Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Composition
2.2. Effect of the Juniperus Essential Oils and Cedrol on Neutrophil [Ca2+]i
2.3. Effect of Cedrol on Neutrophil Chemotaxis
2.4. Identification of Potential Protein Targets for Cedrol
3. Materials and Methods
3.1. Plant Material
3.2. Materials
3.3. Essential Oil Extraction
3.4. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
3.5. Isolation of Human Neutrophils
3.6. Cell Culture
3.7. Ca2+ Mobilization Assay
3.8. Chemotaxis Assay
3.9. Cytotoxicity Assay
3.10. Molecular Modeling
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abrreviations
References
- Adams, R.P. Junipers of the World: The Genus Juniperus, 4th ed.; Trafford: Victoria, BC, USA, 2014; p. 422. [Google Scholar]
- Adams, R.P.; Schwarzbach, A.E. Taxonomy of Juniperus section Juniperus: Sequence analysis of nrDNA and five cpDNA regions. Phytologia 2012, 94, 280–297. [Google Scholar]
- Adams, R.P.; Demeke, T. Systematic Relationships in Juniperus Based on Random Amplified Polymorphic Dnas (Rapds). Taxon 1993, 42, 553–571. [Google Scholar] [CrossRef]
- Mao, K.S.; Hao, G.; Liu, J.Q.; Adams, R.P.; Milne, R.I. Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersals. New Phytol. 2010, 188, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Farjon, A.A. Handbook of the World’s Conifers; Koninklijke Brill NV: Leiden, The Netherlands, 2017; Volume 2. [Google Scholar]
- Shrestha, I.; Kunwar, R.; Hussain, W.; Jan, H.; Abbasi, A.; Bussmann, R.; Zambrana, N. Juniperus communis L. Juniperus excelsa M. Bieb. Juniperus indica Bertol. Juniperus pseudosabina var. turkestanica (Kom.) Silba Juniperus recurva Buch.-Ham. ex D. Don Juniperus sibirica Burgsd. Juniperus squamata Buch.-Ham. ex D. Don. Cupressaceae. In Ethnobotany of the Himalayas; Springer: Cham, Switzerland, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Thorne, R.F. Major disjunctions in the geographic ranges of seed plants. Q. Rev. Biol. 1972, 47, 365–411. [Google Scholar] [CrossRef]
- Farjon, A. A Monograph of Cupressaceae and Sciadopitys; Royal Botanic Gardens: Kew, UK, 2005. [Google Scholar]
- Demidovskaya, L.F.; Averina, V.Y.; Egeubaeva, A.L. Junipers of South Kazakhstan are perspective essential-oil plants. Proc. Inst. Bot. Acad. Sci. KazSSR. Alma-Ata 1976, 35, 49–57. [Google Scholar]
- Mirzagalieva, A.B.; Medeubaeva, B.Z. Chemical composition and biological activity of essential oil of Juniperus sabina from the Flora of Eastern Kazakhstan. Eurasian Sci. Coop. 2017, 9, 30–34. (In Russian) [Google Scholar]
- Lesica, P.; Atthowe, H.E.; Dugan, F.M. Incidence of Perenniporia fraxinophila and its effects on green ash (Fraxinus pennsylvanica) woodlands in eastern Montana, USA. For. Ecol. Manag. 2003, 182, 153–159. [Google Scholar] [CrossRef]
- Adams, R.P.; Turuspekov, Y. Taxonomic reassessment of some central Asian and Himalayan scale-leaved taxa of Juniperus (Cupressaceae) supported by random amplification of polymorphic DNA. Taxon 1998, 47, 75–83. [Google Scholar] [CrossRef]
- Ivashchenko, A.A.; Levchenko, R.A.; Zhaparova, N.K. The Red Book of Kazakhstan (Plants); ArtPrintXXI LLP: Astana, Kazakhstan, 2014. [Google Scholar]
- Pavlov, N.V. Flora of Kazakhstan; Nauka: Alma-Ata, USSR, 1956; pp. 71–76. [Google Scholar]
- Abdulina, S.A. Checklist of Vascular Plants of Kazakhstan; Academy of Sciences: Almaty, Kazakhstan, 1999. [Google Scholar]
- Kotukhov, Y.A.; Danilova, A.N.; Anufrieva, O.A. State of populations of Daurian juniper (Juniperus davurica Pall.) in East Kazakhstan. Bot. Res. Sib. Kazakhstan 2019, 15, 143–147. [Google Scholar]
- Ivashchenko, A.A.; Kotukhov, Y.A.; Utebekov, K.I. Flora of the forest belt of the Chindagatui mountain range (Flora lesnogo poyasa Chindagatuyskogo gornogo massiva). Bot. Res. Sib. Kazakhstan 2014, 20, 250–264. [Google Scholar]
