Magnetic Solid-Phase Extraction Based on Magnetic Sulfonated Reduced Graphene Oxide for HPLC–MS/MS Analysis of Illegal Basic Dyes in Foods
Abstract
:1. Introduction
2. Results
2.1. Characterization of M-S-RGO
2.1.1. Infrared Spectrum Characterization
2.1.2. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.1.3. Hysteresis Curve Characterization
2.1.4. Zeta Potential Characterization
2.1.5. Electron Microscopic Characterization
2.2. Optimization of MSPE Conditions
2.2.1. Effect of the pH of Solution
2.2.2. Effect of Adsorption Time
2.2.3. Desorption and Recycle of Adsorbents
3. Discussion
3.1. Adsorption Performance and Mechanism
3.1.1. Adsorption Isotherm
3.1.2. Adsorption Kinetics
3.1.3. The Mechanism of Dyes Adsorption
3.2. Sample Analysis
3.2.1. Optimization of HPLC–MS/MS Method
3.2.2. Evaluation of Matrix Effects
3.2.3. Method Validation and Application in Real Food Samples
4. Materials and Methods
4.1. Reagents and Materials
4.2. Instrumentation
4.3. Preparation of M-S-RGO
4.4. Establishment of an Adsorption Isotherm Experiment
4.5. Establishment of the Adsorption Kinetics Experiment
4.6. Food Samples
4.7. MSPE Procedure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yamjala, K.; Nainar, M.S.; Ramisetti, N.R. Methods for the analysis of azo dyes employed in food industry—A review. Food Chem. 2016, 192, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ding, X.; Zheng, J.; Liu, D.; Guo, F.; Liu, H.; Zhang, Y. Determination of synthetic dyes in bean and meat products by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2014, 37, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, Y.; Wang, J.; Liu, F.; Hu, N.; Pei, H.; Yang, W.; Li, Z.; Suo, Y.; Wang, J. High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem. 2018, 254, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Guerra, E.; Alvarez-Rivera, G.; Llompart, M.; Garcia-Jares, C. Simultaneous determination of preservatives and synthetic dyes in cosmetics by single-step vortex extraction and clean-up followed by liquid chromatography coupled to tandem mass spectrometry. Talanta 2018, 188, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Périat, A.; Bieri, S.; Mottier, N. SWATH-MS screening strategy for the determination of food dyes in spices by UHPLC-HRMS. Food Chem. X 2019, 1, 100009. [Google Scholar] [CrossRef] [PubMed]
- Mathiyalagan, S.; Mandal, B.K.; Ling, Y.-C. Determination of synthetic and natural colorants in selected green colored foodstuffs through reverse phase-high performance liquid chromatography. Food Chem. 2019, 278, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Duhoranimana, E.; Zhang, X. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples. Talanta 2017, 163, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Leng, J.; Yang, X.; Liao, L.; Liu, L.; Xiao, A. Enhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes. Molecules 2017, 22, 221. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Rodríguez, M.J.; Nan, H.; Anderson, J.L. Expanding the use of polymeric ionic liquids in headspace solid-phase microextraction: Determination of ultraviolet filters in water samples. J. Chromatogr. A 2018, 1540, 11–20. [Google Scholar] [CrossRef]
