Synthetic Amphoteric Cryogels as an Antidote against Acute Heavy Metal Poisoning
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Polyacrylamide Cryogel
2.2. Survival and Clinical Observations of Animals Administered Heavy Metal Salts
2.2.1. General Signs and Behavioral Analysis
2.2.2. Survival Rate of Rats in the Experimental Groups
2.2.3. Histopathological Studies of Liver and Kidneys
2.2.4. Effect of HM Poisoning and Enterosorption Treatment on Biochemical Markers
2.2.5. Evaluation of the Heavy Metal Content in Animal Tissues
2.2.6. Study Limitations
3. Materials and Methods
3.1. Materials
3.1.1. Synthesis of the Polyacrylamide Cryogel (AAC)
3.1.2. Cryogel Characterization
3.2. In Vivo Animal Studies
3.2.1. Experimental Animals
3.2.2. Acute Oral Toxicity
3.2.3. Treatment of Animals by Enterosorption
3.2.4. Histopathological Examination
3.2.5. Blood Biochemistry Analysis
3.2.6. Microwave Digestion of Tissues
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kumar, M.; Gogoi, A.; Mukherjee, S. Metal removal, partitioning and phase distributions in the wastewater and sludge: Performance evaluation of conventional, upflow anaerobic sludge blanket and downflow hanging sponge treatment systems. J. Clean. Prod. 2020, 249, 119426. [Google Scholar] [CrossRef]
- Orphan Drug Act; Public Law 97-414, January 4, 1983. 97th US Congress; United States Federal Government: Washington, DC, USA, 1983.
- Mu, W.; Yu, Q.; Li, X.; Wei, H.; Jian, Y. Niobate nanofibers for simultaneous adsorptive removal of radioactive strontium and iodine from aqueous solution. J. Alloys Compd. 2017, 693, 550–557. [Google Scholar] [CrossRef]
- Moore, J.J.; Raine, T.P.; Jenkins, A.; Livens, F.R.; Law, K.A.; Morris, K.; Law, G.T.W.; Yeates, S.G. Decontamination of caesium and strontium from stainless steel surfaces using hydrogels. React. Funct. Polym. 2019, 142, 7–14. [Google Scholar] [CrossRef]
- Gummin, D.D.; Mowry, J.B.; Spyker, D.A.; Brooks, D.E.; Beuhler, M.C.; Rivers, L.J.; Hashem, H.A.; Ryan, M.L. 2018 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 36th Annual Report. Clin. Toxicol. 2019, 57, 1220–1413. [Google Scholar] [CrossRef] [PubMed]
- Braitberg, G. Drugs and Antidotes in Acute Intoxication. In Critical Care Nephrology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 574–588.e3. [Google Scholar]
- Rana, M.N.; Tangpong, J.; Rahman, M.M. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol. Rep. 2018, 5, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O. Chelation Treatment During Acute and Chronic Metal Overexposures—Experimental and Clinical Studies. In Chelation Therapy in the Treatment of Metal Intoxication; Elsevier: Amsterdam, The Netherlands, 2016; pp. 85–252. ISBN 9780128030721. [Google Scholar]
- Aschner, M.; Connor, J.R.; Dorman, D.C.; Malecki, E.A.; Vrana, K.E. Manganese in Health and Disease. In Handbook of Neurotoxicology: Volume I; Massaro, E.J., Ed.; Humana Press: Totowa, NJ, USA, 2002; pp. 195–209. ISBN 978-1-59259-132-9. [Google Scholar]
- Sabath, E.; Robles-Osorio, M.L. Renal health and the environment: Heavy metal nephrotoxicity. Nefrologia 2012, 32, 279–286. [Google Scholar] [CrossRef]
- Hejazy, M.; Koohi, M.K. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats. Biol. Trace Elem. Res. 2017, 180, 265–274. [Google Scholar] [CrossRef]
- Mouro, V.G.S.; Siman, V.A.; da Silva, J.; Dias, F.C.R.; Damasceno, E.M.; do Cupertino, M.; de Melo, F.C.S.A.; da Matta, S.L.P. Cadmium-Induced Testicular Toxicity in Mice: Subacute and Subchronic Route-Dependent Effects. Biol. Trace Elem. Res. 2020, 193, 466–482. [Google Scholar] [CrossRef]
- Domingo, J.L. Prevention by chelating agents of metal-induced developmental toxicity. Reprod. Toxicol. 1995, 9, 105–113. [Google Scholar] [CrossRef]
- Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol. 2017, 91, 3787–3797. [Google Scholar] [CrossRef]