- Ivashchenko, A.A. Materials to the flora of the Ile-Alatau National Park: Higher sporous and gymnosperms. KazNU Bull. Biol. Ser. 2015, 24, 28–35. [Google Scholar]
- Ivashchenko, A.A. The flora Sairam-Ugam State National Natural Park (Kazakhstan). Bot. Res. Sib. Kazakhstan 2020, 26, 52–63. [Google Scholar]
- Pateiro, M.; Barba, F.J.; Dominguez, R.; Sant’Ana, A.S.; Mousavi Khaneghah, A.; Gavahian, M.; Gomez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; La Bella, S.; Maggio, A.; Licata, M.; Buscemi, S.; Leto, C.; Pace, A.; Tuttolomondo, T. Flavouring Extra-Virgin Olive Oil with Aromatic and Medicinal Plants Essential Oils Stabilizes Oleic Acid Composition during Photo-Oxidative Stress. Agriculture 2021, 11, 266. [Google Scholar] [CrossRef]
- Kustova, S.D. Handbook of Essential Oils; Food Industry: Moscow, Russia, 1978; p. 175. [Google Scholar]
- Myrzagalieva, A.B.; Medeubaeva, B.Z. To the study of essential oil content of representatives of the family Cupressaceae Bartl. of Eastern Kazakhstan’s flora. Fundam. Res. 2014, 5, 1021–1024. [Google Scholar]
- Grigoryev, V.P.; Poplavskaya, L.F. Phytomass reserves of Juniperus communis L. and the content of chlorophylls, carotenoids and ascorbic acid in needles. Plant Resour. 1985, 2, 164–169. [Google Scholar]
- Klyshev, L.K.; Bandyukova, V.A.; Alyukina, L.S. Plant Flavonoids; Nauka: Alma-Ata, USSR, 1978. [Google Scholar]
- Kyosev, P.A. Complete Reference Book of Medicinal Plants; EKSMO-Press: Moscow, Russia, 2001. [Google Scholar]
- Motti, R. Wild plants used as herbs and spices in Italy: An ethnobotanical review. Plants 2021, 10, 563. [Google Scholar] [CrossRef]
- Tavares, W.R.; Seca, A.M. The current status of the pharmaceutical potential of Juniperus L. metabolites. Medicines 2018, 5, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcão, S.; Bacém, I.; Igrejas, G.; Rodrigues, P.J.; Vilas-Boas, M.; Amaral, J.S. Chemical composition and antimicrobial activity of hydrodistilled oil from juniper berries. Ind. Crop. Prod. 2018, 124, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Bussmann, R.W.; Batsatsashvili, K.; Kikvidze, Z.; Paniagua-Zambrana, N.Y.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D. Juniperus communis L. Juniperus depressa Raf. Juniperus hemisphaerica J. Presl & C. Presl Juniperus oblonga M. Bieb. Juniperus sabina L. Cupressaceae. In Ethnobotany of the Mountain Regions of Far Eastern Europe: Ural, Northern Caucasus, Turkey, and Iran; Springer Nature: Cham, Switzerland, 2020; pp. 523–532. [Google Scholar]
- Salamon, I.; Tarawneh, A. Ethnobotany of common juniper (Juniperus communis L.) in Slovakia. In Proceedings of the II International Symposium on Beverage Crops, Xi’An, China, 22–25 October 2018; Volume 1274, pp. 167–171. [Google Scholar]
- Dorjey, K.; Maurya, A.K. Ethnobotany of Juniperus polycarpos C. Koch (Cupressaceae) in the Himalayan cold desert of Union Territory of Ladakh, India. Indian J. Tradit. Knowl. 2021, 20, 83–90. [Google Scholar]
- Rashid, A.; Kuchay, R.A.H. A review on phyto-pharmacological potentials of Juniperus recurva. J. Exp. Integr. Med. 2016, 6, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Monograph. European Pharmacopoeia. In European Directorate for the Quality of Medicine & Health Care of the Council of Europe (EDQM); Council of Europe: Strasbourg, France, 2016; Volume 1, pp. 1404–1405. [Google Scholar]
- USP; NF. The United States Pharmacopeia. In The United States Pharmacopeia. The National Formulary; The United States Pharmacopeial Convention; United Book Press, Inc.: Baltimore, MD, USA, 2013; Volume 3, p. 4031. [Google Scholar]
- Polish Pharmacopoeia Commission. Polish National Pharmacopoeia, 5th ed.; Office for Registration of Medicinal Products, Medical Devices & Biocidal Products: Warsaw, Poland, 1999.
