Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation–Extraction and Headspace Solid-Phase Microextraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. HS-SPME Analysis of Areca Nuts
2.2. Qualitative and Semiquantitative Analysis of Areca Nuts
2.3. Antimicrobial Effect of Distillation Fractions of Areca Nut
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Plant Material
3.3. Instrumentation GC-MS and GC-FID and Analysis of Volatile Compounds
3.4. Headspace Solid-Phase Microextraction Technique
3.5. Simultaneous Hydrodistillation–Extraction (SHDE)
3.6. Treatment of SHDE Byproducts before GC Analysis
3.7. Antimicrobial Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Peng, W.; Liu, Y.-J.; Wu, N.; Sun, T.; He, X.-Y.; Gao, Y.-X.; Wu, C.-J. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015, 164, 340–356. [Google Scholar] [CrossRef]
- Ali, N.S.; Khuwaja, A.K. Chapter 23—Betel Nut (Areca catechu) Usage and Its Effects on Health. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 197–204. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval. Carcinog. Risks Hum. 2004, 85, 1–334. [Google Scholar]
- Gupta, P.C.; Warnakulasuriya, S. Global epidemiology of areca nut usage. Addict. Biol. 2002, 7, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Boucher, B.J.; Mannan, N. Metabolic effects of the consumption of Areca catechu. Addict. Biol. 2002, 7, 103–110. [Google Scholar] [CrossRef]
- Volgin, A.D.; Bashirzade, A.; Amstislavskaya, T.G.; Yakovlev, O.A.; Demin, K.A.; Ho, Y.-J.; Wang, D.; Shevyrin, V.; Yan, D.; Tang, Z.; et al. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem. Neurosci. 2019, 10, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Schamschula, R.G.; Adkins, B.L.; Barmes, D.E.; Charlton, G. Betel chewing and caries experience in New Guinea. Community Dent. Oral Epidemiol. 1977, 5, 284–286. [Google Scholar] [CrossRef]
- Möller, I.J.; Pindborg, J.J.; Effendi, I. The relation between betel chewing and dental caries. Eur. J. Oral Sci. 1977, 85, 64–70. [Google Scholar] [CrossRef]
- Anthikat, R.N.; Michael, A. Study on the areca nut for its antimicrobial properties. J. Young Pharm. 2009, 1, 42. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Sultana, P.; Islam, M.S.; Mahmud, M.T.; Rashid, M.M.O.; Hossen, F. Comparative Antimicrobial Activity of Areca catechu Nut Extracts using Different Extracting Solvents. Bangladesh J. Microbiol. 2016, 31, 19–23. [Google Scholar] [CrossRef]
- Chen, P.-H.; Mahmood, Q.; Mariottini, G.L.; Chiang, T.-A.; Lee, K.-W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Res. Int. 2017, 2017, 3904098. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.-C.; Huang, Y.-L.; Lee, C.-H.; Chen, M.-J.; Lin, L.-M.; Tsai, C.-C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med. 1995, 24, 450–453. [Google Scholar] [CrossRef]
- Chen, P.-H.; Lee, K.-W.; Chen, C.-H.; Shieh, T.-Y.; Ho, P.-S.; Wang, S.-J.; Lee, C.-H.; Yang, S.-F.; Chen, M.-K.; Chiang, S.-L.; et al. CYP26B1 is a novel candidate gene for betel quid-related oral squamous cell carcinoma. Oral Oncol. 2011, 47, 594–600. [Google Scholar] [CrossRef]
