Twice as Nice: The Duff Formylation of Umbelliferone Revised
Abstract
:1. Introduction
2. Results
2.1. Optimization of the Duff Reaction Conditions
2.2. Ortho-Formylation of Umbelliferone in the Duff Reaction under Chosen Reaction Conditions
2.3. Solubility-Based Separation and Characterization of Ortho-Formylated Umbelliferones
2.4. Photophysical Properties of 8-FUmb and 6-FUmb
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Analytical Procedures
4.3. Preparation and Characterization of Ortho-Formylated Umbelliferones
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Penta, S. Advances in Structure and Activity Relationship of Coumarin Derivatives, 1st ed.; Academic Press-Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–190. [Google Scholar]
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018, 23, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.-Y.; Liu, T.; Sun, S.; Wang, X.-J. Synthesis and application of coumarin fluorescence probes. RSC Adv. 2020, 10, 10826–10847. [Google Scholar] [CrossRef]
- Colas, K.; Doloczki, S.; Urrutia, M.P.; Dyrager, C. Prevalent bioimaging scaffolds: Synthesis, photophysical properties and applications. Eur. J. Org. Chem. 2021, 2021, 2133–2144. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, Z.; Li, H.; Li, D.; Wang, X.; Qin, C. Design, synthesis and application in analytical chemistry of photo-sensitive probes based on coumarin. Crit. Rev. Anal. Chem. 2021, 51, 565–581. [Google Scholar] [CrossRef]
- Carneiro, A.; Matos, M.J.; Uriarte, E.; Santana, L. Trending topics on coumarin and its derivatives in 2020. Molecules 2021, 26, 501. [Google Scholar] [CrossRef]
- Matos, M.J. Coumarin and its derivatives—Editorial. Molecules 2021, 26, 6320. [Google Scholar] [CrossRef]
- Duff, J.C.; Bills, E.J. A new general method for the preparation of o-hydroxyaldehydes from phenols and hexamethylenetetramine. J. Chem. Soc. 1941, 547–550. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, K.; Cui, D.; Jiang, N.; Yin, G.; Wang, J.; Wang, R. Two novel aggregation-induced emission active coumarin-based Schiff bases and their applications in cell imaging. New J. Chem. 2014, 38, 2386–2393. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Liu, L.; Ni, H.; Han, J.; Wang, L.; Mao, Y.; Ni, L.; Wang, Y. A water-soluble colorimetric and fluorescent probe for rapidly sensing of ClO− in organisms. J. Photochem. Photobiol. A Chem. 2020, 387, 112166. [Google Scholar] [CrossRef]
- Yan, L.; Kong, Z.; Shen, W.; Du, W.; Zhou, Y.; Qi, Z. A label-free turn-on fluorescence probe for rapidly distinguishing cysteine over glutathione in water solution. Anal. Biochem. 2016, 500, 1–5. [Google Scholar] [CrossRef]
- Gupta, V.K.; Mergu, N.; Kumawat, L.K.; Singh, A.K. Selective naked-eye detection of Magnesium (II) ions using a coumarin-derived fluorescent probe. Sens. Actuators B 2015, 207, 216–223. [Google Scholar] [CrossRef]
- Manidhar, D.M.; Maheswara, R.; Bakthavatchala, N.; Sundar, S.; Suresh, R. Synthesis of new 8-formyl-4-methyl-7-hydroxy coumarin derivatives. J. Korean Chem. Soc. 2012, 56, 459–463. [Google Scholar] [CrossRef]
- Al-Kawkabani, A.; Boutemeur-Kheddis, B.; Makhloufi-Chebli, M.; Hamdi, M.; Talhi, O.; Silva, A. Synthesis of novel 2H,8H-pyrano[2, 3-f]chromene-2,8-diones from 8-formyl-7-hydroxy-4-methylcoumarin. Tetrahedron Lett. 2013, 54, 5111–5114. [Google Scholar] [CrossRef]
- Wei, D.; Sun, Y.; Yin, J.; Wei, G.; Dua, Y. Design and application of Fe3+ probe for “naked-eye” colorimetric detection in fully aqueous system. Sens. Actuators B 2011, 160, 1316–1321. [Google Scholar] [CrossRef]
- Chavan, O.S.; Chavan, S.B.; Baseer, M.A. An efficient synthesis of formyl coumarins by microwave irradiation method duff formylation. Der Pharma Chemica 2015, 7, 197–200. [Google Scholar]
- Moskvina, V.S.; Khilya, V.P. Synthesis of pyrano[2,3-f]chromen-2,8-diones and pyrano[3,2-g]chromen-2,8-diones based on o-hydroxyformyl(acyl)neoflavonoids. Chem. Nat. Compd. 2008, 44, 16–23. [Google Scholar] [CrossRef]
