Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Analysis
2.2. Phytochemical Analysis
2.3. Total Phenolics and Antioxidant Capacity
2.4. Identification and Quantification of Polyphenols by LC-ESI-QTOF-MS
3. Materials and Methods
3.1. Plant Material
3.2. Standards
3.3. Phytochemical Analysis
3.4. Hydroethanolic Extraction of Phenolic Compounds
3.5. Determination of Total Phenols
3.6. Antioxidant Capacity by DPPH
3.7. Antioxidant Capacity by ORAC
3.8. Identification and Quantification of Polyphenols by LC-ESI-QTOF-MS
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPH | 2,2′-Azobis (2-methylpropionamidine) dihydrochloride radical |
AUC | area under the curve |
DPPH | 1,1-diphenyl-2-picrylhydrazine |
GA | Galic acid |
OC | Oregano from Colotlan |
OH | Oregano from Huejuquilla |
OM | Oregano from Mezquitic |
ORAC | Oxygen Radical Absorbance Capacity |
References
- Odhiambo, J.; Dossaji, S.; Lukhoba, C.; Yenesew, A. Phytochemical screening of Dierama cupuliflorum Klatt (Iridaceae). J. Pharm. Res. 2014, 8, 589–592. [Google Scholar]
- Shivaranjani, V.L.; Poornima, H.; Umamaheswari, J.; Devi, K.L. Preliminary phytochemical screening and quantification of bioactive compounds in the leaves of spinach (Spinaceae oleraceae L). J. Pharm. Res. 2014, 8, 1113–1119. [Google Scholar]
- Robles-Zepeda, R.E.; Coronado-Aceves, E.W.; Velázquez-Contreras, C.A.; Ruiz-Bustos, E.; Navarro-Navarro, M.; Garibay-Escobar, A. In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico. Complement. Altern. Med. 2013, 13, 1472–6882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opara, E.I.; Chohan, M. Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits. Int. J. Mol. Sci. 2014, 15, 19183–19202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, R.H.; Savithramma, N. Phytochemical screening of underutilized species of Poaceae. JPR BioMedRx Int. J. 2013, 1, 947–951. [Google Scholar]
- Pereira-dos Santos, C.; Andreza, J.; Oliveira-Pinto, J.A.; Alves-dos Santos, C.; Mércia, E.; Oliveira-Cruz, E.M.; Arrigoni-Blank, M.F.; Matos-Andrade, T.; Santos, D.A.; Barreto-Alves, P.; et al. Harvest time and geographical origin affect the essential oil of Lippia gracilis Schauer. Ind. Crops Prod. 2016, 79, 205–210. [Google Scholar] [CrossRef]
- Saxena, H.O.; Soni, A.; Mohammad, N.; Choubey, S.K. Phytochemical screening and elemental analysis in different plant parts of Uraria picta Desv.: A Dashmul species. J. Chem. Pharm. Res. 2014, 6, 756–760. [Google Scholar]
- González Güereca, M.C.; Soto Hernández, M.; Kite, G.; Martínez Vázquez, M. Actividad antioxidante de flavonoides del tallo de orégano mexicano. Rev. Fitotec. Mex. 2007, 30, 43–49. [Google Scholar]
- Lin, L.-Z.; Mukhopadhyay, S.; Robbins, R.J.; Harnly, J.M. Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. J. Food Compos. Anal. 2007, 20, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Soto-Domínguez, A.; García-Garza, R.; Ramírez-Casas, Y. El Extracto Acuoso de Orégano (Lippia graveolens HBK) del Norte de México tiene Actividad Antioxidante sin mostrar un efecto tóxico in vitro e in vivo. Int. J. Morphol. 2012, 30, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Villavicencio-Gutierréz, E.; Cano-Pineda, A.; García-Cuevas, X. Metodología Para Determinar Las Existencias de orégano (Lippia Graveolens H. B. K.) en Rodales Naturales de Parras de la Fuente, Coahuila; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP): Mexico City, Mexico, 2010; ISBN 978-607-425-295-8. [Google Scholar]
- Borrás, I. Rosmarinus officinalis leaves as a Natural Source of Bioactive Compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef] [PubMed]