- Flora, S.J.S.; Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health 2010, 7, 2745–2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhoft, R. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O. Choice of chelating antidotes for acute cadmium intoxication. Toxicol. Environ. Chem. 1989, 23, 105–120. [Google Scholar] [CrossRef]
- Luczak, M.W.; Zhitkovich, A. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II). Free Radic. Biol. Med. 2013, 65, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Sears, M.E. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review. Sci. World J. 2013, 2013, 219840. [Google Scholar] [CrossRef] [Green Version]
- Torres-Alanís, O.; Garza-Ocañas, L.; Bernal, M.A.; Piñeyro-López, A. Urinary excretion of trace elements in humans after sodium 2,3-dimercaptopropane-1-sulfonate challenge test. J. Toxicol. Clin. Toxicol. 2000, 38, 697–700. [Google Scholar] [CrossRef]
- Adams, J.B.; Baral, M.; Geis, E.; Mitchell, J.; Ingram, J.; Hensley, A.; Zappia, I.; Newmark, S.; Gehn, E.; Rubin, R.A.; et al. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part A--medical results. BMC Clin. Pharmacol. 2009, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Flora, S.J. Possible role of metal redistribution, hepatotoxicity and oxidative stress in chelating agents induced hepatic and renal metallothionein in rats. Food Chem. Toxicol. 2001, 39, 1029–1038. [Google Scholar] [CrossRef]
- Kim, J.-J.; Kim, Y.-S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef]
- Kartel, M.T.; Kupchik, L.A.; Veisov, B.K. Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere 1999, 38, 2591–2596. [Google Scholar] [CrossRef]
- Gutnikova, A.R.; Mavlyan-Hodjaev, R.S.; Ismailova, M.G.; Ashurova, D.D.; Makhmudov, K.O.; Saidkhanov, B.A. Assessment of efficiency of different enterosorbents in the correction of the morphological disturbances in the liver and kidney of rats caused by heavy metals salts. Pharm. Her. (Vestnik Farmatsii Russ.) 2010, 4, 54–59. [Google Scholar]
- Nesterenko, A.V.; Nesterenko, V.B.; Yablokov, A. V Chapter IV. Radiation protection after the Chernobyl catastrophe. Ann. N. Y. Acad. Sci. 2009, 1181, 287–288. [Google Scholar] [CrossRef]
- Howell, C.A.; Mikhalovsky, S.V.; Markaryan, E.N.; Khovanov, A.V. Investigation of the adsorption capacity of the enterosorbent Enterosgel for a range of bacterial toxins, bile acids and pharmaceutical drugs. Sci. Rep. 2019, 9, 5629. [Google Scholar] [CrossRef]
- Baimenov, A.; Berillo, D.; Abylgazina, L.; Poulopoulos, S.G.; Inglezakis, V.J. Novel Amphoteric Cryogels for Cd2+ Ions Removal from Aqueous Solutions. In Proceedings of the Key Engineering Materials; Trans Tech Publ: Zurich, Switzerland, 2018; Volume 775, pp. 376–382. [Google Scholar]
- Baimenov, A.Z.; Berillo, D.A.; Moustakas, K.; Inglezakis, V.J. Efficient removal of mercury (II) from water by use of cryogels and comparison to commercial adsorbents under environmentally relevant conditions. J. Hazard. Mater. 2020, 399, 123056. [Google Scholar] [CrossRef]
- Baimenov, A.; Berillo, D.; Azat, S.; Nurgozhin, T.; Inglezakis, V. Removal of cd2+ from water by use of super-macroporous cryogels and comparison to commercial adsorbents. Polymers 2020, 12, 2405. [Google Scholar] [CrossRef]
- Ansar, S.; Alghosoon, H. Effect of Diallylsulphide Supplementation on Wistar Rats Exposed to Mercuric Chloride. Trop. J. Pharm. Res. 2016, 15, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Baimenov, A.Z.; Berillo, D.A.; Inglezakis, V.J. Cryogel-based Ag°/Ag2O nanocomposites for iodide removal from water. J. Mol. Liq. 2019, 112134. [Google Scholar] [CrossRef]
- Berillo, D. Gold nanoparticles incorporated into cryogel walls for efficient nitrophenol conversion. J. Clean. Prod. 2020, 247, 119089. [Google Scholar] [CrossRef]
- Liao, Y. Practical Electron Microscopy and Database. 2006. Available online: www.globalsino.com/EM/ (accessed on 13 September 2021).