- Xie, L.; Guo, J.; Zhang, Y.; Shi, S. Efficient Determination of Protocatechuic Acid in Fruit Juices by Selective and Rapid Magnetic Molecular Imprinted Solid Phase Extraction Coupled with HPLC. J. Agric. Food Chem. 2014, 62, 8221–8228. [Google Scholar] [CrossRef]
- Zhao, J.; Meng, Z.; Zhao, Z.; Zhao, L. Ultrasound-assisted deep eutectic solvent as green and efficient media combined with functionalized magnetic multi-walled carbon nanotubes as solid-phase extraction to determine pesticide residues in food products. Food Chem. 2020, 310, 125863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-G.; Li, X.-P.; Yao, S.-S.; Zhan, P.-P.; Liu, J.-C.; Xu, C.-P.; Lu, Y.-Y.; Chen, X.-H.; Jin, M.-C. Fast throughput determination of 21 allergenic disperse dyes from river water using reusable three-dimensional interconnected magnetic chemically modified graphene oxide followed by liquid chromatography–tandem quadrupole mass spectrometry. J. Chromatogr. A 2016, 1431, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Wang, J.; Kuipers, B.; Bi, W.; Chen, D.D.Y. Recent applications of graphene and graphene-based materials as sorbents in trace analysis. TrAC Trends Anal. Chem. 2021, 137, 116212. [Google Scholar] [CrossRef]
- Soylak, M.; Ozalp, O.; Uzcan, F. Magnetic nanomaterials for the removal, separation and preconcentration of organic and inorganic pollutants at trace levels and their practical applications: A review. Trends Environ. Anal. Chem. 2021, 29, e00109. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Row, K.H. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga. J. Sep. Sci. 2017, 40, 3301–3310. [Google Scholar] [CrossRef]
- Zhu, S.A.; Zheng, Z.D.; Peng, H.; Sun, J.B.; Zhao, X.; Liu, H.C. Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry—Sciencedirect. J. Chromatogr. A 2020, 1616, 460794. [Google Scholar] [CrossRef]
- Jana, M.; Saha, S.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.C.; Kuila, T. Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 7323–7331. [Google Scholar] [CrossRef]
- Gong, J.-L.; Wang, X.-Y.; Zeng, G.-M.; Chen, L.; Deng, J.-H.; Zhang, X.-R.; Niu, Q.-Y. Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem. Eng. J. 2012, 185–186, 100–107. [Google Scholar] [CrossRef]
- Liu, W.; Fizir, M.; Hu, F.; Li, A.; Hui, X.; Zha, J.; He, H. Mixed hemimicelle solid-phase extraction based on magnetic halloysite nanotubes and ionic liquids for the determination and extraction of azo dyes in environmental water samples. J. Chromatogr. A 2018, 1551, 10–20. [Google Scholar] [CrossRef]
- Fang, R.; Cheng, X.S. Characterization and Utilization of Corncob Lignocellulose for Adsorptive Removal of Basic Dyes from Aqueous Solution. Adv. Mater. Res. 2011, 236–238, 125–129. [Google Scholar] [CrossRef]
- Abd-Elhamid, A.; Aly, H.; Soliman, H.A.; El Shanshory, A. Graphene oxide: Follow the oxidation mechanism and its application in water treatment. J. Mol. Liq. 2018, 265, 226–237. [Google Scholar] [CrossRef]