- Oreopoulou, V. Extraction of Natural Antioxidants, Extraction Optimization in Food Engineering; Marcel Decker: New York, NY, USA, 2003. [Google Scholar]
- Calvo-Irabien, L.M.; Parra-Tabla, V.; Acosta-Arriola, V.; Escalante-Erosa, F.; Díaz-Vera, L.; Dzib, G.R.; Peña-Rodríguez, L.M. Phytochemical Diversity of the Essential Oils of Mexican Oregano (Lippia graveolens Kunth) populations along an Edapho-Climatic Gradient. Chem. Biodivers. 2014, 11, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Villavicencio, E.E. Cultivo de Orégano, Opción Productiva Para Las Zonas Semidesérticas. Desplegable para productores No. 28; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP): Mexico City, Mexico, 2012; Código INIFAP: MX-0-310399-35-03-15-12-28. [Google Scholar]
- Arana-Sánchez, A.; Estarron-Espinosa, M.; Obledo-Vázquez, E.; Padillacamberos, E.; Silva-Vázquez, R.; Lugo-Cervantes, E. Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated inβ-cyclodextrin. Lett. Appl. Microbiol. 2010, 50, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Arango, O.; Bolaños, F.; Villota, O.; Hurtado, A.; Toro, I. Optimización del rendimiento y contenido de timol de aceite esencial de orégano silvestre obtenido por arrastre con vapor. Biotecnol. Sect. Agropecu. Agroind. 2012, 10, 217–227. [Google Scholar]
- Quiroga, P.R.; Grosso, N.R.; Lante, A.; Lomolino, G.; Zygadlo, J.A.; Nepote, V. Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. Int. J. Food Sci. Technol. 2012, 48, 642–649. [Google Scholar] [CrossRef]
- Silva-Vázquez, R.; Gastélum-Franco, M.G.; Torres-Muñoz, J.V.; Nevárez-Moorillón, G.V. Las especies de orégano en México. In Fitoquímicos Sobresalientes del Semidesierto Mexicano: De la Planta a los Químicos Naturales y a la Biotecnología; Aguilar: Mexico City, Mexico, 2008; pp. 136–153. ISBN 978-968-6628-760. [Google Scholar]
- Hawkins, E.B.; Ehrlich, S.D. Gotu Kola; University of Maryland Medical Center: Baltimore, MD, USA, 2006. [Google Scholar]
- Valencia-Ortiz, C. Fundamentos de Fitoquímica; Trillas: Mexico City, Mexico, 1995. [Google Scholar]
- Henning, S.M.; Zhang, Y.; Seeram, N.P.; Lee, R.; Wang, P.; Bowerman, S.; Heber, D. Antioxidant capacity and phytochemical content of herbs and spices in dry, fresh and blended herb paste form. Int. J. Food Sci. Nutr. 2011, 62, 219–225. [Google Scholar] [CrossRef]
- De Oliveira, F.C.; Barbosa, F.G.; Mafezoli, J.; Oliveira, M.D.C.F.D.; Neto, M.A.; Guedes, M.L. Chemical constituents of Lippia rigida Schauer (Verbenaceae). Biochem. Syst. Ecol. 2013, 51, 328–330. [Google Scholar] [CrossRef]
- Funari, C.S.; Passalacqua, T.G.; Rinaldo, D.; Napolitano, A.; Festa, M.; Capasso, A.; Piacente, S.; Pizza, C.; Young, M.C.M.; Durigan, G.; et al. Interconverting flavanone glucosides and other phenolic compounds in Lippia salviaefolia Cham. ethanol extracts. Phytochemistry 2011, 72, 2052–2061. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Alvarenga, J.F.R.; Leal, L.N.; Lamuela-Raventós, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.C.; Ferreira, I.C. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chem. 2014, 158, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, M.T.S.; Marques, R.A.; Silva, M.G.V.; Scherer, D.; Haubner, R.; Ulrich, C.M.; Owen, W. Composition of Essential Oils and Ethanol Extracts of the Leaves of Lippia Species: Identification, Quantitation and Antioxidant Capacity. Rec. Nat. Prod. 2016, 10, 485–496. [Google Scholar]