- Festing, M.F.W.; Altman, D.G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002, 43, 244–258. [Google Scholar] [CrossRef]
- Souidi, M.; Tissandie, E.; Grandcolas, L.; Grison, S.; Paquet, F.; Voisin, P.; Aigueperse, J.; Gourmelon, P.; Guéguen, Y. Chronic contamination with 137cesium in rat: Effect on liver cholesterol metabolism. Int. J. Toxicol. 2006, 25, 493–497. [Google Scholar] [CrossRef]
- Cao, Y.; Skaug, M.A.; Andersen, O.; Aaseth, J. Chelation therapy in intoxications with mercury, lead and copper. J. Trace Elem. Med. Biol. 2015, 31, 188–192. [Google Scholar] [CrossRef]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of heavy metals on, and handling by, the kidney. Nephron. Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Zhou, M.; Xiao, L.; Xu, T.; Yang, S.; Nie, X.; Xie, L.; Yu, L.; Mu, G.; et al. Systemic inflammation mediates the association of heavy metal exposures with liver injury: A study in general Chinese urban adults. J. Hazard. Mater. 2021, 419, 126497. [Google Scholar] [CrossRef]
- Franciscato, C.; Moraes-Silva, L.; Duarte, F.A.; Oliveira, C.S.; Ineu, R.P.; Flores, E.M.M.; Dressler, V.L.; Peixoto, N.C.; Pereira, M.E. Delayed biochemical changes induced by mercury intoxication are prevented by zinc pre-exposure. Ecotoxicol. Environ. Saf. 2011, 74, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, N.C.; Serafim, M.A.; Flores, E.M.M.; Bebianno, M.J.; Pereira, M.E. Metallothionein, zinc, and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury. Life Sci. 2007, 81, 1264–1271. [Google Scholar] [CrossRef]
- Guide for the Care and Use of Laboratory Animals, 8th ed.; National Research Council of the National Academies; The National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0.
- Dote, E.; Dote, T.; Shimizu, H.; Shimbo, Y.; Fujihara, M.; Kono, K. Acute lethal toxicity, hyperkalemia associated with renal injury and hepatic damage after intravenous administration of cadmium nitrate in rats. J. Occup. Health 2007, 49, 17–24. [Google Scholar] [CrossRef]
- Mahour, K.; Saxena, P.N. Assessment of haematotoxic potential of mercuric chloride in rat. J. Environ. Biol. 2009, 30, 927–928. [Google Scholar] [PubMed]
- Yakuji, G. Pharmaceuticals Monthly. (in Japanese). Available online: https//www.cdc.gov/niosh/idlh/7440439.html (accessed on 4 August 2021).
- Tarasenko, N.I.; Lemeshevskaia, E.P. Effect of cesium compounds on the body. Vestn. Akad. Med. Nauk SSSR 1978, 8, 10–18. [Google Scholar]
- Cochran, K.W.; Doull, J.; Mazur, M.; Dubois, K.P. Acute toxicity of zirconium, columbium, strontium, lanthanum, cesium, tantalum and yttrium. Arch. Ind. Hyg. Occup. Med. 1950, 1, 637–650. [Google Scholar] [PubMed]
- Tarasenko, N.I.; Lemeshevskaia, E.P. Experimental basis of the maximum permissible concentrations of strontium compounds in the air of industrial premises. Materialy eksperimental’nogo obosnovaniia predel’no dopustimykh kontsentratsii soedinenii strontsiia v vozdukhe proizvodstvennykh pomesc. Gig. i Sanit. 1976, 41, 28–32. (in Russian). [Google Scholar]
- Test, No.425: Acute Oral Toxicity: Up-and-Down Procedure; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2008; ISBN 9789264071049.
