Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Apium graveolens Oil (AGO) by GC–MS Analysis
2.2. Antimicrobial Activity of Apium graveolens Oil
2.3. Antioxidant and Anti-Inflammatory Activity of Apium graveolens Oil (AGO)
2.4. In Silico Molecular Docking, PASS, and ADME Prediction Studies
3. Materials and Methods
3.1. Extraction of Essential Oil
3.2. Gas Chromatography–Mass Spectrometry Analysis
3.3. Antimicrobial Activity
3.4. In Vitro Antioxidant
3.4.1. Inhibition Power
3.4.2. Reducing Power
3.5. Anti-Inflammatory Activity
3.5.1. Albumin Denaturation Method
3.5.2. Proteinase Inhibitory Assay
3.6. In Silico Docking Studies
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sellami, I.H.; Bettaieb, I.; Bourgou, S.; Dahmani, R.; Limam, F.; Marzouk, B. Essential oil and aroma composition of leaves, stalks and roots of celery (Apium graveolens var. dulce) from Tunisia. J. Essent Oil Res. 2012, 24, 513–521. [Google Scholar] [CrossRef]
- Lewis, D.A.; Tharib, S.M.; Veitch, G.B.A. The anti-inflammatory activity of celery Apium graveolens L. (Fam. Umbellifereae). Pharmaceut. Biolog. 1985, 23, 27–32. [Google Scholar] [CrossRef]
- Wichtl, M. Herbal Drugs and Phytopharmaceuticals; CRC Press: Stuttgart, Germany, 1994; pp. 81–82. [Google Scholar]
- Momin, R.A.; Nair, M.G. Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds. J. Agric. Food Chem. 2001, 49, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Kooti, W.; Daraei, N. A Review of the Antioxidant Activity of Celery (Apium graveolens L). J. Evid. Based Complement. Altern. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Venditti, A.; Frezza, C.; Yücetepe, A.; Altuntaş, U.; Uluata, S.; Butnariu, M.; Sarac, I.; Shaheen, S.; Petropoulos, S.A.; et al. Apium Plants: Beyond Simple Food and Phytopharmacological Applications. Appl. Sci. 2019, 9, 3547. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S.K. Handbook of Medicinal Plants, 4th ed.; Pointe: Jaipur, India, 2004. [Google Scholar]
- Khare, C.P. Indian Medicinal Plants; Springer Science: London, UK, 2008. [Google Scholar]
- Nagella, P.; Ahmad, A.; Kim, S.J.; Chung, I.M. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol. Immunotoxicol. 2012, 34, 205–209. [Google Scholar] [CrossRef]
- Parasuraman, S. Prediction of activity spectra for substances. J. Pharmacol. Pharmacother. 2011, 2, 52–53. [Google Scholar] [CrossRef] [Green Version]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reece, R.J.; Maxwell, A. DNA gyrase: Structure and function. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 335–375. [Google Scholar] [CrossRef]
- Boyapati, S.; Kulandaivelu, U.; Sangu, S.; Vanga, M.R. Synthesis, antimicrobial evaluation, and docking studies of novel 4-substituted quinazoline derivatives as DNA-gyrase inhibitors. Arch. Pharm. 2010, 343, 570–576. [Google Scholar] [CrossRef]
- Yildiz, L.; Başkan, K.S.; Tütem, E.; Apak, R. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta 2008, 77, 304–313. [Google Scholar] [CrossRef]
- Tratrat, C.; Haroun, M.; Xenikakis, I.; Liaras, K.; Tsolaki, E.; Eleftheriou, P.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Venugopala, K.N.; et al. Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones. Curr. Top. Med. Chem. 2019, 19, 356–375. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, A.; Chisvert, A.; Salvador, A. Environmentally friendly LC for the simultaneous determination of ascorbic acid and its derivatives in skin-whitening cosmetics. J. Sep. Sci. 2008, 31, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.H.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, P.S.; Narayana, B.; Sarojini, B.K.; Sheik, S.; Shashidhara, K.S.; Chandrashekar, K.R. Design, synthesis, molecular docking and biological evaluation of imides, pyridazines, and imidazoles derived from itaconic anhydride for potential antioxidant and antimicrobial activities. J. Taibah Univ. Sci. 2016, 10, 10823–10838. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 80, 114147. [Google Scholar] [CrossRef] [PubMed]
