrossRef]
- Schwarz, C.; Mehnert, W.; Lucks, J.S.; Müller, R.H. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release 1994, 30, 83–96. [Google Scholar] [CrossRef]
- Hou, D.; Xie, C.; Huang, K.; Zhu, C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 2003, 24, 1781–1785. [Google Scholar] [CrossRef]
- Alam, P.; Shakeel, F.; Anwer, M.K.; Foudah, A.I.; Alqarni, M.H. Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. J. Oleo Sci. 2018, 67, 957–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeel, F.; Alam, P.; Anwer, M.K.; Alanazi, S.A.; Alsarra, I.A. Wound healing evaluation of self-nanoemulsifying drug delivery system of Piper cubeba essential oil. 3 Biotech 2019, 9, E82. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, F.; Salem-Bekhit, M.M.; Haq, N.; Alshehri, S. Nanoemulsification improves the pharmaceutical properties and bioactivities of niaouli essential oil (Malaleuca quinquenervia L.). Molecules 2021, 26, 4750. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Marco, I. Controlled-release antihistamines using supercritical antisolvent process. J. Supercrit. Fluids 2021, 171, E105201. [Google Scholar] [CrossRef]
- Bagheri, H.; Hashemipour, H.; Rahimpour, E.; Rahimpour, M.R. Particle size design of acetaminophen using supercritical carbon dioxide to improve drug delivery: Experimental and modeling. J. Environ. Chem. Eng. 2021, 9, E106384. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Deng, S. Applications of supercritical anti-solvent process in preparation of solid multicomponent systems. Pharmaceutics 2021, 13, 475. [Google Scholar] [CrossRef]
- Alqarni, M.H.; Alam, P.; Foudah, A.I.; Muharram, M.M.; Shakeel, F. Combining normal/reversed-phase HPTLC with univariate calibration for the piperine quantification with traditional and ultrasound-assisted extracts of various food spices of Piper nigrum L. under green analytical chemistry viewpoint. Molecules 2021, 26, 732. [Google Scholar] [CrossRef] [PubMed]
- Perween, N.; Alshehri, S.; Easwari, T.S.; Verma, V.; Faiyazuddin, M.; Alanazi, A.; Shakeel, F. Investigating the feasibility of mefenamic acid nanosuspension for pediatric delivery: Preparation, characterization, and role of excipients. Processes 2021, 9, 574. [Google Scholar] [CrossRef]
- Shafiq, S.; Shakeel, F.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K.; Ali, M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 2007, 66, 227–243. [Google Scholar] [CrossRef]
- Schmidts, T.; Nocker, P.; Lavi, G.; Kuhlmann, J.; Czermak, P.; Runkel, F. Development of an alternative, time and cost saving method of creating pseudoternary diagrams using the example of microemulsion. Coll. Surf. A 2009, 340, 187–192. [Google Scholar] [CrossRef]
- Qadir, A.; Faiyazuddin, M.; Hussain, M.T.; Alshammari, T.M.; Shakeel, F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J. Mol. Liq. 2016, 214, 7–18. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Alaaeldin, E.; Abou-Taleb, H.A.; Mohamad, S.A.; Elrehany, M.; Gaber, S.S.; Mansour, H.F. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and down-regulation of TNF-α, NF-кB and COX-2 in complete Freund’s adjuvant-induced arthritis model in rats. Int. J. Nanomed. 2021, 16, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Thite, A.T.; Patil, R.R.; Naik, S.R. Anti-arthritic activity profile of methanolic extract of Ficus bengalensis: Comparison with some clinically effective drugs. Biomed. Aging Pathol. 2014, 4, 207–217. [Google Scholar] [CrossRef]