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
HM Salt | LD50, mg/kg Body Weight |
---|---|
Cd(NO3)2 | 300 |
CsNO3 | 2390 |
Sr(NO3)2 | 1980 |
HgCl2 | 75 |
TP, g/L | BUN, mM | Glu, mM | ALT, U/L | AST, U/L | TBil, µM | GGT, U/L | ALP, U/L | TC, µM | |
---|---|---|---|---|---|---|---|---|---|
NC | 60.3 ± 2.3 | 4.19 ± 0.2 | 11.9 ± 1.0 | 53.5 ± 8.4 | 92 ± 9.5 | 0.9 ± 0.28 | 0.8 ± 0.27 | 115 ± 23.3 | 1.02 ± 0.20 |
Cd-PC | 55.9 ± 2.1 | 5.7 ± 0.6 | 18.0 ± 3.8 * | 139 ± 10.3 ** | 130 ± 33.5 * | 0.8 ± 0.26 | 2.3 ± 1.5 * | 181 ± 80.6 * | 0.81 ± 0.52 |
Sr-PC | 64.8 ± 3.8 | 7.8 ± 2.9 * | 14.7 ± 1.3 * | 137 ± 9.5 ** | 143 ± 14.4 ** | 1.05 ± 0.07 | 2.6 ± 1.34 * | 207 ± 64.3 * | 2.0 ± 0.73 * |
Cs-PC | 63.1 ± 3.0 | 6.3 ± 1.6 | 11.1 ± 1.5 | 131.4 ± 4.0 ** | 130 ± 25.7 * | 1.1 ± 0.35 | 1.4 ± 0.71 | 204 ± 47.4 * | 0.59 ± 0.05 |
Hg-PC | 59.9 ± 3.8 | 4.1 ± 0.5 | 13.7 ± 1.4 | 194 ± 9.5 ** | 153 ± 14.4 ** | 1.1 ± 0.21 | 4.5 ± 5.02 ** | 152 ± 17.7 | 1.05 ± 0.08 |
Cd-AAC | 60.8 ± 3.8 | 7.0 ± 1.2 | 11.8 ± 0.6 | 27.3 ± 8.5 * | 71 ± 9.5 | 0.75 ± 0.07 | 1.2 ± 0.28 | 219 ± 36.1 * | 1.1 ± 0.21 |
Sr-AAC | 63 ± 8.8 | 10.4 ± 5.0 ** | 10.9 ± 1.9 | 43.3 ± 1.9 | 85 ± 7.0 | 0.9 ± 0.21 | 0.8 ± 0.0 | 199 ± 25.5 * | 1.2 ± 0.49 |
Cs-AAC | 62 ± 8.6 | 6.2 ± 1.3 | 10.2 ± 2.0 | 30 ± 12.8 | 93 ± 8.3 | 1.3 ± 0.21 | 0.5 ± 0.77 | 178 ± 101.8 | 0.77 ± 0.48 |
Hg-AAC | 57.2 ± 2.7 | 6.1 ± 0.1 | 11.1 ± 2.8 | 39.5 ± 6.6 | 89 ± 14.8 | 0.9 ± 0.35 | 0.4 ± 0.21 | 200 ± 16.3 * | 1.05 ± 0.25 |
Cd-DMPS | 59.4 ± 3.0 | 6.4 ± 1.8 | 12.0 ± 2.4 | 33 ± 12.0 | 126 ± 42.3 * | 1.1 ± 0.49 | 0.5 ± 0.57 | 129.5 ± 3.5 | 0.68 ± 0.35 |
Sr-DMPS | 70.9 ± 3.7 ** | 5.4 ± 0.6 | 23.2 ± 2.4 ** | 28.5 ± 6.1 | 102 ± 23.4 | 1.3 ± 0.07 | 3.7 ± 4.67 ** | 348 ± 57.3 ** | 2.25 ± 0.19 ** |
Cs-DMPS | 55.3 ± 4.5 | 22 ± 9.1 ** | 14.0 ± 0.1 * | 41± 17.9 | 133 ± 33.4 * | 0.9 ± 0.35 | 3 ± 3.75 ** | 358 ± 44.5 ** | 1.03 ± 0.58 |
Hg-DMPS | 64.1 ± 3.4 ** | 6.8 ± 0.4 | 15.3 ± 5.9 * | 38 ± 7.9 | 103 ± 3.9 | 1.3 ± 0.14 | 0.7 ± 0.92 | 181 ± 46.7 * | 1.13 ± 0.09 |
Liver, mg/g | Kidney, mg/g | Stomach, mg/g | Omentum, mg/g | Duodenum, mg/g | |
---|---|---|---|---|---|
NC Group I | n/d & | n/d | n/d | n/d | n/d |
Cd-PC | 0.234 | 0.146 | 8.998 | 2.498 | 6.812 |
Cd-AAC | 0.105 * | 0.035 * | 0.899 ** | 0.104 ** | 0.202 ** |
Cd-DMPS | 0.079 ** | 0.045 * | 0.313 ** | 0.092 ** | 0.111 ** |
Sr-PC | 0.025 | 0.065 | 0.298 | 0.123 | 0.150 |