- Zhou, J.; Xie, G.; Yan, X. Encyclopedia of Traditional Chinese Medicines—Molecular Structures, Pharmacological Activities, Natural Sources and Applications: Isolated Compounds; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018, 413, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Liu, Y.; Luo, X.; Yang, Z. Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug. Molecules 2019, 24, 2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Guanhua, D.; Yan, Q.; Mei, G.; Qingyun, Y.; Hongmei, G.; Wei, L.; Yuehua, W.; Yuanfeng, T. Inclusion Complexes of Pinocembrin with Cyclodextrins or its Derivatives. Patent US9949946B2, 24 April 2018. [Google Scholar]
- Goldwasser, J. The Grapefruit Flavonoid Naringenin as a Hepatitis C Virus Therapy, Efficacy, Mechanism and Delivery. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy. Oxidative Med. Cell. Longev. 2015, 2015, 9388475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.C.; Lai, C.S.; Lee, P.S.; Ho, C.T.; Liou, W.S.; Wang, Y.J.; Pan, M.H. Anti-cancer efficacy of dietary polyphenols in mediated through epigenetic modifications. Curr. Opin. Food Sci. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Hakobyan, A.; Arabyan, E.; Kotsinyan, A.; Karalyan, Z.; Sahakyan, H.; Arakelov, V.; Nazaryan, K.; Ferreira, F.; Zakaryan, H. Inhibition of African swine fever virus infection by genkwanin. Antivir. Res. 2019, 167, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Shu-Ya, Z.; Shui-Xian, M.; Hui-Lin, C.H.; Li-Juan, Y.; Wen Ch Yan-Qing, Y.; Yi-Min, S.; Xiao-Dong, Y. Host-guest interaction between pinocembrin and cyclodextrins: Characterization, solubilization and stability. J. Mol. Struct. 2014, 1058, 181–188. [Google Scholar]
- Han, M.; Gao, H.; Xie, J.; Yuan, Y.-P.; Yuan, Q.; Gao, M.-Q.; Liu, K.-L.; Chen, X.-H.; Han, Y.-T.; Han, Z.-W. Hispidulin induces ER stress-mediated apoptosis in human hepatocellular carcinoma cells in vitro and in vivo by activating AMPK signaling pathway. Acta Pharmacol. Sin. 2019, 40, 666–676. [Google Scholar] [CrossRef]
- Lall, R.K.; Syed, D.N.; Adhami, V.M.; Khan, M.I.; Mukhtar, H. Dietary Polyphenols in Prevention and Treatment of Prostate Cancer. Int. J. Mol. Sci. 2015, 16, 3350–3376. [Google Scholar] [CrossRef]
- Gurunathan, S.; Jeyaraj, M.; Kang, M.-H.; Kim, J.-H. The Effects of Apigenin-Biosynthesized Ultra-Small Platinum Nanoparticles on the Human Monocytic THP-1 Cell Line. Cells 2019, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Caccamese, S.; Chillemi, R. Racemization at C-2 of naringin in pummelo (Citrus grandis) with increasing maturity determined by chiral high-performance liquid chromatography. J. Chromatogr. A 2010, 1217, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Maltese, F.; Erkelens, C.; Van Der Kooy, F.; Choi, Y.H.; Verpoorte, R. Identification of natural epimeric flavanone glycosides by NMR spectroscopy. Food Chem. 2009, 116, 575–579. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Funes, L.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract. J. Chromatogr. A 2009, 1216, 5391–5397. [Google Scholar] [CrossRef]
- Flores-Martínez, H.; León-Campos, C.; Estarrón-Espinosa, M.; Orozco-Ávila, I. Optimización del proceso de extracción de sustancias antioxidantes a partir del orégano mexicano (Lippia graveolens H.B.K.) utilizando la metodología de superficie de respuesta (MSR). Rev. Mex. Ing. Química 2016, 15, 773–785. [Google Scholar]
- Funari, C.S.; Eugster, P.J.; Martel, S.; Carrupt, P.-A.; Wolfender, J.-L.; Silva, D.H. High resolution ultra high pressure liquid chromatography-time-of-flight mass spectrometry dereplication strategy for the metabolite profiling of Brazilian Lippia species. J. Chromatogr. A 2012, 1259, 167–178. [Google Scholar] [CrossRef]
- Martínez, A.; Valencia, G.A.; Jiménez, N.; Mesa, M.; Galeano, E. Manual de Prácticas de Laboratorio de Farmacognosia y Fitoquímica; Universidad de Antioquia: Medellin, Colombia, 2008. [Google Scholar]