- Gold, H.J.; Wilson, C.W. The volatile flavour substances of celery. J. Food Sci. 1963, 28, 484–488. [Google Scholar] [CrossRef]
- Uhlig, J.W.; Chang, A.; Jen, J.J. Jen. Effect of phtalides on celery flavor. J. Food Sci. 1987, 52, 658–660. [Google Scholar] [CrossRef]
- MacLeod, A.; MacLeod, G.; Subramanian, G. Volatile aroma constituents of celery. Phytochemistry 1988, 27, 373–375. [Google Scholar] [CrossRef]
- MacLeod, G.; Ames, J. Volatile components of celery and celeriac. Phytochemistry 1989, 28, 1817–1824. [Google Scholar] [CrossRef]
- Lund, E.D.; Wagner, C.J.; Bryan, W.L. Oils recovered from celery packinghouse waste. Florida State Hort. Soc. 1973, 86, 255–259. [Google Scholar]
- Baananou, S.; Bouftira, I.; Mahmoud, A.; Boukef, K.; Marongiu, B.; Boughattas, N.A. Antiulcerogenic and antibacterial activities of Apium graveolens essential oil and extract. Nat. Prod. Res. 2013, 27, 1075–1083. [Google Scholar] [CrossRef]
- Alam, A.; Jawaid, T.; Alam, P. In vitro antioxidant and anti-inflammatory activities of green cardamom essential oil and in silico molecular docking of its major bioactives. J. Taibah Univ. Sci. 2021, 15, 757–776. [Google Scholar] [CrossRef]
- Dharmadeva, S.; Galgamuwa, L.S.; Prasadinie, C.; Kumarasinghe, N. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. AYU 2018, 39, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.H.; Ta, N.T.A.; Pham, T.V.; Huynh, T.D.; Do, Q.T.G.; Dinh, N.C.G.; Dang, C.D.; Nguyen, T.K.C.; Bui, A.V. Effects of solvent-solvent fractionation on the total terpenoid content and in vitro anti-inflammatory activity of Serevenia buxifolia bark extract. Food Sci. Nutr. 2021, 9, 1720–1735. [Google Scholar] [CrossRef] [PubMed]
- Leelarungrayub, J.; Manorsoi, J.; Manorsoi, A. Anti-inflammatory activity of niosomes entrapped with Plai oil (Zingiber cassumunar Roxb.) by therapeutic ultrasound in a rat model. Int. J. Nanomed. 2017, 12, 2469–2476. [Google Scholar] [CrossRef] [Green Version]
- Atta, A.H.; Alkofahi, A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J. Ethnopharmacol. 1998, 60, 117–124. [Google Scholar] [CrossRef]
- Mencherini, T.; Cau, A.; Bianco, G.; Della Loggia, R.; Aquino, R.P.; Autore, G. An extract of Apium graveolens var. dulce leaves: Structure of the major constituent, apiin, and its antiinflammatory properties. J. Pharm. Pharmacol. 2007, 59, 891–897. [Google Scholar] [CrossRef]
- Zheng, G.Q.; Zhang, J.; Kenney, P.; Lam, L.K. Stimulation of glutathione S-transferase and inhibition of carcinogenesis in mice by celery seed oil constituents. ACS Symp. Ser. 1994, 546, 230–238. [Google Scholar] [CrossRef]
- Woods, J.A.; Jewell, C.; O’Brien, N.M. Sedanolide, a natural phtalide from celery seed oil: Effect on hydrogen peroxide and tert-butyl hydroxyperoxide-induced toxicity in HepG2 and CaCo-2 human cell lines. Vitro Mol. Toxicol. 2001, 14, 233–240. [Google Scholar] [CrossRef]
- ChemDraw® JS. A Product of PerkinElmer. Available online: https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html (accessed on 14 September 2021).