- Caffieri, S.; Di Lisa, F.; Bolesani, F.; Facco, M.; Semenzato, G.; Dall’Acqua, F.; Canton, M. The mitochondrial effects of novel apoptogenic molecules generated by psoralen photolysis as a crucial mechanism in PUVA therapy. Blood 2007, 109, 4988–4994. [Google Scholar] [CrossRef] [Green Version]
- Darla, M.; Krishna, B.; Rao, K.; Reddy, N.; Srivash, M.; Adeppa, K.; Sundar, C.; Reddy, C.; Misra, K. Synthesis and bio-evaluation of novel 7-hydroxy coumarin derivatives via Knoevenagel reaction. Res. Chem. Intermed. 2015, 41, 1115–1133. [Google Scholar] [CrossRef] [Green Version]
- Grimblat, N.; Sarotti, A.M.; Kaufman, T.S.; Simonetti, S.O. A theoretical study of the Duff reaction: Insights into its selectivity. Org. Biomol. Chem. 2016, 14, 10496. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Seong, S.H.; Reddy, M.R.; Seo, S.Y.; Choi, J.S.; Jung, H.A. Kinetics and molecular docking studies of 6-formyl umbelliferone isolated from angelica decursiva as an inhibitor of cholinesterase and BACE1. Molecules 2017, 22, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-B.; Kang, M.-J.; Kang, C.-W.; Kim, N.-H.; Choi, H.W.; Jung, H.A.; Choi, J.S.; Kim, G.-D. Anti-inflammatory effects of 6-formyl umbelliferone via the NF-κB and ERK/MAPK pathway on LPS-stimulated RAW 264.7 cells. Int. J. Mol. Med. 2019, 43, 1859–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, S.H.; Ali, M.Y.; Jung, H.A.; Choi, J.S. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorg. Chem. 2019, 92, 103293. [Google Scholar] [CrossRef]
- Skarga, V.V.; Zadorozhny, A.D.; Shilov, B.V.; Nevezhin, E.V.; Negrebetsky, V.V.; Maslov, M.A.; Lagunin, A.A.; Malakhov, M.V. Prospective pharmacological effects of psoralen photooxidation products and their cycloadducts with aminothiols: Chemoinformatic analysis. Bull. RSMU 2020, 5, 31–39. [Google Scholar]
- Kim, E.; Park, S.B. Discovery of new fluorescent dyes: Targeted synthesis or combinatorial approach? In Advanced Fluorescence Reporters in Chemistry and Biology I, 1st ed.; Demchenko, A.D., Ed.; Springer: Berlin, Germany, 2010; Volume 8, pp. 149–186. [Google Scholar]
- Malakhov, M.V.; Dubinnyi, M.A.; Vlasova, N.V.; Zgoda, V.G.; Efremov, R.G.; Boldyrev, I.A. End-group differentiating ozonolysis of furocoumarins. RSC Adv. 2014, 4, 61277. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Ozturk, S.; Sorensen, E.J. Pd-Catalyzed ortho C-H hydroxylation of benzaldehydes using a transient directing group. Org. Lett. 2017, 19, 6280–6283. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-S.; Kim, T.-K.; Lee, J.H.; Kim, H.-J.; Hong, J.-I. Fluorescence turn-on probe for homocysteine and cysteine in water. Chem. Commun. 2008, 6173–6175. [Google Scholar] [CrossRef]
- Skarga, V.V.; Matrosov, A.A.; Nichugovskiy, A.I.; Negrebetsky, V.V.; Maslov, M.A.; Boldyrev, I.A.; Malakhov, M.V. pH-Dependent photoinduced interconversion of furocoumaric and furocoumarinic acids. Molecules 2021, 26, 2800. [Google Scholar] [CrossRef]
- Fink, D.W.; Koehler, W.R. pH Effects on fluorescence of umbelliferone. Anal. Chem. 1970, 42, 990–993. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Orhan, I.E.; Cordell, G.A.; Nabavi, S.M.; Budzynska, B. Implication of coumarins towards central nervous system disorders. Pharmacol. Res. 2016, 103, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Hindam, M.O.; Sayed, R.H.; Skalicka-Woźniak, K.; Budzynska, B.; Sayed, N.S. Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin-induced rat model of sporadic Alzheimer’s disease: The role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation. Phytother. Res. 2020, 34, 2351–2365. [Google Scholar] [CrossRef] [PubMed]
- Zaric, B.L.; Obradovic, M.; Bajic, V.; Haidara, M.A.; Jovanovic, M.; Isenovic, E.R. Homocysteine and hyperhomocysteinaemia. Curr. Med. Chem. 2019, 26, 2948–2961. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Chen, D.; Song, S.; Vlag, R.; Wouden, P.E.; Merkerk, R.; Cool, R.H.; Hirsch, A.K.H.; Melgert, B.N.; Quax, W.J.; et al. 7-Hydroxycoumarins are affinity-based fluorescent probes for competitive binding studies of macrophage migration inhibitory factor. J. Med. Chem. 2020, 63, 11920–11933. [Google Scholar] [CrossRef] [PubMed]