- Shakeel, F.; Shazly, G.A.; Raish, M.; Ahmad, A.; Kalam, M.A.; Ali, N.; Ansari, M.A.; Elosaily, G.M. Biological investigation of a supersaturated self-nanoemulsifying drug delivery system of Piper cubeba essential oil. RSC Adv. 2015, 5, 105206–105217. [Google Scholar] [CrossRef]
- Abdelhameed, M.F.; Asaad, G.F.; Ragab, T.I.M.; Ahmed, R.F.; El Gendy, A.E.G.; El-Rahman, S.S.A.; Elgamal, A.M.; Elshamy, A.M. Oral and topical anti-inflammatory and antipyretic potentialities of Araucaria bidiwilli shoot essential oil and its nanoemulsion in relation to chemical composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef]
- Jain, S.; Vaidya, A.; Gupta, P.K.; Rosenholm, J.M.; Bansal, K.K. Antiarthritic activities of herbal isolates: A comprehensive review. Coatings 2021, 11, 1329. [Google Scholar] [CrossRef]
- Ricaurte, L.; de Jesús Perea-Flores, M.; Martinez, A.; Quintanilla-Carvajal, M.X. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov. Food Sci. Emerg. Technol. 2016, 35, 75–85. [Google Scholar] [CrossRef]
- Hu, F.Q.; Jiang, S.P.; Du, Y.Z.; Yuan, H.; Ye, Y.Q.; Zeng, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Coll. Surf. B 2005, 45, 167–173. [Google Scholar] [CrossRef]
- Boltri, L.; Canal, T.; Esposito, P.A.; Carli, F. Lipid nanoparticles: Evaluation of some critical formulation parameters. Proc. Int. Symp. Control. Release Bioact. Mater. 1993, 20, 346–347. [Google Scholar]
- Jain, S.; Kaur, A.; Puri, R.; Utreja, P.; Jain, A.; Bhide, M.; Ratnam, R.; Singh, V.; Patil, A.S.; Jayaraman, N.; et al. Poly propyl ether imine (PETIM) dendrimer: A novel non-toxic dendrimer for sustained drug delivery. Eur. J. Med. Chem. 2010, 45, 4997–5005. [Google Scholar] [CrossRef]
Component | Phasic Area ± SD (mm2) |
---|---|
Tween 20 | 119.56 ± 3.11 |
Tween 80 | 141.39 ± 2.13 |
Brij 20 | 97.08 ± 4.26 |
PEG-200 | 50.79 ± 4.26 |
Ethanol | 62.23 ± 2.06 |
PEG-400 | 53.12 ± 7. 52 |
Cremophor EL | 77.10 ± 2.55 |
Labrasol | 29.70 ± 2.55 |
Labrafac | 18.78 ± 3.44 |
Transcutol-P | 13.95 ± 2.82 |
Code | Selected Formulation (% v/v) | Smix Ratio | ||
---|---|---|---|---|
Oil (eq-CO:GO) | Smix | Water | ||
CONC1 | 10 | 40 | 50 | 1:1 |
CONC2 | 12 | 42 | 46 | 1:1 |
CONC3 | 10 | 39 | 51 | 1:2 |
CONC4 | 12 | 42 | 46 | 1:2 |
CONC5 | 10 | 39 | 51 | 1:3 |
CONC6 | 12 | 42 | 46 | 1:3 |
Code | Diameter ± SD (nm) | PDI ± SD | Zeta Potential (mV) ± SD | Viscosity ± SD (cps) | EE ± SD (%) | Drug Release ± SD (%) |
---|---|---|---|---|---|---|
CONC1 | 131 ± 6.7 | 0.119 ± 0.017 | −28.63 ± 1.7 | 157.87 ± 4.22 | 59.41 ± 7.66 | 46.14 ± 3.31 |
CONC2 | 187 ± 9.1 | 0.153 ± 0.022 | −30.08 ± 2.1 | 163.27 ± 7.45 | 64.58 ± 6.72 | 58.62 ± 5.29 |
CONC3 | 163 ± 4.3 | 0.170 ± 0.051 | −29.44 ± 2.8 | 138.31 ± 8.17 | 69.70 ± 9.35 | 64.08 ± 7.91 |
CONC4 | 144 ± 3.9 | 0.162 ± 0.034 | −28.19 ± 3.6 | 135.92 ± 6.47 | 75.16 ± 7.61 | 72.38 ± 8.14 |
