Optimized Liquid-Phase Exfoliation of Magnetic van der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices
Abstract
:1. Introduction
2. Results
2.1. Liquid Phase Exfoliation of the Heterostructures. Structural Characterization
2.2. Topological Statistical Characterization. Optimization of the LPE Process
2.3. Electron Transport Characterization
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Experimental Procedures and Equipment
- Preparation of franckeite colloidal suspension.
- Raman spectroscopy
- Atomic Force Microscopy (AFM)
- Dielectrophoretic process (DEP)
- Scanning electron microscopy (SEM)
- Optical microscopy images of DEP devices
- Electron Transport Measurements
- Frequency dependent AC admittance spectroscopy
- Device fabrication details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Ningrum, V.P.; Liu, B.; Wang, W.; Yin, Y.; Cao, Y.; Zha, C.; Xie, H.; Jiang, X.; Sun, Y.; Qin, S.; et al. Recent Advances in Two-Dimensional Magnets: Physics and Devices towards Spintronic Applications. Research 2020, 2020, 1768918. [Google Scholar] [CrossRef]
- Burch, K.S.; Mandrus, D.; Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, 6298. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.R.; MacNeill, D.; Lado, J.L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J.; et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-U.; Lee, S.; Ryoo, J.H.; Kang, S.; Kim, T.Y.; Kim, P.; Park, C.-H.; Park, J.-G.; Cheong, H. Ising-Type Magnetic Ordering in Atomically Thin FePS 3. Nano Lett. 2016, 16, 7433–7438. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A.F. Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures. Nano Lett. 2018, 18, 4303–4308. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D.P.; Jarillo-Herrero, P.; Gorbachev, R.V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Mei, L.; Cao, X.; Tang, Y.; Zeng, Z. Intercalation and exfoliation chemistries of transition metal dichalcogenides. J. Mater. Chem. A 2020, 8, 15417–15444. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Ji, X. Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Adv. 2017, 7, 52252–52260. [Google Scholar] [CrossRef] [Green Version]
- Golub, A.S.; Zubavichus, Y.V.; Slovokhotov, Y.L.; Novikov, Y.N.; Danot, M. Layered compounds assembled from MoS2 single layers and TAA cations. Solid State Ion. 2000, 128, 151–160. [Google Scholar] [CrossRef]
- Joensen, P.; Frindt, R.F.; Morrison, S.R. Single-layer MoS2. Mater. Res. Bull. 1986, 21, 457–461. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Rice, S.B.; Jacobson, A.J.; Lewandowski, J.T. Electron Microscopy Study of Delamination in Dispersions of the Perovskite-Related Layered Phases K[Ca2Nan−3NbnO3n+1]: Evidence for Single-Layer Formation. Chem. Mater. 1990, 2, 279–286. [Google Scholar] [CrossRef]
- Liang, J.; Renzhi, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: A route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chem. Mater. 2010, 22, 371–378. [Google Scholar] [CrossRef]
- Liu, J.; Nichols, E.J.; Howe, J.; Misture, S.T. Enhanced photocatalytic activity of TiO2-niobate nanosheet composites. J. Mater. Res. 2013, 28, 424–430. [Google Scholar] [CrossRef]
- García-Glez, J.; Trobajo, C.; Adawy, A.; Amghouz, Z. Exfoliation and europium(III)-functionalization of α-titanium phosphate via propylamine intercalation: From multilayer assemblies to single nanosheets. Adsorption 2020, 26, 241–250. [Google Scholar] [CrossRef]