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Comp. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018, 103, 923–938. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jin, W.; Nazir, Y.; Fercher, C.; Blaskovich, M.A.T.; Cooper, M.A.; Barnard, R.T.; Ziora, Z.M. Tyrosinase inhibitors as potential antibacterial agents. Eur. J. Med. Chem. 2020, 187, 111892. [Google Scholar] [CrossRef] [PubMed]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-Inflammatory Drugs as Anticancer Agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, A.; Rehman, N.U.; Ansari, M.N.; Palla, A.H. Effects of Essential Oils of Elettaria cardamomum Grown in India and Guatemala on Gram-Negative Bacteria and Gastrointestinal Disorders. Molecules 2021, 26, 2546. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 10th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Yusufoglu, H.S.; Soliman, G.A.; Foudah, A.I.; Abdulkader, M.S.; Alqarni, M.H.; Alam, A.; Salkini, M.A. Standardization and Antioxidant Studies of Arnebia hispidissima. Int. J. Pharmacol. 2018, 14, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Singh, V. Composition and pharmacological activity of essential oils from two imported Amomum subulatum fruit samples. J. Taibah Univ. Med. Sci. 2021, 16, 231–239. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines 2018, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.P.S.; Krishnaswamy, G.; Desai, N.R.; Sreenivasa, S.; Kumar, D.B.A. Design, synthesis, PASS prediction, in-silico ADME and molecular docking studies of substituted-(Z)-3-benzylidine-5-aza-2-oxindole derivatives (Part-1). Chem. Data Collect. 2021, 31, 100617. [Google Scholar] [CrossRef]
- Singh, V.P.; Katiyar, D.E. Synthesis, antimicrobial, cytotoxic and E. coli DNA gyrase inhibitory activities of coumarinyl amino alcohols. Bioorg. Chem. 2017, 71, 120–127. [Google Scholar] [CrossRef]
- Tariq, H.; Zia, M.; Ihsan-Ul-Haq; Muhammad, S.A.; Khan, S.A.; Fatima, N.; Mannan, A.; Abbasi, A.M.; Zhang, M. Antioxidant, Antimicrobial, Cytotoxic, and Protein Kinase Inhibition Potential in Aloe vera L. Biomed. Res. Int. 2019, 2019, 6478187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, S.S.U.; Zhang, W.D.; Jin, H.Z.; Basha, S.H.; Priya, S.V.S.S. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2. J. Biomol. Struct. Dyn. 2020, 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; et al. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol. 2020, 27, 529–532. [Google Scholar] [CrossRef]
- Li, H.; Leung, K.S.; Nakane, T.; Wong, M.H. Iview: An interactive WebGL visualizer for protein-ligand complex. BMC Bioinform. 2014, 15, 56. [Google Scholar] [CrossRef] [Green Version]
S.N. | Metabolites | RT (min) | Content (%) |
---|---|---|---|
1 | Oxime-, methoxy-phenyl-_ | 3.14 | 0.25 |
2 | o-Anisidine, N-trimethylsilyl- | 3.61 | 0.24 |
3 | 1,5-Dimethoxy-1,3,5-trimethyltrisiloxane | 4.72 | 0.17 |
4 | Benzene, 1-methyl-3-(1-methylethyl)- | 5.15 | 0.14 |
5 | d-Limonene | 5.23 | 0.37 |