CONC5 | 120 ± 5.2 | 0.148 ± 0.013 | −27.56 ± 1.9 | 142.73 ± 4.23 | 84.53 ± 4.12 | 81.24 ± 4.65 |
CONC6 | 156 ± 4.5 | 0.157 ± 0.044 | −31.12 ± 2.4 | 157.36 ± 9.11 | 79.14 ± 3.56 | 57.26 ± 4.31 |
Code | Jss ± SD (mg/cm2/h) | Kp ± SD (cm/h × 10−2) | Er | p-Value * |
---|---|---|---|---|
Neat CO | 28.17 ± 10.29 | 0.183 ± 0.15 | - | - |
CONC1 | 46.58 ± 09.66 | 0.513 ± 0.24 | 2.80 | <0.05 |
CONC2 | 59.92 ± 11.34 | 0.867 ± 0.30 | 4.73 | <0.05 |
CONC3 | 63.76 ± 12.49 | 0.909 ± 0.18 | 4.96 | <0.01 |
CONC4 | 68.02 ± 10.51 | 1.215 ± 0.11 | 6.63 | >0.01 |
CONC5 | 82.41 ± 11.39 | 1.161 ± 0.13 | 6.34 | <0.01 |
CONC6 | 65.19 ± 11.05 | 0.846 ± 0.17 | 4.62 | <0.05 |
Code | Sampling (1st Day) | Sampling (90th Day) | ||
---|---|---|---|---|
RTP (25 ± 2 °C) | Stability Oven (40 ± 2 °C/65 ± 5%RH) | |||
Diameter ± SD (nm) | Zeta Potential ± SD (mV) | Diameter ± SD (nm) | Zeta Potential ± SD (mV) | |
CONC1 | 131 ± 6.7 | −28.6 ± 1.7 | 284 ± 11.2 | −26.7 ± 1.8 |
CONC2 | 187 ± 9.1 | −30.0 ± 2.1 | 307 ± 9.7 | −29.3 ± 1.5 |
CONC3 | 163 ± 4.3 | −29.4 ± 2.8 | 198 ± 10.5 | −25.1 ± 2.8 |
CONC4 | 144 ± 3.9 | −28.1 ± 3.6 | 173 ± 8.9 | −22.7 ± 3.6 |
CONC5 | 120 ± 5.2 | −27.5 ± 1.9 | 138 ± 4.4 | −21.8 ± 2.1 |
CONC6 | 156 ± 4.5 | −31.2 ± 2.4 | 179 ± 7.3 | −28.7 ± 2.3 |
Treatment | AST (U/ML) | ALT (U/ML) | ALP (U/ML) | CRP (mg/lit) | RF (IU/L) | TNF-α (pg/mL) | IL-6 (pg/mL) |
---|---|---|---|---|---|---|---|
Normal control | 33.9 ± 0.8 | 25.8 ± 0.9 | 41.3 ± 1.7 | 1.2 ± 0.4 | - | 9.7 ± 0.3 | 51.4 ± 0.4 |
Arthritic control | 78.6 ± 1.5 # | 75.3 ± 1.8 # | 121.4 ± 1.8 # | 8.2 ± 0.6 # | 57.9 ± 1.6 # | 26.9 ± 0.6 # | 118.7 ± 0.6 # |
Voltaren gel (diclofen 1.16%) | 43.1 ± 1.7 ** | 39.4 ± 1.3 ** | 56.2 ± 1.6 ** | 2.9 ± 0.4 ** | 38.1 ± 0.8 ** | 13.9 ± 0.4 ** | 58.3 ± 0.9 ** |
CONC5 (1.2%) | 49.4 ± 1.2 ** | 46.9 ± 0.8 ** | 60.5 ± 1.4 ** | 6.4 ± 0.5 ** | 47.3 ± 1.2 ** | 16.5 ± 0.2 ** | 62.4 ± 1.1 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, F.; Alam, P.; Ali, A.; Alqarni, M.H.; Alshetaili, A.; Ghoneim, M.M.; Alshehri, S.; Ali, A. Investigating Antiarthritic Potential of Nanostructured Clove Oil (Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies. Molecules 2021, 26, 7327. https://doi.org/10.3390/molecules26237327
Shakeel F, Alam P, Ali A, Alqarni MH, Alshetaili A, Ghoneim MM, Alshehri S, Ali A. Investigating Antiarthritic Potential of Nanostructured Clove Oil (Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies. Molecules. 2021; 26(23):7327. https://doi.org/10.3390/molecules26237327
Chicago/Turabian StyleShakeel, Faiyaz, Prawez Alam, Abuzer Ali, Mohammed H. Alqarni, Abdullah Alshetaili, Mohammed M. Ghoneim, Sultan Alshehri, and Amena Ali. 2021. "Investigating Antiarthritic Potential of Nanostructured Clove Oil (Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies" Molecules 26, no. 23: 7327. https://doi.org/10.3390/molecules26237327
APA StyleShakeel, F., Alam, P., Ali, A., Alqarni, M. H., Alshetaili, A., Ghoneim, M. M., Alshehri, S., & Ali, A. (2021). Investigating Antiarthritic Potential of Nanostructured Clove Oil (Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies. Molecules, 26(23), 7327. https://doi.org/10.3390/molecules26237327