- German Pharmacopoeia. Deutsches Arzneibuch; Deutscher Apotheker Verlag: Gerlingen, Germany, 1998. [Google Scholar]
- Sweetman, S.C. Supplementary Drugs and Other Substances. Red Cedar, 36th ed.; Pharmaceutical Press: London, UK, 2009; p. 2278. [Google Scholar]
- Adams, R.P.; Shatar, S.; Dembitsky, A. Comparison of the volatile leaf oils of Juniperus davurica Pall. from Mongolia, with plants cultivated in Kazakhstan, Russia and Scotland. J. Essent. Oil Res. 1994, 6, 217–221. [Google Scholar] [CrossRef]
- Adams, R.P.; Palma, M.M.; Moore, W.S. Volatile oils of mature and juvenile leaves of Juniperus horizontalis: Chemosystematic significance. Phytochemistry 1981, 20, 2501–2502. [Google Scholar] [CrossRef]
- Adams, R.P.; Nguyen, S.; Liu, J. Geographic Variation in the Leaf Essential Oils of Juniperus sabina L. and J. sabina var. arenaria (EH Wilson) Farjon. J. Essent. Oil Res. 2006, 18, 497–502. [Google Scholar] [CrossRef]
- Adams, R.P.; Hojjati, F. Leaf essential oils of Juniperus in central and southern Iran. Phytologia 2013, 95, 288–295. [Google Scholar]
- Adams, R.P.; Dembitsky, A.; Shatar, S. The leaf essential oils and taxonomy of Juniperus centrasiatica Kom., J. jarkendensis Kom., J. pseudosabina Fisch., Mey. & Ave-Lall., J. sabina L. and J. turkestanica Kom. from Central Asia. J. Essent. Oil Res. 1998, 10, 489–496. [Google Scholar]
- Adams, R.P. The leaf essential oil of Juniperus maritima compared with J. horizontalis, J. scopulorum and J. virginiana oils. Phytologia 2009, 91, 31–39. [Google Scholar]
- Adams, R.P. Systematics of multi-seeded eastern hemisphere Juniperus based on leaf essential oils and RAPD DNA fingerprinting. Biochem. Syst. Ecol. 1999, 27, 709–725. [Google Scholar] [CrossRef]
- Mirzagalieva, A.B.; Medeubaeva, B.Z. Investigation of essential oil bearing representatives of Cupressaceae family from the Flora of the Eastern Kazakhstan. Fundam. Res. 2014, 5, 1021–1024. [Google Scholar]
- Goryaev, M.; Dzhalilov, D. The essential oil of needles of Turkestan Juniper (Juniperus turkestanica). Izv. Akad. Nauk. Kaz. SSR (Ser. Him.) 1960, 2, 107–113. [Google Scholar]
- Sampietro, D.A.; Gomez, A.d.l.A.; Jimenez, C.M.; Lizarraga, E.F.; Ibatayev, Z.A.; Suleimen, Y.M.; Catalán, C.A. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan. Nat. Prod. Res. 2017, 31, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Suleimen, Y.M.; Ishmuratova, M.; Iskakova, J.B. Comprehensive phytochemical study of Juniperus sabina L. from Kazakhstan. Natural and Mathematical Sciences in the Modern World (in Russian) 2013, 12. [Google Scholar]
- Alimtay, G.A.; Aidarbayeva, D.K. The current state of useful plants in the Trans-Ili Alatau (Aksai and Kaskelen gorges). Ann. D’italia 2020, 6, 3–5. [Google Scholar]
- Ghorbanzadeh, A.; Ghasemnezhad, A.; Sarmast, M.K.; Ebrahimi, S.N. An analysis of variations in morphological characteristics, essential oil content, and genetic sequencing among and within major Iranian Juniper (Juniperus spp.) populations. Phytochemistry 2021, 186, 112737. [Google Scholar] [CrossRef] [PubMed]
- Ložienė, K.; Venskutonis, P.R. Juniper (Juniperus communis L.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 495–500. [Google Scholar]
- Majewska, E.; Kozłowska, M.; Kowalska, D.; Gruczynska, E. Characterization of the essential oil from cone-berries of Juniperus communis L. (Cupressaceae). Herba Pol. 2017, 63, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Labokas, J.; Ložienė, K. Variation of essential oil yield and relative amounts of enantiomers of α-pinene in leaves and unripe cones of Juniperus communis L. growing wild in Lithuania. J. Essent. Oil Res. 2013, 25, 244–250. [Google Scholar] [CrossRef]
- Yaglioglu, A.S.; Eser, F.; Yaglioglu, M.S.; Demirtas, I. The antiproliferative and antioxidant activities of the essential oils of Juniperus species from Turkey. Flavour Fragr. J. 2020, 35, 511–523. [Google Scholar] [CrossRef]
- Adams, R.P. Systematics of the one seeded Juniperus of the eastern hemisphere based on leaf essential oils and random amplified polymorphic DNAs (RAPDs). Biochem. Syst. Ecol. 2000, 28, 529–543. [Google Scholar] [CrossRef]