- Lee, K.-W.; Kuo, W.-R.; Tsai, S.-M.; Wu, D.-C.; Wang, W.-M.; Fang, F.-M.; Chiang, F.-Y.; Ho, K.-Y.; Wang, L.-F.; Tai, C.-F.; et al. Different impact from betel quid, alcohol and cigarette: Risk factors for pharyngeal and laryngeal cancer. Int. J. Cancer 2005, 117, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Garg, A.; Parascandola, M.; Chaturvedi, P.; Khariwala, S.S.; Stepanov, I. Analysis of Alkaloids in Areca Nut-Containing Products by Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-N.; Zhang, J.; Liu, D.; Liu, Z.-W.; Zhang, X.-Q.; Ye, W.-C. Three new areca alkaloids from the nuts of Areca catechu. J. Asian Nat. Prod. Res. 2017, 19, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Ao, Y.; Yao, N.; Xie, J.; Zhang, D.; Zhang, J.; Zhang, X.; Ye, W. Two New Flavonoids from the Nuts of Areca catechu. Molecules 2019, 24, 2862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavan, Y.V.; Singhal, R.S. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols. J. Sci. Food Agric. 2013, 93, 2580–2589. [Google Scholar] [CrossRef]
- Holdsworth, D.K.; Jones, R.A.; Self, R. Volatile alkaloids from Areca catechu. Phytochemistry 1998, 48, 581–582. [Google Scholar] [CrossRef]
- Self, R.; Jones, R.A.; Holdworth, D.K. Gas chromatography/mass spectrometry analysis of alkaloids in betel nut (Areca catechu). Eur. Mass Spectrom. 1999, 5, 213–219. [Google Scholar] [CrossRef]
- Kiuchi, F.; Miyashita, N.; Tsuda, Y.; Kondo, K.; Yoshimura, H. Studies on crude drugs effective on visceral Larva migrans. I. Identification of larvicidal principles in betel nuts. Chem. Pharm. Bull. 1987, 35, 2880–2886. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Liu, Y.; Yuan, H.; Qiu, Y.; Xie, Q.; Yi, P.; Tan, D.; Peng, Y.; Wang, W. HPLC-Based Qualitative and Quantitative Analyses of Alkaloids in Chewable Areca Products from Different Geographic Regions. J. AOAC Int. 2020, 103, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.W.; Cao, M.R.; Yi, P.; Xie, Q.L.; Jian, Y.Q.; Li, B.; Qin, Y.; Peng, C.Y.; Wu, H.Y.; Tan, D.B.; et al. Determination of alkaloids and phenols in the chewable husk products of Areca catechu L. Using HPLC-UV and UHPLC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 612–620. [Google Scholar] [CrossRef]
- Lord, G.A.; Lim, C.K.; Warnakulasuriya, S.; Peters, T.J. Chemical and analytical aspects of areca nut. Addict. Biol. 2002, 7, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Sari, E.F.; Prayogo, G.P.; Loo, Y.T.; Zhang, P.; McCullough, M.J.; Cirillo, N. Distinct phenolic, alkaloid and antioxidant profile in betel quids from four regions of Indonesia. Sci. Rep. 2020, 10, 16254. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.A.; Mendez, A.J.; Lai, J.F.; Arat-Cabading, C.; Li, X.; Custer, L.J. Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers. Food Chem. Toxicol. 2015, 80, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Loughlin, R.; Gilmore, B.F.; Mc Carron, P.A.; Tunney, M.M. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett. Appl. Microbiol. 2008, 46, 428–433. [Google Scholar] [CrossRef]