6 | trans-β-Ocimene | 5.33 | 0.43 |
7 | γ-Terpinene | 5.80 | 0.13 |
8 | 1-Propanol, 2,2-dimethyl-, benzoate | 6.58 | 0.29 |
9 | 2,4,6-Octatriene, 2,6-dimethyl-, (E,E)- | 7.36 | 0.4 |
10 | p-Menth-1-en-4-ol | 8.49 | 0.1 |
11 | Naphthalene | 8.65 | 0.22 |
12 | trans-Carveol | 9.46 | 0.12 |
13 | 3-Heptyne-2,5-diol, 6-methyl-5-(1-methylethyl)- | 11.33 | 0.33 |
14 | β-Damascenone | 13.61 | 0.11 |
15 | Isopinocarveol | 13.71 | 0.24 |
16 | Diphenyl ether | 14.01 | 0.28 |
17 | Caryophyllene | 14.52 | 2.42 |
18 | Humulene | 15.34 | 0.2 |
19 | α-Curcumene | 15.99 | 0.55 |
20 | β-Selinene | 16.14 | 8.52 |
21 | Dihydroagarofuran | 16.20 | 5.21 |
22 | α-Selinene | 16.35 | 1.34 |
23 | 7-Octen-4-one, 2,6-dimethyl- | 16.95 | 0.76 |
24 | Kessane | 17.11 | 4.72 |
25 | Caryophyllene oxide | 18.40 | 0.65 |
26 | 1-Undecanol | 18.48 | 0.11 |
27 | Hexadecane | 18.66 | 0.1 |
28 | 2-Cyclopenten-1-one, 2,3,4,5-tetramethyl- | 18.84 | 0.61 |
29 | Hexahydro-3-butylphthalide | 19.57 | 0.69 |
30 | Perilla alcohol angelate | 19.83 | 0.19 |
31 | 3-butylphthalide | 19.92 | 5.36 |
32 | 1(3H)-Isobenzofuranone, 3-butylidene- | 20.36 | 0.49 |
33 | N,N’-Diacetyl-1,4-phenylenediamine | 20.53 | 0.19 |
34 | (3-Methylphenyl) methanol, 2-methylbutyl ether | 20.79 | 0.17 |
35 | Isocnidilide | 21.60 | 40.1 |
36 | Senkyunolide | 21.44 | 8.48 |
37 | trans-Ligustilide | 21.74 | 2.84 |
38 | trans-Sedanolide | 21.95 | 0.15 |
39 | Phytyl acetate | 23.82 | 5.42 |
40 | 9,12,15-Octadecatrien-1-ol, (Z,Z,Z)- | 25.02 | 0.1 |
41 | Hexadecanoic acid, methyl ester | 25.54 | 1.12 |
42 | Falcarinol | 27.63 | 0.40 |
43 | 9,11-Octadecadienoic acid, methyl ester, (E,E)- | 28.73 | 0.66 |
44 | Linolenic acid, methyl ester | 28.84 | 0.29 |
45 | Methyl stearate | 29.31 | 0.12 |
Total Percentage Area | 95.78% |
Organisms Tested | Zone of Inhibition (In Millimeter) | MIC * (% V/V) | ||
---|---|---|---|---|
1% | 2% | 4% | ||
S. aureus-ATCC26923 | 13.4 ± 0.02 | 15.4 ± 0.01 | 18.6 ± 0.13 | 0.25 |
B. subtilis-ATCC11774 | 15.13 ± 0.08 | 17.3 ± 0.08 | 20.03 ± 0.06 | 0.125 |
E.coli-ATCC11229 | 6.63 ± 0.04 | 8.05 ± 0.08 | 11.46 ± 0.08 | 0.5 |
K. pneumoniae-NCTC9633 | 9.5 ± 0.09 | 11.13 ± 0.08 | 14.47 ± 0.02 | 0.5 |
C. albicans-ATCC10231 | 15.53 ± 0.09 | 18.5 ± 0.09 | 20.13 ± 0.08 | 0.125 |
Entry | Isocnidilide | β-Selinene | Senkyunolide | Phytyl Acetate | 3-Butylphthalide | Dihydroagarofuran | Kessane | Caryophyllene | Ligustilide |
---|---|---|---|---|---|---|---|---|---|
Rt | 21.60 | 16.14 | 21.44 | 23.82 | 19.92 | 16.21 | 17.12 | 14.52 | 21.74 |
Area (82%) | 40.1 | 8.5 | 8.5 | 5.4 | 5.4 | 5.1 | 4.7 | 2.4 | 1.9 |
Mol wt g/mol | 194.27 | 204.35 | 192.25 | 338.57 | 190.24 | 222.37 | 222.37 | 204.35 | 190.24 |
TPSA* | 26.30 Å2 | 0.00 Å2 | 26.30 Å2 | 26.30 Å2 | 26.30 Å2 | 9.23 Å2 | 9.23 Å2 | 0.00 Å2 | 26.30 Å2 |
Consensus * Log Po/w | 2.87 | 4.50 | 2.71 | 6.67 | 2.81 | 3.80 | 3.68 | 4.24 | 2.75 |
Water Solubility * | Soluble | Soluble | Soluble | Poorly soluble | Soluble | Soluble | Soluble | Soluble | Soluble |