- Shanjani, P.S.; Mirza, M. Seasonal variation of the leaf and cone oil of Juniperus excelsa MB. J. Med. Plants 2006, 5, 50–58. [Google Scholar]
- Semerdjieva, I.B.; Zheljazkov, V.D.; Dincheva, I.; Astatkie, T.; Kačániová, M. Chemotypes of Juniperus oxycedrus in Bulgaria and the antimicrobial activity of galbuli essential oils. Ind. Crop. Prod. 2020, 158, 113005. [Google Scholar] [CrossRef]
- Semerdjieva, I.B.; Shiwakoti, S.; Cantrell, C.L.; Zheljazkov, V.D.; Astatkie, T.; Schlegel, V.; Radoukova, T. Hydrodistillation extraction kinetics regression models for essential oil yield and composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 2019, 24, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheljazkov, V.D.; Cantrell, C.L.; Semerdjieva, I.; Radoukova, T.; Stoyanova, A.; Maneva, V.; Kačániová, M.; Astatkie, T.; Borisova, D.; Dincheva, I. Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia. Molecules 2021, 26, 3659. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Maggi, F.; Saab, A.; Bramucci, M.; Quassinti, L.; Petrelli, D.; Vitali, L.; Lupidi, G.; El Samrani, A.; Borgatti, M. Antiproliferative, antimicrobial and antioxidant properties of Cedrus libani and Pinus pinea wood oils and Juniperus excelsa berry oil. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2020, 1–12. [Google Scholar] [CrossRef]
- Eryiğit, T.; Okut, N.; Ekici, K.; Yildirim, B. Chemical composition and antibacterial activities of Juniperus horizontalis essential oil. Can. J. Plant Sci. 2014, 94, 323–327. [Google Scholar] [CrossRef]
- Cantrell, C.L.; Zheljazkov, V.D.; Carvalho, C.R.; Astatkie, T.; Jeliazkova, E.A.; Rosa, L.H. Dual extraction of essential oil and podophyllotoxin from creeping juniper (Juniperus horizontalis). PLoS ONE 2014, 9, e106057. [Google Scholar]
- Elshafie, H.; Caputo, L.; De Martino, L.; Gruľová, D.; Zheljazkov, V.; De Feo, V.; Camele, I. Biological investigations of essential oils extracted from three Juniperus species and evaluation of their antimicrobial, antioxidant and cytotoxic activities. J. Appl. Microbiol. 2020, 129, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Valentini, G.; Bellomaria, B.; Maggi, F.; Manzi, A. The leaf and female cone oils of Juniperus oxycedrus L. ssp. oxycedrus and J. oxycedrus ssp. macrocarpa (Sibth. et Sm.) Ball. from Abruzzo. J. Essent. Oil Res. 2003, 15, 418–421. [Google Scholar] [CrossRef]
- Hayta, S.; Bagci, E. Essential oil constituents of the leaves, bark and cones of Juniperus oxycedrus subsp. oxycedrus L. from Turkey. Acta Bot. Gall. 2014, 161, 201–207. [Google Scholar] [CrossRef]
- Fadel, H.; Benayache, F.; Chalchat, J.-C.; Figueredo, G.; Chalard, P.; Hazmoune, H.; Benayache, S. Essential oil constituents of Juniperus oxycedrus L. and Cupressus sempervirens L. (Cupressaceae) growing in Aures region of Algeria. Nat. Prod. Res. 2019, 35, 2616–2620. [Google Scholar] [CrossRef]
- Meriem, A.; Msaada, K.; Sebai, E.; Aidi Wannes, W.; Salah Abbassi, M.; Akkari, H. Antioxidant, anthelmintic and antibacterial activities of red juniper (Juniperus phoenicea L.) essential oil. J. Essent. Oil Res. 2021, 1–10. [Google Scholar] [CrossRef]
- Moghaddam, M.; Ghasemi Pirbalouti, A.; Farhadi, N. Seasonal variation in Juniperus polycarpos var. turcomanica essential oil from northeast of Iran. J. Essent. Oil Res. 2018, 30, 225–231. [Google Scholar] [CrossRef]
- Mehdizadeh, L.; Taheri, P.; Pirbalouti, A.G.; Moghaddam, M. Phytotoxicity and antifungal properties of the essential oil from the Juniperus polycarpos var. turcomanica (B. Fedsch.) RP Adams leaves. Physiol. Mol. Biol. Plants 2020, 26, 759. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, D.; Zhou, D.; Wang, D.; Liu, Q.; Fan, S. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae. J. Ethnopharmacol. 2016, 194, 698–705. [Google Scholar] [CrossRef]