- Chen, W.Y.; Vermaak, I.; Viljoen, A. Camphor—A Fumigant during the Black Death and a Coveted Fragrant Wood in Ancient Egypt and Babylon—A Review. Molecules 2013, 18, 5434–5454. [Google Scholar] [CrossRef] [Green Version]
- Tada, A.; Hanada, N. Opportunistic respiratory pathogens in the oral cavity of the elderly. FEMS Immunol. Med Microbiol. 2010, 60, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Frymus, T.; Addie, D.D.; Boucraut-Baralon, C.; Egberink, H.; Gruffydd-Jones, T.; Hartmann, K.; Horzinek, M.C.; Hosie, M.J.; Lloret, A.; Lutz, H.; et al. Streptococcal infections in cats: ABCD guidelines on prevention and management. J. Feline Med. Surg. 2015, 17, 620–625. [Google Scholar] [CrossRef]
- Anupama, M.; Puspita, D.; Rajesh, K. Studies on antimicrobial properties of areca nut Areca catechu. J. Pharmacogn. Phytochem. 2021, 10, 961–963. [Google Scholar]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-N.; Lim, Y.K.; Freire, M.O.; Cho, E.; Jin, D.C.; Kook, J.-K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 2012, 18, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Krist, S.; Sato, K.; Glasl, S.; Hoeferl, M.; Saukel, J. Antimicrobial effect of vapours of terpineol, (R)-(-)-linalool, carvacrol, (S)-(-)-perillaldehyde and 1,8-cineole on airborne microbes using a room diffuser. Flavour Fragr. J. 2008, 23, 353–356. [Google Scholar] [CrossRef]
- Leite, A.M.; Lima, E.D.O.; De Souza, E.L.; Diniz, M.D.F.F.M.; Trajano, V.N.; De Medeiros, I.A. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Ciências. Farm. 2007, 43, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [Green Version]
- Chalchat, J.C.; Chiron, F.; Garry, R.P.; Lacoste, J.; Sautou, V. Photochemical Hydroperoxidation of Terpenes. Antimicrobial Activity of α-Pinene, β-Pinene and Limonene Hydroperoxides. J. Essent. Oil Res. 2000, 12, 125–134. [Google Scholar] [CrossRef]
- Churchward, C.P.; Alany, R.G.; Snyder, L.A.S. Alternative antimicrobials: The properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 2018, 44, 561–570. [Google Scholar] [CrossRef]
- Faden, A.A. Evaluation of Antibacterial Activities of Aqueous and Methanolic Extracts of Areca catechu against Some Opportunistic Oral Bacteria. Biosci. Biotechnol. Res. Asia 2018, 15, 655–659. [Google Scholar] [CrossRef]
- Jin, X.; Zhou, J.; Richey, G.; Wang, M.; Hong, S.M.C.; Hong, A.S.H. Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation. J. Microbiol. Biotechnol. 2021, 31, 130–136. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry Webbook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001. [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
Run | Coded Factors | Decoded Factors | Response | |||
---|---|---|---|---|---|---|
Text | text | Text (°C) | text (min) | NoP | ||
Observed | Predicted | |||||
1 | −1 | −1 | 40 | 10 | 24 | 23 |
2 | −1 | 1 | 40 | 90 | 44 | 43 |
3 | −1 | 0 | 40 | 50 | 41 | 43 |
4 | 0 | −1 | 80 | 10 | 63 | 63 |
5 | 0 | 1 | 80 | 90 | 81 | 83 |
6 (C) | 0 | 0 | 80 | 50 | 84 | 83 |
7 (C) | 0 | 0 | 80 | 50 | 85 | 83 |
8 (C) | 0 | 0 | 80 | 50 | 83 | 83 |
9 (C) | 0 | 0 | 80 | 50 | 81 | 83 |
10 | 1 | −1 | 120 | 10 | 72 | 72 |