- Wang, G.; Li, G.; Huan, Y.; Hao, C.; Chen, W. Acrylic acid functionalized graphene oxide: High-efficient removal of cationic dyes from wastewater and exploration on adsorption mechanism. Chemosphere 2020, 261, 127736. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Pan, S.; Chen, X.; Zhao, Y.; Zou, B.; Jin, M. Kinetics and thermodynamics studies of pentachlorophenol adsorption on covalently functionalized Fe3O4@SiO2–MWCNTs core–shell magnetic microspheres. Chem. Eng. J. 2014, 257, 10–19. [Google Scholar] [CrossRef]
- Hu, Z.; Qi, P.; Wang, N.; Zhou, Q.-Q.; Lin, Z.-H.; Chen, Y.-Z.; Mao, X.-W.; Jiang, J.-J.; Li, C. Simultaneous determination of multiclass illegal dyes with different acidic–basic properties in foodstuffs by LC-MS/MS via polarity switching mode. Food Chem. 2020, 309, 125745. [Google Scholar] [CrossRef]
- Guo, F.Y.; Liu, Y.G.; Wang, H.; Zeng, G.M.; Hu, X.J.; Zheng, B.H.; Li, T.T.; Tan, X.F.; Wang, S.F.; Zhang, M.M. Adsorption behavior of Cr (VI) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Adv. 2015, 5, 45384–45392. [Google Scholar] [CrossRef]
- Lou, C.; Wu, C.; Zhang, K.; Guo, D.; Jiang, L.; Lu, Y.; Zhu, Y. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. J. Chromatogr. A 2018, 1550, 45–56. [Google Scholar] [CrossRef]
- Kılınç, E.; Çelik, K.S.; Bilgetekin, H. γ-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube for magnetic solid phase extractions and determinations of Sudan dyes and Para Red in food samples. Food Chem. 2018, 242, 533–537. [Google Scholar] [CrossRef]
- Qi, F.; Qian, L.; Liu, J.; Li, X.; Lu, L.; Xu, Q. A high-throughput nanofibers mat-based micro-solid phase extraction for the determination of cationic dyes in wastewater. J. Chromatogr. A 2016, 1460, 24–32. [Google Scholar] [CrossRef]
Dye | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
KL | qm | R2 | KF | 1/n | R2 | |
Basic violet 7 | 1.10 | 213.22 | 0.9915 | 24.26 | 0.56 | 0.9160 |
Basic red 13 | 0.63 | 300.30 | 0.9878 | 22.66 | 0.63 | 0.9667 |
Basic orange 21 | 0.59 | 272.48 | 0.9893 | 17.91 | 0.67 | 0.9560 |
Dye | Experiment qe | Quasi-First-Order Kinetic | Quasi-Second-Order Kinetic | ||||
---|---|---|---|---|---|---|---|
K1 | Theoretical qe | R2 | K2 | Theoretical qe | R2 | ||
Basic violet 7 | 128.34 | 1.84 | 83.86 | 0.9465 | 0.18 | 141.84 | 0.9727 |
Basic red 13 | 144.60 | 3.66 | 167.71 | 0.6180 | 0.18 | 141.84 | 0.9727 |
Basic orange 21 | 155.00 | 2.58 | 127.67 | 0.7037 | 0.16 | 168.35 | 0.9638 |
Dyes | Spiked Level µg·g−1 | Recovery% (RSD %) | ||
---|---|---|---|---|
Tomato Sauce | Yellow Croaker | Grass Carp | ||
Basic Orange 21 | 0.01 | 88.5 (3.5) | 76.4 (5.1) | 71.4 (4.8) |
0.05 | 92.4 (3.2) | 78.2 (5.1) | 76.9 (5.1) | |
0.10 | 95.2 (3.4) | 82.3 (4.8) | 79.1 (4.9) | |
Basic Red 46 | 0.01 | 81.3 (4.9) | 87.3 (3.7) | 82.4 (4.6) |
0.05 | 85.2 (5.1) | 89.2 (4.6) | 81.1 (4.5) | |
0.10 | 89.3 (5.0) | 93.1 (3.9) | 86.4 (4.5) | |
Basic Violet 1 | 0.01 | 93.2 (3.4) | 87.2 (4.4) | 88.7 (4.1) |
0.05 | 94.9 (2.9) | 89.6 (4.3) | 90.6 (3.8) | |
0.10 | 97.3 (3.3) | 94.3 (3.3) | 92.5 (4.3) | |
Crystal Violet | 0.01 | 94.4 (3.5) | 75.4 (4.7) | 90.3 (3.9) |
0.05 | 97.5 (3.1) | 77.2 (4.8) | 92.7 (3.4) | |
0.10 | 100.9 (3.3) | 85.1 (4.0) | 96.4 (3.7) | |