- Samsonova, N.A.; Gusakova, M.A.; Bogolitsyn, K.G.; Selivanova, N.V. Chemical composition and antibacterial activity of woody greenery essential oil Juniperus communis L. from the subarctic zone of Russia. Sib. For. J. 2020, 2, 31. [Google Scholar]
- Basher, K.; Kurkcuoglu, M.; Demirci, B.; Gusakova, S.; Sagdullaev, S.S.; Maltzev, I.; Aripov, K.N. Essential oil and lipids from the cone berries of Juniperus seravschanica. Chem. Nat. Compd. 1999, 35, 397–400. [Google Scholar] [CrossRef]
- Caramiello, R.; Bocco, A.; Buffa, G.; Maffei, M. Chemotaxonomy of Juniperus communis, J. sibirica and J. intermedia. J. Essent. Oil Res. 1995, 7, 133–145. [Google Scholar] [CrossRef]
- Efremov, E.; Zykova, I.; Efremov, A.; Strukova, E. The composition of the essential oil from raw material and cones of Juniperus sibirica from Evenk region. Russ. J. Bioorganic Chem. 2012, 38, 790–795. [Google Scholar] [CrossRef]
- Nikolić, B.; Vasilijević, B.; Mitić-Ćulafić, D.; Lesjak, M.; Vuković-Gačić, B.; Dukić, N.M.; Knežević-Vukčević, J. Screening of the antibacterial effect of Juniperus sibirica and Juniperus sabina essential oils in a microtitre plate-based MIC assay. Bot. Serbica 2016, 40, 43–48. [Google Scholar]
- Adams, R.P.; Mumba, L.E.; James, S.A.; Pandey, R.N.; Gauquelin, T.; Badri, W. Geographic variation in the leaf oils and DNA fingerprints (RAPDs) of Juniperus thurifera L. from Morocco and Europe. J. Essent. Oil Res. 2003, 15, 148–154. [Google Scholar] [CrossRef]
- Kalaba, V.; Marjanović-Balaban, Ž.; Kalaba, D.; Lazić, D.; Cvjetković, V.G. Antibacterial activity of essential oil of Juniperus communis L. Qual. Life 2020, 18, 1–2. [Google Scholar] [CrossRef]
- Adams, R.P. Investigation of Juniperus species of the United States for new sources of cedarwood oil. Econ. Bot. 1987, 41, 48–54. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Jeliazkova, E.A.; Schlegel, V. Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees. J. Oleo Sci. 2012, 61, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Astatkie, T.; Jeliazkova, E.A.; Tatman, A.O.; Schlegel, V. Distillation time alters essential oil yield, composition and antioxidant activity of female Juniperus scopulorum trees. J. Essent. Oil Res. 2013, 25, 62–69. [Google Scholar] [CrossRef]
- Adams, R.P. The co-occurrence and systematic significance of pregeijerene B and 8-alpha-acetoxyelemol in Juniperus. Biochem. Syst. Ecol. 2004, 32, 559–563. [Google Scholar] [CrossRef]
- Adams, R.P. Systematics of smooth leaf margin Juniperus of the western hemisphere based on leaf essential oils and RAPD DNA fingerprinting. Biochem. Syst. Ecol. 2000, 28, 149–162. [Google Scholar] [CrossRef]
- Beutler, B. Innate immunity: An overview. Mol. Immunol. 2004, 40, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Malech, H.L.; DeLeo, F.R.; Quinn, M.T. The Role of Neutrophils in the Immune System: An Overview. Methods Mol. Biol. 2020, 2087, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Kushnarenko, S.V.; Ozek, G.; Kirpotina, L.N.; Utegenova, G.A.; Kotukhov, Y.A.; Danilova, A.N.; Ozek, T.; Baser, K.H.; Quinn, M.T. Inhibition of Human Neutrophil Responses by the Essential Oil of Artemisia kotuchovii and Its Constituents. J. Agric. Food Chem. 2015, 63, 4999–5007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schepetkin, I.A.; Kushnarenko, S.V.; Ozek, G.; Kirpotina, L.N.; Sinharoy, P.; Utegenova, G.A.; Abidkulova, K.T.; Ozek, T.; Baser, K.H.; Kovrizhina, A.R.; et al. Modulation of Human Neutrophil Responses by the Essential Oils from Ferula akitschkensis and Their Constituents. J. Agric. Food Chem. 2016, 64, 7156–7170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozek, G.; Schepetkin, I.A.; Utegenova, G.A.; Kirpotina, L.N.; Andrei, S.R.; Ozek, T.; Baser, K.H.C.; Abidkulova, K.T.; Kushnarenko, S.V.; Khlebnikov, A.I.; et al. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils. J. Leukoc. Biol. 2017, 101, 1361–1371. [Google Scholar] [CrossRef] [Green Version]
- Thappa, R.K.; Aggarwal, S.G.; Kapahi, B.K.; Sarin, Y.K. Juniperus-Excelsa Leaf Oil, a New Source of Cedrol. J. Nat. Prod. 1987, 50, 323–324. [Google Scholar] [CrossRef]