GI absorption ** | High | Low | High | low | High | High | High | Low | High |
BBB permeant ** | Yes | no | Yes | no | yes | yes | yes | no | yes |
P-gp substrate ** | no | no | no | yes | no | no | no | no | no |
CYP1A2 inhibitor ** | no | no | no | no | yes | no | no | no | yes |
CYP2C19 inhibitor ** | no | Yes | no | no | no | no | no | yes | no |
CYP2C9 inhibitor ** | Yes | Yes | no | yes | no | yes | no | yes | no |
CYP2D6 inhibitor ** | no | no | no | no | no | no | no | no | no |
CYP3A4 inhibitor ** | no | no | no | no | no | no | no | no | no |
Lipinski *** | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Bioavailability Score *** | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
PASS (Pa > Pi) | |||||||||
Anti-inflammatory | 0.71 > 0.01 | 0.76 > 0.01 | 0.42 > 0.08 | 0.6 > 0.03 | 0.49 > 0.06 | 0.3 > 0.15 | 0.27 > 0.12 | 0.74 > 0.01 | 0.38 > 0.02 |
Antibacterial | 0.32 > 0.05 | 0.34 > 0.04 | 0.42 > 0.02 | 0.42 > 0.03 | 0.39 > 0.03 | 0.29 > 0.06 | 0.4 > 0.03 | 0.44 > 0.02 | 0.3 > 0.06 |
Antifungal | 0.5 > 0.03 | 0.53 > 0.02 | 0.51 > 0.02 | 0.61 > 0.01 | 0.42 > 0.06 | 0.31 > 0.08 | 0.33 > 0.07 | 0.58 > 0.02 | 0.29 > 0.08 |
Antioxidant | 0.46 > 0.06 | 0.12 > 0.12 | 0.22 > 0.04 | 0.48 > 0.01 | 0.20 > 0.05 | - | 0.13 > 0.12 | 0.17 > 0.07 | 0.14 > 0.10 |
Protein (PDB) | Binding Energy | Residue | AA | Distance | Ligand Atom | Protein Atom |
---|---|---|---|---|---|---|
1KZN | −6.82 kcal/mol | 43A | VAL | 3.28 | 1787 | 271 |
47A | ALA | 3.70 | 1783 | 306 | ||
50A | GLU | 3.53 | 1792 | 331 | ||
71A | VAL | 3.51 | 1786 | 517 | ||
78A | ILE | 3.87 | 1792 | 582 | ||
3NM8 | −6.59 kcal/mol | 202A | ALA | 3.73 | 5452 | 1671 |
203A | GLN | 3.88 | 5450 | 1677 | ||
210A | PHE | 3.51 | 5457 | 1763 | ||
385A | TYR | 3.74 | 5455 | 3526 | ||
348A | TYR | 3.83 | 5457 | 3524 | ||
387A | TRP | 3.52 | 5452 | 3551 | ||
390A | LEU | 3.63 | 5452 | 3589 | ||
1CX2 | −8.37 kcal/mol | 177A | TYR | 3.06 | 2904 | 1732 |
241A | TRP | 3.13 | 2903 | 2392 | ||
242A | GLN | 3.76 | 2895 | 2399 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foudah, A.I.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Alam, P.; Alkholifi, F.K.; Yusufoglu, H.S. Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia. Molecules 2021, 26, 7372. https://doi.org/10.3390/molecules26237372
Foudah AI, Alqarni MH, Alam A, Salkini MA, Alam P, Alkholifi FK, Yusufoglu HS. Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia. Molecules. 2021; 26(23):7372. https://doi.org/10.3390/molecules26237372
Chicago/Turabian StyleFoudah, Ahmed I., Mohammed H. Alqarni, Aftab Alam, Mohammad Ayman Salkini, Pravej Alam, Faisal K. Alkholifi, and Hasan S. Yusufoglu. 2021. "Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia" Molecules 26, no. 23: 7372. https://doi.org/10.3390/molecules26237372
APA StyleFoudah, A. I., Alqarni, M. H., Alam, A., Salkini, M. A., Alam, P., Alkholifi, F. K., & Yusufoglu, H. S. (2021). Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia. Molecules, 26(23), 7372. https://doi.org/10.3390/molecules26237372