- Xiong, S.; Chen, X.; Liu, Y.; Fan, T.; Wang, Q.; Zhang, H.; Chen, T. Black Phosphorus as a Versatile Nanoplatform: From Unique Properties to Biomedical Applications. J. Innov. Opt. Health Sci. 2020, 13, 2030008. [Google Scholar] [CrossRef] [Green Version]
- Achee, T.C.; Sun, W.; Hope, J.T.; Quitzau, S.G.; Sweeney, C.B.; Shah, S.A.; Habib, T.; Green, M.J. High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Ikram, M.; Raza, A.; Ali, S.; Ali, S. Electrochemical Exfoliation of 2D Advanced Carbon Derivatives. Sol. Gel Other Fabr. Methods Adv. Carbon Mater. 2020. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Sui, X.; Riaz, M.A.; Xu, M.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Bellani, V.; Sun, J.; Palermo, V. Electrochemical exfoliation of graphite in H2SO4, Li2SO4and NaClO4solutions monitored: In situ by Raman microscopy and spectroscopy. Faraday Discuss. 2021, 227, 291–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef] [Green Version]
- Backes, C.; Higgins, T.M.; Kelly, A.; Boland, C.; Harvey, A.; Hanlon, D.; Coleman, J.N. Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chem. Mater. 2017, 29, 243–255. [Google Scholar] [CrossRef]
- Velický, M.; Toth, P.S.; Rakowski, A.M.; Rooney, A.P.; Kozikov, A.; Woods, C.R.; Mishchenko, A.; Fumagalli, L.; Yin, J.; Zólyomi, V.; et al. Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nat. Commun. 2017, 8, 14410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, S.; Lakmann, M.; Backes, C. Impact of pretreatment of the bulk starting material on the efficiency of liquid phase exfoliation of WS2. Nanomaterials 2021, 11, 1072. [Google Scholar] [CrossRef]
- Khan, U.; O’Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J.N. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon N.Y. 2012, 50, 470–475. [Google Scholar] [CrossRef]
- Ogilvie, S.P.; Large, M.J.; O’Mara, M.A.; Lynch, P.J.; Lee, C.L.; King, A.A.K.; Backes, C.; Dalton, A.B. Size selection of liquid-exfoliated 2D nanosheets. 2D Mater. 2019, 6. [Google Scholar] [CrossRef]
- Niu, Y.; Villalva, J.; Frisenda, R.; Sanchez-Santolino, G.; Ruiz-González, L.; Pérez, E.M.; Garcia-Hernández, M.; Burzuri, E.; Castellanos-Gomez, A. Mechanical and liquid phase exfoliation of cylindrite: A natural van der Waals superlattice with intrinsic magnetic interactions. 2D Mater. 2019, 6, 035023. [Google Scholar] [CrossRef]
- Salyer, P.A.; Haar, L.W. ter Magnetic properties of the mineral, cylindrite (FePb3Sn4Sb2S14). J. Appl. Phys. 1998, 81, 5163. [Google Scholar] [CrossRef]
- Salyer, P.A.; Haar, L.W. ter Single-crystal magnetic studies of cylindrite (FePb3Sn4Sb2S14). J. Appl. Phys. 2000, 87, 6025. [Google Scholar] [CrossRef]
- Burzurí, E.; Vera-Hidalgo, M.; Giovanelli, E.; Villalva, J.; Castellanos-Gomez, A.; Pérez, E.M. Simultaneous assembly of van der Waals heterostructures into multiple nanodevices. Nanoscale 2018, 10, 7966–7970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalva, J.; Moreno-Da Silva, S.; Villa, P.; Ruiz-González, L.; Navío, C.; Garcia-Orrit, S.; Vega-Mayoral, V.; Cabanillas-González, J.; Castellanos-Gomez, A.; Giovanelli, E.; et al. Covalent modification of franckeite with maleimides: Connecting molecules and van der Waals heterostructures. Nanoscale Horiz. 2021, 6, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Molina-Mendoza, A.J.; Giovanelli, E.; Paz, W.S.; Niño, M.A.; Island, J.O.; Evangeli, C.; Aballe, L.; Foerster, M.; van der Zant, H.S.J.; Rubio-Bollinger, G.; et al. Franckeite as a naturally occurring van der Waals heterostructure. Nat. Commun. 2017, 8, 14409. [Google Scholar] [CrossRef]