Sr-AAC | 0.022 | 0.038 * | 0.103 * | 0.032 * | 0.037 * |
Sr-DMPS | 0.013 * | 0.024 * | 0.086 * | 0.037 * | 0.038 * |
Cs-PC | 10.52 | 9.79 | 16.27 | 13.59 | 10.63 |
Cs-AAC | 14.38 * | 13.15 | 8.18 * | 9.81 * | 10.16 |
Cs-DMPS | 13.07 | 14.56 * | 8.82 * | 6.78 ** | 14.08 * |
Hg-PC | 0.247 | 0.613 | 3.035 | 0.493 | 0.664 |
Hg-AAC | 0.130 * | 0.564 | 2.126 | 0.112 * | 0.420 |
Hg-DMPS | 0.014 ** | 0.030 ** | 0.207 ** | 0.046 ** | 0.040 ** |
Group | Subgroup (n = 10 Each) | Metal Salt, Dose + Antidote |
---|---|---|
Group I (n = 10) | NC | negative control, no HM |
Group II (n = 40) Positive control, no antidote | Cd-PC | LD50 Cd(NO3)2 |
Sr-PC | LD50 Sr(NO3)2 | |
Cs-PC | LD50 CsNO3 | |
Hg-PC | LD50 HgCl2 | |
Group III (n = 40) | Cd-AAC | LD50 Cd(NO3)2 + AAC |
Sr-AAC | LD50 Sr(NO3)2 + AAC | |
Cs-AAC | LD50 CsNO3 + AAC | |
Hg-AAC | LD50 HgCl2 + AAC | |
Group IV (n = 40) | Cd-DMPS | LD50 Cd(NO3)2 + unithiol |
Sr-DMPS | LD50 Sr(NO3)2 + unithiol | |
Cs-DMPS | LD50 CsNO3 + unithiol | |
Hg-DMPS | LD50 HgCl2 + unithiol |
Step | Temperature | Power | Time |
---|---|---|---|
Power ramp | not controlled | 600 W | 15 min |
Power hold | not controlled | 600 W | 20 min |
Cooling | → 70 °C | 0 W | 30 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baimenov, A.Z.; Fakhradiyev, I.R.; Berillo, D.A.; Saliev, T.; Mikhalovsky, S.V.; Nurgozhin, T.S.; Inglezakis, V.J. Synthetic Amphoteric Cryogels as an Antidote against Acute Heavy Metal Poisoning. Molecules 2021, 26, 7601. https://doi.org/10.3390/molecules26247601
Baimenov AZ, Fakhradiyev IR, Berillo DA, Saliev T, Mikhalovsky SV, Nurgozhin TS, Inglezakis VJ. Synthetic Amphoteric Cryogels as an Antidote against Acute Heavy Metal Poisoning. Molecules. 2021; 26(24):7601. https://doi.org/10.3390/molecules26247601
Chicago/Turabian StyleBaimenov, Alzhan Z., Ildar R. Fakhradiyev, Dmitriy A. Berillo, Timur Saliev, Sergey V. Mikhalovsky, Talgat S. Nurgozhin, and Vassilis J. Inglezakis. 2021. "Synthetic Amphoteric Cryogels as an Antidote against Acute Heavy Metal Poisoning" Molecules 26, no. 24: 7601. https://doi.org/10.3390/molecules26247601
APA StyleBaimenov, A. Z., Fakhradiyev, I. R., Berillo, D. A., Saliev, T., Mikhalovsky, S. V., Nurgozhin, T. S., & Inglezakis, V. J. (2021). Synthetic Amphoteric Cryogels as an Antidote against Acute Heavy Metal Poisoning. Molecules, 26(24), 7601. https://doi.org/10.3390/molecules26247601