- Ali, H.; Richardson, R.M.; Haribabu, B.; Snyderman, R. Chemoattractant receptor cross-desensitization. J. Biol. Chem. 1999, 274, 6027–6030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schepetkin, I.A.; Ozek, G.; Ozek, T.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. Chemical Composition and Immunomodulatory Activity of Hypericum perforatum Essential Oils. Biomolecules 2020, 10, 916. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.F.; Huang, X.F.; Chang, J.T.; Huang, Y.C.; Weng, J.C.; Tsai, N.M. Cedrol suppresses glioblastoma progression by triggering DNA damage and blocking nuclear translocation of the androgen receptor. Cancer Lett. 2020, 495, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Li, X.B.; Hou, S.G.; Sun, Y.; Shi, Y.R.; Lin, S.S. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. Int. J. Mol. Med. 2016, 38, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.K.; Bae, Y.S.; Lee, Y.M.; Kim, J.S.; Oh, S.H.; Kim, H.M. Sesquiterpene Alcohol Cedrol Chemosensitizes Human Cancer Cells and Suppresses Cell Proliferation by Destabilizing Plasma Membrane Lipid Rafts. Front. Cell Dev. Biol. 2020, 8, 571676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Shen, J.; Zhao, J.M.; Guan, J.; Wei, X.R.; Miao, D.Y.; Li, W.; Xie, Y.C.; Zhao, Y.Q. Cedrol from Ginger Ameliorates Rheumatoid Arthritis via Reducing Inflammation and Selectively Inhibiting JAK3 Phosphorylation. J. Agric. Food Chem. 2021, 69, 5332–5343. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, J.; Zhao, J.M.; Guan, J.; Li, W.; Xie, Q.M.; Zhao, Y.Q. Cedrol attenuates collagen-induced arthritis in mice and modulates the inflammatory response in LPS-mediated fibroblast-like synoviocytes. Food Funct. 2020, 11, 4752–4764. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee, M.H.; Sayyadi, S.A.H.; Sakhaee, N.; Sadeghnia, H.R.; Hosseinzadeh, H.; Nourbakhsh, F.; Forouzanfar, F. Cedrol protects against chronic constriction injury-induced neuropathic pain through inhibiting oxidative stress and inflammation. Metab. Brain Dis. 2020, 35, 1119–1126. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Ozek, G.; Ishmuratova, M.; Tabanca, N.; Radwan, M.M.; Goger, F.; Ozek, T.; Wedge, D.E.; Becnel, J.J.; Cutler, S.J.; Baser, K.H.C. One-step multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques and evaluation of biological activity. J. Sep. Sci. 2012, 35, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. High-throughput screening for small-molecule activators of neutrophils: Identification of novel N-formyl peptide receptor agonists. Mol. Pharmacol. 2007, 71, 1061–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, W609–W614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Juniperus spp. | Locality | Latitude (N) | Longitude (E) | Altitude (m) | Plant Material | Date of Collection | Yield (%) Leaves/Cones |
---|---|---|---|---|---|---|---|
Juniperus pseudosabina Fisch. | Trans-Ili Alatau, Big Almaty gorge, Almaty region, South-Eastern Kazakhstan | 43.04450° | 76.97850° | 2714 | leaves | July 2019 | 0.5 |
Juniperus pseudosabina Fisch. | Trans-Ili Alatau, Kim-Asar gorge, Almaty region, South-Eastern Kazakhstan | 43.16250° | 77.09388° | 2264 | cones | September 2020 | 0.7 |
Juniperus sibirica Burgsd. | Trans-Ili Alatau, Big Almaty gorge, Almaty region, South-Eastern Kazakhstan | 43.04450° | 76.97850° | 2714 | leaves | September 2020 | 0.7 |
Juniperus sibirica Burgsd. | Lineisky Ridge, West Altai Nature Reserve, Eastern Kazakhstan | 49.2544° | 82.5736° | 1589 | cones | August 2020 | 0.8 |
Juniperus pseudosabina subsp. turkestanica Kom. | Western Tien-Shan, Aksu-Zhabagly Nature Reserve, sublatitudinal crest of the ridge in the region of the Kshi-Kaindy pass, Turkistan region, Southern Kazakhstan | 42.39352° | 70.55950° | 1854 | leaves/cones | July 2020 | 0.4/0.6 |
Juniperus seravschanica Kom. | Western Tien-Shan, Mashat gorge, Aksu-Zhabagly Nature Reserve, Turkistan region, Southern Kazakhstan | 42.41652° | 70.20741° | 1005 | leaves/cones | August 2021 | 0.5/0.4 |