Basic Green 1 | 0.01 | 92.1 (4.1) | 67.4 (4.8) | 60.6 (4.7) |
0.05 | 96.3 (3.2) | 70.7 (4.6) | 63.7 (4.6) | |
0.10 | 95.1 (3.8) | 69.4 (4.4) | 67.9 (4.9) | |
Basic Orange 22 | 0.01 | 91.9 (4.2) | 66.3 (4.8) | 76.9 (4.8) |
0.05 | 93.0 (4.1) | 66.9 (5.1) | 73.8 (5.3) | |
0.10 | 94.3 (4.0) | 67.9 (4.7) | 70.4 (4.4) | |
Basic Blue 11 | 0.01 | 97.9 (4.8) | 82.2 (4.5) | 88.4 (3.9) |
0.05 | 102.4 (5.5) | 75.5 (4.5) | 91.3 (3.7) | |
0.10 | 104.1 (4.2) | 90.2 (4.2) | 93.5 (4.2) | |
Rhodamine 6G | 0.01 | 88.4 (4.4) | 78.7 (4.5) | 75.3 (4.8) |
0.05 | 87.9 (4.3) | 80.8 (4.3) | 78.7 (5.4) | |
0.10 | 91.2 (4.9) | 84.4 (5.1) | 77.3 (4.3) | |
Rhodamine B | 0.01 | 84.2 (4.7) | 89.3 (4.7) | 89.7 (3.9) |
0.05 | 83.9 (4.3) | 87.6 (4.2) | 91.1 (3.6) | |
0.10 | 87.3 (4.2) | 95.3 (3.2) | 97.4 (3.5) | |
Ethyl Violet 4 | 0.01 | 98.6 (4.9) | 90.9 (4.2) | 82.5 (4.7) |
0.05 | 109.1 (5.2) | 89.3 (3.9) | 78.6 (3.9) | |
0.10 | 105.5 (4.3) | 93.9 (3.5) | 88.2 (4.3) | |
Basic Blue 7 | 0.01 | 94.3 (3.5) | 85.6 (4.2) | 72.5 (4.8) |
0.05 | 97.7 (3.3) | 85.3 (4.6) | 75.9 (4.2) | |
0.10 | 103.1 (3.7) | 87.6 (4.3) | 73.4 (5.4) | |
Basic Red 14 | 0.01 | 84.7 (4.2) | 83.5 (4.1) | 84.6 (4.3) |
0.05 | 83.0 (3.5) | 77.3 (3.8) | 87.3 (4.1) | |
0.10 | 89.8 (4.4) | 89.7 (3.9) | 92.8 (4.0) | |
Basic Red 13 | 0.01 | 87.4 (4.1) | 68.6 (4.5) | 88.1 (3.6) |
0.05 | 89.0 (3.5) | 70.4 (4.6) | 91.0 (3.4) | |
0.10 | 93.7 (3.8) | 87.4 (4.5) | 97.8 (3.4) | |
Basic Violet 7 | 0.01 | 94.2 (3.9) | 79.5 (4.3) | 84.6 (3.8) |
0.05 | 98.71 (3.3) | 80.7 (4.8) | 88.8 (3.5) | |
0.10 | 101.4 (4.7) | 92.4 (3.8) | 96.4 (3.3) | |
Basic Blue 26 | 0.01 | 92.6 (3.4) | 92.8 (3.5) | 91.5 (3.4) |
0.05 | 94.9 (3.2) | 94.4 (3.6) | 95.9 (3.2) | |
0.10 | 96.9 (3.9) | 95.6 (3.2) | 94.4 (3.2) | |
Malachite Green | 0.01 | 92.7 (3.6) | 79.4 (3.9) | 77.6 (4.0) |
0.05 | 98.2 (3.2) | 82.5 (4.5) | 75.9 (4.3) | |
0.10 | 104.5 (4.5) | 90.3 (3.7) | 87.3 (3.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Mao, X.; Zhang, H.; Zeng, H.; Lin, Z.; Zhang, X.; Qi, P. Magnetic Solid-Phase Extraction Based on Magnetic Sulfonated Reduced Graphene Oxide for HPLC–MS/MS Analysis of Illegal Basic Dyes in Foods. Molecules 2021, 26, 7427. https://doi.org/10.3390/molecules26247427
Cui S, Mao X, Zhang H, Zeng H, Lin Z, Zhang X, Qi P. Magnetic Solid-Phase Extraction Based on Magnetic Sulfonated Reduced Graphene Oxide for HPLC–MS/MS Analysis of Illegal Basic Dyes in Foods. Molecules. 2021; 26(24):7427. https://doi.org/10.3390/molecules26247427
Chicago/Turabian StyleCui, Shibo, Xinwu Mao, Haijing Zhang, Haowei Zeng, Zihao Lin, Xuewu Zhang, and Ping Qi. 2021. "Magnetic Solid-Phase Extraction Based on Magnetic Sulfonated Reduced Graphene Oxide for HPLC–MS/MS Analysis of Illegal Basic Dyes in Foods" Molecules 26, no. 24: 7427. https://doi.org/10.3390/molecules26247427
APA StyleCui, S., Mao, X., Zhang, H., Zeng, H., Lin, Z., Zhang, X., & Qi, P. (2021). Magnetic Solid-Phase Extraction Based on Magnetic Sulfonated Reduced Graphene Oxide for HPLC–MS/MS Analysis of Illegal Basic Dyes in Foods. Molecules, 26(24), 7427. https://doi.org/10.3390/molecules26247427