11 | 1 | 1 | 120 | 90 | 92 | 92 |
12 | 1 | 0 | 120 | 50 | 92 | 92 |
Parameter | Regression Coefficient | Standard Error | Degree of Freedom | Sum of Squares | F-Value | p-Value |
---|---|---|---|---|---|---|
Lack-of-fit | 3 | 9.375 | 1.071 | 0.478052 | ||
Pure error | 3 | 8.750 | ||||
b0 | −55.2214 | 4.407486 | ||||
b1 | 2.1500 | 0.109332 | 1 | 3601.500 | 1234.800 | 0.000051 |
b11 | −0.0096 | 0.000654 | 1 | 630.375 | 216.129 | 0.000683 |
b2 | 0.8589 | 0.079995 | 1 | 560.667 | 192.229 | 0.000812 |
b22 | −0.0062 | 0.000654 | 1 | 260.042 | 89.157 | 0.002518 |
b12 | 0.0000 | 0.000534 | 1 | 0.000 | 0.000 | 1.000000 |
GROUP OF COMPOUNDS Volatile Compounds | Retention Index | CAS Number | Relative % of Peak Area | |||
---|---|---|---|---|---|---|
HS-SPME Extraction | SHDE Extract | Distillation Residue | Hydrolate | |||
ALKANES | ||||||
Hexadecane | 1597 | 544-76-3 | 0.16 | - | - | - |
Nonadecane | 1897 | 629-92-5 | 0.31 | - | - | - |
∑ALKANES | 0.47 (2) | - | - | - | ||
ALCOHOLS | ||||||
1-Heptanol | 972 | 111-70-6 | - | 0.07 | - | - |
1-Octen-3-ol | 981 | 3391-86-4 | - | 0.05 | - | - |
3-Octanol | 998 | 589-98-0 | - | 0.01 | - | - |
Benzenemethanol | 1034 | 100-51-6 | 0.56 | - | - | - |
1-Octanol | 1073 | 111-87-5 | 0.18 | 0.13 | - | - |
Benzeneethanol | 1111 | 60-12-8 | 0.31 | - | - | - |
1-Methyl-4-(1-methylethyl)-cis-2-cyclohexen-1-ol | 1125 | 29803-82-5 | - | 0.01 | - | - |
1-Hexadecanol | 1878 | 36653-82-4 | 0.34 | - | - | - |
∑ ALCOHOLS | 1.39 (4) | 0.27 (5) | - | - | ||
ALDEHYDES | ||||||
trans-2-Heptenal | 957 | 18829-55-5 | - | 0.01 | - | - |
Benzaldehyde | 960 | 100-52-7 | 1.02 | 0.05 | - | 7.23 |
Octanal | 1003 | 124-13-0 | - | 0.16 | - | - |
Phenylacetaldehyde | 1042 | 122-78-1 | 0.56 | 0.01 | - | - |
Nonanal | 1105 | 124-19-6 | 2.45 | 0.38 | - | - |
trans-2-Nonenal | 1160 | 18829-56-6 | 0.37 | 0.09 | - | - |
Decanal | 1205 | 112-31-2 | 0.40 | 0.07 | - | 2.16 |
p-Isopropylbenzaldehyde | 1241 | 122-03-2 | 0.23 | - | - | - |
Anisaldehyde isomer | 1254 | - | 0.17 | - | - | - |
trans-2-Decenal | 1263 | 3913-81-3 | 0.24 | 0.15 | - | - |
Undecanal | 1306 | 112-44-7 | 0.19 | - | - | - |
trans-2, trans-4-Decadienal | 1319 | 25152-84-5 | 0.17 | 0.14 | - | - |
2-Undecenal | 1364 | 2463-77-6 | - | 0.04 | - | - |
2-Butyl-2-octenal | 1371 | 13,019-16-4 | - | 0.13 | - | - |
Tridecanal | 1509 | 10486-19-8 | 0.22 | - | - | - |
Tetradecanal (Myristaldehyde) | 1610 | 124-25-4 | 0.20 | - | - | - |
1-Pentadecanal | 1712 | 2765-11-9 | 0.22 | - | - | - |
∑ALDEHYDES | 6.44 (13) | 1.23 (11) | - | 9.39 (2) | ||
ESTERS | ||||||
Amyl acetate | 915 | 628-63-7 | - | 0.01 | - | - |
Dodecanoic acid, methyl ester | 1521 | 111-82-0 | 0.75 | - | - | - |
Dodecanoic acid, ethyl ester | 1591 | 106-33-2 | 6.80 | - | - | - |
Tetradecanoic acid, methyl ester | 1721 | 124-10-7 | 0.96 | - | - | - |
Tetradecanoic acid, ethyl ester | 1789 | 124-06-1 | 6.04 | - | - | - |
Tetradecanoic acid, 1-methylethyl ester | 1820 | 110-27-0 | 0.51 | - | - | - |
Amyl laurate | 1878 | 5350-03-8 | - | - | 0.82 | - |
Hexadecanoic acid, methyl ester | 1927 | 112-39-0 | 0.22 | - | - | - |