Juniperus sabina L. | Trans-Ili Alatau, Kim-Asar gorge, Almaty region, South-Eastern Kazakhstan | 43.16250° | 77.09388° | 2264 | leaves/cones | September 2020 | 1.4/2.0 |
J. horizontalis | Bozeman, MT, USA | 45.66885° | 111.06629° | 1462 | leaves/cones | August 2019 | 1.0/1.2 |
J. scopolorum | Sypes canyon, Bozeman, MT, USA | 45.74118° | 110.98698° | 1415 | leaves/cones | August 2019 | 1.1/1.0 |
J. communis | Hyalite Canyon, Bozeman, MT, USA | 45.48873° | 111.00474° | 2142 | leaves/cones | August 2019 | 0.6/1.0 |
No | RRI | Compound | JHLv | JHCon | JSLv | JSCon | JCLv | JCCon | JSELv | JSECon | JSALv | JSACon | JTLv | JTCon | JPSLv | JPSCon | JSILv | JSICon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1032 | α-Pinene | 1.2 | 3.0 | 1.3 | 4.0 | 68.7 | 22.3 | 45.3 | 34.4 | 1.2 | 4.3 | 15.2 | 25.1 | 30.8 | 49.3 | 26.9 | 44.9 |
2 | 1035 | α-Thujene | 0.5 | 1.8 | 1.2 | 2.3 | 0.7 | 1.8 | 1.1 | 1.8 | 1.7 | |||||||
3 | 1118 | β-Pinene | 0.1 | 0.2 | 0.1 | 0.2 | 3.3 | 0.6 | 0.7 | 0.6 | 0.1 | 0.2 | 1.5 | 1.6 | 2.8 | 3.7 | 1.8 | 1.1 |
4 | 1132 | Sabinene | 17.3 | 77.4 | 37.6 | 35.8 | 0.4 | 0.2 | 0.2 | 0.4 | 33.2 | 74.1 | 39.6 | 54.2 | 19.4 | 20.4 | 24.3 | 0.3 |
5 | 1159 | δ-3-Carene | 2.2 | t | 0.8 | t | 0.1 | 1.3 | 0.4 | |||||||||
6 | 1174 | Myrcene | 9.8 | 5.3 | 0.9 | 3.5 | 3.3 | 53.2 | 19.7 | 19.5 | 2.7 | 5.5 | 3.2 | 4.8 | 2.0 | 4.1 | 2.6 | 2.8 |
7 | 1188 | α-Terpinene | 0.6 | 0.5 | 1.2 | 2.5 | t | 0.1 | 0.1 | 0.3 | 0.3 | 1.5 | 0.3 | 0.7 | 0.6 | 1.3 | ||
8 | 1203 | Limonene | 4.6 | 1.5 | 3.2 | 4.5 | 1.2 | 1.2 | 1.0 | 1.2 | 0.8 | 1.0 | 1.8 | |||||
9 | 1255 | γ-Terpinene | 1.0 | 0.9 | 2.1 | 4.8 | t | t | 0.7 | 1 | 0.6 | 0.6 | 2.6 | 0.5 | 1.1 | 1.0 | 2.2 | t |
10 | 1280 | p-Cymene | t | 0.1 | 1.1 | 2.5 | t | t | 0.9 | 0.2 | 0.4 | 0.1 | 0.2 | 0.6 | 0.4 | 0.2 | 1.1 | t |
11 | 1451 | β-Thujone | 2.6 | t | 0.1 | 0.9 | t | 0.1 | 0.1 | 0.4 | ||||||||
12 | 1553 | Linalool | 0.2 | 0.6 | 0.1 | 0.1 | 0.1 | 0.6 | 1.3 | 1.0 | 1.8 | 3.6 | 0.1 | 2.5 | 0.3 | 1.0 | ||
13 | 1579 | Pregeijerene B | 0.1 | 2.2 | 0.2 | |||||||||||||
14 | 1590 | Bornyl acetate | 26.3 | t | 0.1 | t | 0.6 | 0.3 | 0.7 | 1.2 | 0.1 | t | 0.1 | 0.1 | t | 0.4 | 0.2 | 0.4 |
15 | 1611 | Terpinen-4-ol | 3.9 | 3.1 | 10.0 | 23.0 | 0.1 | 0.2 | 0.5 | 1.3 | 3.2 | 1.5 | 9.5 | 2.7 | 4.0 | 2.7 | 9.3 | 0.8 |
16 | 1658 | Sabinyl acetate | 16.8 | t | 30.3 | 1.0 | t | t | ||||||||||
17 | 1709 | α-Terpinyl acetate | 0.2 | 0.2 | 0.3 | 0.4 | 2.7 | 0.7 | ||||||||||
18 | 1726 | Germacrene D | 0.2 | 0.6 | 0.1 | 0.6 | 3.9 | 8.7 | 0.1 | 0.9 | 0.1 | 0.2 | 0.4 | 0.4 | 16.7 | |||
19 | 1773 | δ-Cadinene | 0.9 | 0.1 | 0.8 | 0.3 | 0.4 | 0.7 | 0.3 | 0.2 | 0.1 | t | 0.7 | 0.1 | 0.6 | 1 | 0.8 | 5.8 |
20 | 2069 | 1,6-Germacradien-5β-ol | 0.7 | 0.5 | 1.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.7 | 0.3 | 0.7 | 1.4 | 0.8 | 4.2 | |||
21 | 2096 | Elemol | 2.1 | 0.1 | 14.4 | 6.0 | 0.5 | 2.9 | 1.3 | 3.9 | 1.2 | 0.7 | 0.3 | |||||
22 | 2143 | Cedrol | 13.1 | 16.8 | 12.2 | 1.0 | t | 7.0 | 3.4 | |||||||||
23 | 2479 | 8-α-Acetoxyelemol | 0.1 | 11.1 | 1.0 | t | t | |||||||||||
24 | 2492 | 8,13-Abietadiene | 0.1 | 0.1 | 0.4 | 0.1 | 3.9 | 0.2 | 0.4 | 0.1 | 0.4 | t |
Compounds | JHLv | JHCon | JSLv | JSCon | JCLv | JCCon | JSELv | JSECon | JSALv | JSACon | JTLv | JTCon | JPSLv | JPSCon | JSILv | JSICon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monoterpene hydrocarbons | 37.8 | 91.9 | 85.0 | 59.6 | 84.9 | 77.9 | 72.0 | 62.2 | 41.0 | 89.4 | 68 | 91.1 | 59.3 | 82.3 | 68.6 | 50.3 |
Oxygenated monoterpenes | 51.8 | 6.4 | 13.3 | 28.5 | 4.8 | 4.9 | 4.4 | 3.2 | 42.6 | 7.0 | 20.1 | 4.4 | 20.2 | 4.6 | 23.0 | 2.2 |
Sesquiterpene hydrocarbons | 1.5 | 0.9 | 1.4 | 1.2 | 7.3 | 14.6 | 6.9 | 7.0 | 1.5 | 0.6 | 1.2 | 0.9 | 1.9 | 3.7 | 3.2 | 33.5 |
Oxygenated sesquiterpenes | 5.1 | 0.1 | 32.6 | 9.0 | 1.7 | 1.9 | 13.7 | 18.1 | 12.5 | 1.2 | 6.4 | 2.7 | 14.0 | 8.5 | 3.9 | 12.9 |
All sesquiterpenes | 6.6 | 1.0 | 34.0 | 10.2 | 9.0 | 16.5 | 20.6 | 25.0 | 14.0 | 1.8 | 7.6 | 3.6 | 15.9 | 12.2 | 7.1 | 46.4 |
Diterpenes | 0.5 | 0.1 | 0.4 | 0.4 | 0.1 | 5.4 | 0.4 | 0.4 | 0.1 | 0.6 | 0.2 | |||||