- Potapenko, A.Y.; Kyagova, A.A.; Bezdetnaya, L.N.; Lysenko, E.P.; Chernyakhovskaya, I.Y.; Bekhalo, V.A. Products of psoralen photooxidation possess immunomodulative and antileukemic effects. Photochem. Photobiol. 1994, 60, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Kyagova, A.A.; Zhuravel, N.N.; Malakhov, M.V.; Lysenko, E.P.; Adam, W.; Saha-Möller, C.R.; Potapenko, A.Y. Suppression of delayed-type hypersensitivity and hemolysis induced by previously photooxidized psoralen: effect of fluence rate and psoralen concentration. Photochem. Photobiol. 1997, 65, 694–700. [Google Scholar] [CrossRef]
- Kyagova, A.A.; Malakhov, M.V.; Potapenko, A.Y. Immunosuppression caused by photochemo- and photodynamic therapy: Focus on photosensitizer photoproducts. In Immunosuppression: New Research, 1st ed.; Taylor, C.B., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 167–183. [Google Scholar]
- Lee, K.-S.; Kim, H.-J.; Kim, G.-H.; Shin, I.; Hong, J.-I. Fluorescent chemodosimeter for selective detection of cyanide in water. Org. Lett. 2008, 10, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
Starting Material | Reaction Conditions 1 | Yield (%) | Reference 2 | |||
---|---|---|---|---|---|---|
HMTA:SM Ratio | Temperature (°C) | Reaction Time | Solvent | |||
7:3 | Boiling | 5.5 h | AcOH | 10 | [9] | |
~2:1 | Boiling | Overnight | AcOH | 14.5 | [10] | |
2:1 | 95 | 5.5 h | AcOH | 15.5 | [11] | |
3:1 | Boiling | 4-5 h | AcOH | 18 | [12] | |
3:1 | 80-85 | 6 h | AcOH | 22 | [13] | |
3:1 | Boiling | 8 h | AcOH | 25 | [14] | |
3:1 | MW 300 W | 7 min | AcOH | 40 | [14] | |
~3:2 | Boiling | 8 h | TFA | 57 | [15] | |
3:1 | MW 800 W | 3 min | TFA | 64 | [16] | |
10:1 | n. a. | 6-8 h | AcOH | 60 | [17] | |
5:3 | Boiling | 10 min | TFA | n. a. | [18] | |
3:1 | n. a. | 1 h | AcOH | 44 | [19] |
Solubility | Solvent | |
---|---|---|
Excellent (>100 mg/mL) | Dimethylformamide | |
Dimethyl sulfoxide | ||
Good (10–100 mg/mL) | Methylene chloride | |
Chloroform | ||
Limited (1–10 mg/mL) | Methanol | Acetonitrile |
Ethanol | Acetic acid | |
Poor (0.1–1 mg/mL) | Acetone | Isopropanol |
Diethyl ether | ||
Insoluble (<0.1 mg/mL) | Water | Toluene |
Ethyl acetate | Hexane |
Compound | Parameter 1 | pH 3.0 2 | pH 7.4 2 | pH 9.0 2 |
---|---|---|---|---|
8-FUmb (pK 6.54) 3 | Absorption | 245 (8100) | 243 (9100) | 242 (10,400) |
275 (11,100) | 275sh (5500) | 275sh (5100) | ||
310 (10,700) | ||||
350sh (7400) | 355 (16,500) | 357 (18,600) | ||
Emission | 455 (0.006) | 457 (0.008) | 461 (0.009) | |
6-FUmb (pK 6.55) 3 | Absorption | 227 (14,100) | 237 (17,000) | 238 (18,500) |
259 (29,500) | 260 (14,600) | 261 (14,100) | ||
308 (9800) | ||||
338 (10,200) | 338 (11,700) | 338 (11,300) | ||
388 (11,700) | 389 (13,200) | |||
Emission | 515 (0.017) | 517 (0.093) | 517 (0.103) | |
Umb 4 | Absorption | 324 (21,100) | 327 (11,900) | |
366sh (6600) | 366 (22,900) | |||
Emission | 457 (0.802) | 457 (0.903) | 457 (0.918) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skarga, V.V.; Negrebetsky, V.V.; Baukov, Y.I.; Malakhov, M.V. Twice as Nice: The Duff Formylation of Umbelliferone Revised. Molecules 2021, 26, 7482. https://doi.org/10.3390/molecules26247482
Skarga VV, Negrebetsky VV, Baukov YI, Malakhov MV. Twice as Nice: The Duff Formylation of Umbelliferone Revised. Molecules. 2021; 26(24):7482. https://doi.org/10.3390/molecules26247482
Chicago/Turabian StyleSkarga, Vladislav V., Vadim V. Negrebetsky, Yuri I. Baukov, and Mikhail V. Malakhov. 2021. "Twice as Nice: The Duff Formylation of Umbelliferone Revised" Molecules 26, no. 24: 7482. https://doi.org/10.3390/molecules26247482
APA StyleSkarga, V. V., Negrebetsky, V. V., Baukov, Y. I., & Malakhov, M. V. (2021). Twice as Nice: The Duff Formylation of Umbelliferone Revised. Molecules, 26(24), 7482. https://doi.org/10.3390/molecules26247482