- Gusmão, R.; Sofer, Z.; Luxa, J.; Pumera, M. Layered franckeite and teallite intrinsic heterostructures: Shear exfoliation and electrocatalysis. J. Mater. Chem. A 2018, 6, 16590–16599. [Google Scholar] [CrossRef]
- Mukhopadhyay, T.K.; Datta, A. Disentangling the liquid phase exfoliation of two-dimensional materials: An “In silico” perspective. Phys. Chem. Chem. Phys. 2020, 22, 22157–22179. [Google Scholar] [CrossRef]
- Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C.S.; Berner, N.C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef]
- Krupke, R.; Hennrich, F.; Weber, H.B.; Kappes, M.M.; Löhneysen, H.v. Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis. Nano Lett. 2003, 3, 1019–1023. [Google Scholar] [CrossRef]
- Penzo, E.; Palma, M.; Chenet, D.A.; Ao, G.; Zheng, M.; Hone, J.C.; Wind, S.J. Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors. ACS Nano 2016, 10, 2975–2981. [Google Scholar] [CrossRef]
- Engel, M.; Farmer, D.B.; Azpiroz, J.T.; Seo, J.-W.T.; Kang, J.; Avouris, P.; Hersam, M.C.; Krupke, R.; Steiner, M. Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration. Nat. Commun. 2018, 9, 4095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cully, J.J.; Swett, J.L.; Willick, K.; Baugh, J.; Mol, J.A. Graphene nanogaps for the directed assembly of single-nanoparticle devices. Nanoscale 2021, 13, 6513–6520. [Google Scholar] [CrossRef]
- Nieto-Ortega, B.; Villalva, J.; Vera-Hidalgo, M.; Ruiz-González, L.; Burzurí, E.; Pérez, E.M. Band-Gap Opening in Metallic Single-Walled Carbon Nanotubes by Encapsulation of an Organic Salt. Angew. Chem. Int. Ed. 2017, 56, 12240–12244. [Google Scholar] [CrossRef] [PubMed]
- Villalva, J.; Develioglu, A.; Montenegro-Pohlhammer, N.; Sánchez-de-Armas, R.; Gamonal, A.; Rial, E.; García-Hernández, M.; Ruiz-Gonzalez, L.; Costa, J.S.; Calzado, C.J.; et al. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat. Commun. 2021, 12, 1578. [Google Scholar] [CrossRef]
- Burzurí, E.; Granados, D.; Pérez, E.M. Physically Unclonable Functions Based on Single-Walled Carbon Nanotubes: A Scalable and Inexpensive Method toward Unique Identifiers. ACS Appl. Nano Mater. 2019, 2, 1796–1801. [Google Scholar] [CrossRef]
- Bueno, P.R.; Varela, J.A.; Longo, E. Admittance and dielectric spectroscopy of polycrystalline semiconductors. J. Eur. Ceram. Soc. 2007, 27, 4313–4320. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed]
Sonication Time | Centrifugation Time | |
---|---|---|
Sample 1 | 1 h | 30 min |
Sample 2 | (1 h) + 30 min | (30) min + 30 min |
Sample 3 | 2 h | 1 h |
Sample 4 | (2 h) + 1 h | (1 h) + 1 h |
Sample 5 | 3 h | 1 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Pérez, L.; Burzurí, E. Optimized Liquid-Phase Exfoliation of Magnetic van der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices. Molecules 2021, 26, 7371. https://doi.org/10.3390/molecules26237371
Martín-Pérez L, Burzurí E. Optimized Liquid-Phase Exfoliation of Magnetic van der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices. Molecules. 2021; 26(23):7371. https://doi.org/10.3390/molecules26237371
Chicago/Turabian StyleMartín-Pérez, Lucía, and Enrique Burzurí. 2021. "Optimized Liquid-Phase Exfoliation of Magnetic van der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices" Molecules 26, no. 23: 7371. https://doi.org/10.3390/molecules26237371
APA StyleMartín-Pérez, L., & Burzurí, E. (2021). Optimized Liquid-Phase Exfoliation of Magnetic van der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices. Molecules, 26(23), 7371. https://doi.org/10.3390/molecules26237371