Fatty acids | 0.2 | 0.2 | 0.1 | 0.1 | 0.8 | 0.1 | 0.2 | |||||||||
Others | 0.1 | 2.2 | 0.2 | 0.4 | 0.1 | 0.3 | 0.1 | 2.7 | 0.3 | 1.7 | 0.2 | 0.1 | ||||
Total | 96.7 | 99.5 | 96.9 | 98.9 | 98.9 | 99.5 | 97.4 | 95.9 | 98.3 | 98.3 | 98.9 | 99.6 | 98.5 | 99.4 | 99.0 | 99.1 |
Source of Juniperus Essential Oils | EO | Neutrophils | HL-60-FPR1 | HL-60-FPR2 | Neutrophils |
---|---|---|---|---|---|
EC50 (μM) | IC50 (μM) | ||||
J. horizontalis leaves | JHLv | 24.7 ± 6.2 | 11.8 ± 3.7 | 10.1 ± 2.4 | 13.8 ± 1.3 |
J. horizontalis cones | JHCon | 49.8 ± 12.1 | 13.8 ± 4.4 | 18.7 ± 6.4 | N.A. |
J. scopolorum leaves | JSCLv | 24.8 ± 8.4 | 12.7 ± 3.6 | 12.8 ± 3.8 | 16.0 ± 2.9 |
J. scopolorum cones | JSCon | 38.0 ± 9.4 | 12.1 ± 5.1 | 12.4 ± 4.5 | 27.9 ± 1.4 |
J. communis leaves | JCLv | 54.0 ± 3.5 | 10.1 ± 3.4 | 11.0 ± 4.5 | 34.7 ± 6.4 |
J. communis cones | JCCon | 53.6 ± 1.9 | 13.6 ± 5.2 | 14.8 ± 4.3 | 29.2 ± 8.0 |
J. seravschanica leaves | JSELv | 43.0 ± 7.7 | 11.6 ± 4.1 | 13.4 ± 3.5 | 35.5 ± 3.8 |
J. seravschanica cones | JSECon | 41.0 ± 7.1 | 16.0 ± 5.2 | 20.1 ± 6.8 | 34.2 ± 7.9 |
J. sabina leaves | JSALv | 28.5 ± 9.3 | 13.6 ± 4.4 | 13.5 ± 4.2 | 23.6 ± 3.3 |
J. sabina cones | JSACon | 40.7 ± 4.3 | 11.8 ± 4.3 | 14.1 ± 2.5 | 35.0 ± 7.6 |
J. pseudosabina subsp. turkestanica leaves | JTLv | 43.0 ± 10.1 | 15.6 ± 5.5 | 15.4 ± 2.2 | 36.7 ± 10.8 |
J. pseudosabina subsp. turkestanica cones | JTCon | 13.9 ± 4.2 | 14.1 ± 5.1 | 14.2 ± 2.8 | 29.7 ± 5.3 |
J. pseudosabina leaves | JPSLv | 43.5 ± 10.6 | 11.3 ± 4.4 | 12.0 ± 4.1 | 29.4 ± 10.2 |
J. pseudosabina cones | JPSCon | 45.1 ± 9.7 | 14.9 ± 5.4 | 15.1 ± 4.2 | 36.5 ± 11.1 |
J. sibirica leaves | JSILv | 34.3 ± 7.3 | 7.0 ± 2.3 | 16.5 ± 6.7 | 48.7 ± 8.2 |
J. sibirica cones | JSICon | 31.8 ± 3.8 | 10.2 ± 3.5 | 16.4 ± 4.9 | 20.3 ± 6.8 |
Cedrol | 15.6 ± 2.5 | 54.0 ± 3.5 | 14.3 ± 3.5 | 15.4 ± 4.3 |
Rank | PDB ID | Target Name | Fit Score | Rank | PDB ID | Target Name | Fit Score |
---|---|---|---|---|---|---|---|
1 | 1REU | BMP2 | 1 | 11 | 2PIR | Androgen receptor | 0.8213 |
2 | 1P49 | Steroid sulfatase | 1 | 12 | 3BL1 | CA2 | 0.8032 |
3 | 1J96 | AKR1C2 | 1 | 13 | 3CJG | VEGFR2 | 0.7553 |
4 | 1E7E | Serum albumin | 1 | 14 | 2OF0 | β-Secretase 1 | 0.75 |
5 | 1L6L | Apo A-II | 1 | 15 | 1SQN | Progesterone receptor | 0.75 |
6 | 1W8L | PPIase A | 0.9633 | 16 | 2G01 | JNK1 | 0.7472 |
7 | 2PG2 | KIF11 | 0.9482 | 17 | 1ZXC | ADAM 17 | 0.7442 |
8 | 2C3I | Pim-1 | 0.8963 | 18 | 1SHL | Caspase-7 | 0.7399 |
9 | 1J78 | DBP | 0.8598 | 19 | 1P0P | Cholinesterase | 0.7331 |
10 | 3EQM | P450 19A1 | 0.8397 | 20 | 1S95 | PPP5 | 0.7326 |
Molecular Descriptor | Property |
---|---|
Formula | C15H26O |
M.W. | 222.37 |
Heavy atoms | 16 |
Fraction Csp3 | 1.00 |
Rotatable bonds | 0 |
H-bond acceptors | 1 |
H-bond donors | 1 |
MR | 68.56 |
tPSA | 20.23 |
iLogP | 2.99 |
BBB permeation | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özek, G.; Schepetkin, I.A.; Yermagambetova, M.; Özek, T.; Kirpotina, L.N.; Almerekova, S.S.; Abugalieva, S.I.; Khlebnikov, A.I.; Quinn, M.T. Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species. Molecules 2021, 26, 7644. https://doi.org/10.3390/molecules26247644
Özek G, Schepetkin IA, Yermagambetova M, Özek T, Kirpotina LN, Almerekova SS, Abugalieva SI, Khlebnikov AI, Quinn MT. Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species. Molecules. 2021; 26(24):7644. https://doi.org/10.3390/molecules26247644
Chicago/Turabian StyleÖzek, Gulmira, Igor A. Schepetkin, Moldir Yermagambetova, Temel Özek, Liliya N. Kirpotina, Shyryn S. Almerekova, Saule I. Abugalieva, Andrei I. Khlebnikov, and Mark T. Quinn. 2021. "Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species" Molecules 26, no. 24: 7644. https://doi.org/10.3390/molecules26247644
APA StyleÖzek, G., Schepetkin, I. A., Yermagambetova, M., Özek, T., Kirpotina, L. N., Almerekova, S. S., Abugalieva, S. I., Khlebnikov, A. I., & Quinn, M. T. (2021). Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species. Molecules, 26(24), 7644. https://doi.org/10.3390/molecules26247644