Hexadecanoic acid, ethyl ester | 1989 | 628-97-7 | 0.61 | - | - | - |
Hexadecanoic acid, 1-methylethyl ester | 2019 | 142-91-6 | 4.88 | - | - | - |
∑ ESTERS | 20.77 (8) | 0.03 (2) | 0.82 (1) | - | ||
FATTY ACIDS | ||||||
Hexanoic acid | 982 | 142-62-1 | - | - | - | 7.65 |
Heptanoic acid | 1093 | 111-14-8 | - | 0.03 | - | - |
Octanoic acid | 1172 | 124-07-2 | 0.61 | - | - | 20.0 |
Nonanoic acid | 1239 | 112-05-0 | 0.19 | 2.48 | - | - |
Decanoic acid | 1386 | 334-48-5 | 1.47 | 0.08 | 0.13 | - |
Undecanoic acid | 1436 | 112-37-8 | - | 0.09 | - | - |
Dodecanoic acid | 1560 | 143-07-7 | 60.40 | 45.23 | 17.88 | 18.1 |
Tetradecanoic acid | 1752 | 544-63-8 | - | 0.51 | 63.24 | 2.78 |
Pentadecanoic acid | 1840 | 1002-84-2 | - | 28.56 | - | - |
Hexadecanoic acid | 1944 | 57-10-3 | 0.36 | 0.16 | 12.43 | - |
Heptadecanoic acid | 2036 | 506-12-7 | - | 4.01 | - | - |
cis-9, cis-12-Octadecadienoic acid | 2129 | 60-33-3 | - | - | 0.88 | - |
trans-9-Octadecenoic acid | 2135 | 112-80-1 | 0.48 | 4.07 | 1.99 | - |
∑ FATTY ACIDS | 63.51 (6) | 85.22 (10) | 96.55 (6) | 48.53 (4) | ||
KETONES | ||||||
Oct-3-en-2-one | 1038 | 1669-44-9 | - | 0.07 | - | - |
Acetophenone | 1065 | 98-86-2 | - | 0.01 | - | - |
2-Undecanone | 1292 | 112-12-9 | - | 0.20 | - | - |
Nerylacetone | 1445 | 3879-26-3 | 0.14 | - | - | - |
2-Tridecanone | 1495 | 593-08-8 | 1.52 | 0.07 | - | - |
3-ethenyl-3-methyl-6-(1-methylethyl)-2-(1-methylethylidene)- cyclohexanone | 1528 | 21698-46-4 | - | 0.14 | - | - |
γ-Dodecalactone | 1675 | 2305-05-7 | 0.50 | - | - | - |
2-Pentadecanone | 1694 | 2345-28-0 | 2.43 | - | - | - |
∑ KETONES | 4.59 (4) | 0.49 (5) | - | - | ||
TERPENES and TERPENOIDS | ||||||
α-Thujene | 925 | 2867-05-2 | - | 0.02 | - | - |
α-Pinene | 932 | 80-56-8 | - | 0.06 | - | - |
Camphene | 948 | 79-92-5 | - | 0.01 | - | - |
β-Pinene | 976 | 127-91-3 | - | 0.06 | - | - |
α-Terpinen | 1016 | 99-86-5 | - | 0.06 | - | - |
p-Cymene | 1023 | 99-87-6 | - | 0.16 | - | - |
Limonene | 1029 | 138-86-3 | - | 0.17 | - | - |
Eucalyptol | 1031 | 470-82-6 | - | 0.11 | - | 4.11 |
β-Ocimene | 1046 | 13877-91-3 | - | 0.01 | - | - |
cis-Linalool oxide | 1071 | 5989-33-3 | - | 0.02 | - | 4.10 |
Terpinolene | 1085 | 586-62-9 | - | 0.02 | - | - |
trans-Linalool oxide | 1087 | 34995-77-2 | - | - | - | 4.19 |
Fenchone | 1088 | 1195-79-5 | - | 0.11 | - | - |
Linalool | 1101 | 78-70-6 | - | 0.41 | - | 2.73 |
Thujone | 1117 | 546-80-5 | - | 0.03 | - | - |
Camphor | 1147 | 76-22 -2 | - | 0.43 | - | 5.38 |
Isomenthone | 1156 | 491-07-6 | - | 0.28 | - | - |
D-isomenthone | 1165 | 1196-31-2 | - | 0.18 | - | - |
Menthol | 1171 | 89-78-1 | - | 0.02 | - | - |
L-Borneol | 1173 | 464-45-9 | - | 0.15 | - | - |
Terpinen-4-ol | 1182 | 562-74-3 | - | 0.71 | - | 5.60 |
α-Terpineol | 1196 | 98-55-5 | - | 0.40 | - | 3.01 |
D-Carvone | 1246 | 2244-16-8 | - | 0.46 | - | 6.06 |
Geraniol | 1253 | 106-24-1 | - | 0.02 | - | - |
Piperitone | 1255 | 89-81-6 | - | 0.04 | - | - |
α-Terpinyl acetate | 1347 | 80-26-2 | - | 0.02 | - | - |
Geranyl acetone | 1448 | 3796-70-1 | - | 0.03 | - | - |
α-Curcumene | 1482 | 644-30-4 | - | 0.35 | - | - |
β-Selinene | 1491 | 17066-67-0 | - | 0.08 | - | - |
α-Selinene | 1498 | 473-13-2 | - | 0.05 | - | - |
β-Bisabolene | 1508 | 495-61-4 | - | 0.03 | - | - |
Myristicin | 1522 | 607-91-0 | - | 0.22 | - | - |
Elemicin | 1547 | 487-11-6 | - | 0.02 | - | - |
∑ TERPENES and TERPENOIDS | - | 4.74 (32) | - | 35.18 (8) | ||
OTHER COMPOUNDS | ||||||
2,6,6-trimethyl-2-ethenyltetrahydropyran | 969 | 7392-19-0 | - | 0.01 | - | - |
2-pentylfuran | 989 | 3777-69-3 | - | 0.16 | - | - |
4-ethenyl-1,5,5-trimethylcyclopentene | 1058 | 1727-69-1 | - | 0.16 | - | - |
4-Acetyl-1-methylcyclohexene | 1130 | 6090-09-1 | - | 0.01 | - | - |
Arecoline | 1225 | 63-75-2 | 0.80 | - | 1.85 | - |
Anethole | 1287 | 4180-23-8 | 0.76 | 0.42 | - | - |
6-Nonyltetrahydro-2H-pyran-2-one | 1950 | 2721-22-4 | - | 0.05 | - | - |
∑ OTHER COMPOUNDS | 1.56 (2) | 0.83 (7) | 1.85 (1) |
SHDE Extract | Hydrolate | Distillation Residue | AMP 10 µg | CIP 5 µg | DA 2 µg | TE 30 µg | FCA 25 µg | |
---|---|---|---|---|---|---|---|---|
Bacillus subtilis CCM 2215 | 12.3 ± 1.5 | 6.0 ± 0 | 6.0 ± 0 | 21.5 ± 1.5 | 35.0 ± 0 | 25.5 ± 0.5 | 22.5 ± 0.5 | n.t. |
Enterococcus faecalis CCM 4224 | 16.0 ± 0.7 | 6.0 ± 0 | 6.0 ± 0 | 12.5 ± 0.5 | 19.0 ± 0.0 | 8.0 ± 0.0 | 23.0 ± 1.0 | n.t. |
Escherichia coli CCM 3954 | 10.3 ± 1.1 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0.0 | 21.5 ± 1.5 | 6.0 ± 0.0 | 13.5 ± 7.5 | n.t. |
Pseudomonas aeruginosa CCM 3955 | 11.3 ± 0.8 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0.0 | 36.0 ± 1.0 | 6.0 ± 0.0 | 14.0 ± 1.0 | n.t. |
Staphylococcus aureus CCM 4223 | 10.8 ± 0.8 | 6.0 ± 0 | 6.0 ± 0 | 28.5 ± 1.5 | 29.0 ± 1.0 | 30.0 ± 1.0 | 16.5 ± 0.5 | n.t. |
Streptococcus agalactiae CCM 6187 | 28.3 ± 1.5 | 6.0 ± 0 | 6.0 ± 0 | 17.5 ± 0.5 | 20.5 ± 0.5 | 22.5 ± 0.5 | 14.5 ± 0.5 | n.t. |
Streptococcus canis NPK09 | 40.0 ± 3.0 | 6.0 ± 0 | 6.0 ± 0 | 21.5 ± 1.5 | 21.5 ± 2.5 | 22.5 ± 0.5 | 11.0 ± 1.0 | n.t. |
Streptococcus pyogenes NPK01 | 27.5 ± 1.5 | 6.0 ± 0 | 6.0 ± 0 | 31.5 ± 1.5 | 28.5 ± 1.5 | 34.0 ± 0.0 | 37.0 ± 0.0 | n.t. |
Candida albicans CCM 8215 | 15.0 ± 1.7 | 6.0 ± 0 | 6.0 ± 0 | n.t. | n.t. | n.t. | n.t. | 11.5 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machová, M.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation–Extraction and Headspace Solid-Phase Microextraction. Molecules 2021, 26, 7422. https://doi.org/10.3390/molecules26247422
Machová M, Bajer T, Šilha D, Ventura K, Bajerová P. Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation–Extraction and Headspace Solid-Phase Microextraction. Molecules. 2021; 26(24):7422. https://doi.org/10.3390/molecules26247422
Chicago/Turabian StyleMachová, Martina, Tomáš Bajer, David Šilha, Karel Ventura, and Petra Bajerová. 2021. "Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation–Extraction and Headspace Solid-Phase Microextraction" Molecules 26, no. 24: 7422. https://doi.org/10.3390/molecules26247422
APA StyleMachová, M., Bajer, T., Šilha, D., Ventura, K., & Bajerová, P. (2021). Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation–Extraction and Headspace Solid-Phase Microextraction. Molecules, 26(24), 7422. https://doi.org/10.3390/molecules26247422