- Cao, G.; Prior, R. Measurement of Oxygen Radical Absorbance Capacity in Biological Samples. Methods Enzymol. 1999, 299, 50–62. [Google Scholar]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Verardo, V.; Arráez-Román, D.; Fernández-Arroyo, S.; Micol, V.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Evaluation of different extraction approaches for the determination of phenolic compounds and their metabolites in plasma by nanoLC-ESI-TOF-MS. Anal. Bioanal. Chem. 2012, 404, 3081–3090. [Google Scholar] [CrossRef]
Family of Compounds | OH | OM | OC |
---|---|---|---|
Flowering (%) | 11 | 28 | 7 |
Leaf (%) | 83 | 65 | 74 |
Stem (%) | 4 | 7 | 18 |
EO (mL/100g DB) | 1.4 | 2.6 | 4.8 |
Ripening | +++ | + | ++ |
Flavonoids | +++ | + | ++ |
Terpenes | nd | ++ | +++ |
Steroids | + | ++ | +++ |
Tannins | +++ | +++ | +++ |
Coumarins | nd | nd | nd |
Quinones | nd | ++ | + |
Saponins | + | nd | ++ |
Alkaloids | nd | nd | nd |
Sample | Total Phenolics (mg GA/mL Ex) | DPPH (mg TxEq/mL Ex) | ORAC (mg TxEq/mL Ex) |
---|---|---|---|
OH | 4.41 ± 0.052 a | 7.54 ± 0.224 a | 1.66 ± 0.284 a |
OM | 4.28 ± 0.008 a | 7.87 ± 0.060 a | 1.67 ± 0.254 a |
OC | 4.54 ± 0.030 a | 8.79 ± 0.000 a | 1.65 ± 0.236 a |
Peak | Name | Formula | m/z cal [M-H]- | OH | OM | OC | Reference/Specie | |||
---|---|---|---|---|---|---|---|---|---|---|
m/z exp [M-H]- | Dif (ppm) | m/z exp [M-H]- | Dif (ppm) | m/z exp [M-H]- | Dif (ppm) | |||||
1 | Methyl 4,6-O-di-O-galloyl-β-d-glucopyranoside/Methyl 6-O-digalloyl-β-d-glucopyranoside I/II | C21 H22 O14 | 497.0937 | 497.0953 | 3.23 | 497.0941 | 0.79 | - | - | Sanguisorba officinalis. |
2 | Tuliposide F/Cachinoside IV | C16 H24 O11 | 391.1246 | 391.1254 | 2.08 | 391.1243 | 0.51 | - | - | Tulipa turkestani/Campsis grandiflora |
3 | 5,7,8-trihydroxycoumarin-5-β-glucopyranoside | C15 H16 O10 | 355.0671 | 355.0667 | 0.98 | - | - | - | - | Polytrichum formosum |
4 | 1-O-(4-Hydroxybenzoyl)-β-d-glucose | C13 H16 O8 | 299.0772 | 299.0771 | 0.62 | - | - | - | - | Crocus sativus (pollen) y Luffa cylindrica |
5 | (2R)- and (2S)-3′,4′,5,6-tetrahydroxyflavanone 7-O-β-glucopyranoside/(2R)- and (2S)-3′,4′,5,8-tetrahydroxyflavanone 7-O-β-glucopyranoside | C21 H22 O12 | 465.1022, 465.1033/465.1023, 465.1029 | 465.1054 | 3.81 | - | - | - | - | [24] |
6 | Deacetyl asperulosidic acid/Teveside/Monotropein | C16 H22 O11 | 389.1089 | 389.1101 | 2.97 | 389.1087 | 0.02 | 389.1075 | 3.75 | Lasianthus acuminatissimus, Morinda citrifolia (fruit), Daphniphyllum macropodum, Lasianthus wallichi, Gardenia jasminoides/Thevetia neriifolia, Lippia citriodora, Lemon verbena/Cornus suecica, Morinda officinalis, Galium glaucum, Monotropa hypopitys, M. uniflora, Pyrola japonica, Arctostaphylos uva-ursi |
7 | Apigenin 6,8-di-C-glucoside/Kaempferol-3-O-rutinoside | C27 H30 O15 | 593.1512 | 593.1537 | 4.11 | - | - | - | - | [25,26] |
8 | (1R,2R)-5′-hydroxyjasmonic 5′-O-β-d-glucopiranoside acid/tuberonic glicoside acid | C18 H28 O9 | 387.1661 | 387.1668 | 2.00 | 387.1664 | 0.91 | 387.1646 | 3.89 | Thymus vulgaris, Perilla frutescens, Lippia citriodora. |
9 | (2R)- and (2S)-3′,4′,5,6-tetrahydroxyflavanone 7-O-β-glucopyranoside/(2R)- and (2S)-3′,4′,5,8-tetrahydroxyflavanone 7-O-β-glucopyranoside | C21 H22 O12 | 465.1022, 465.1033/465.1023, 465.1029 | 465.1055 | 3.51 | 465.1048 | 2.02 | 465.1032 | 1.31 | [24] |
10 | 6-Hydroxyluteolin-7-O-hexoside | C21 H20 O12 | 463.0877 | 463.0899 | 3.65 | 463.0891 | 2.01 | 463.0873 | 2.05 | [9,24] |
11 | (2R)- and (2S)-3′,4′,5,6-tetrahydroxyflavanone 7-O-β-glucopyranoside/(2R)- and (2S)-3′,4′,5,8-tetrahydroxyflavanone 7-O-β-glucopyranoside | C21 H22 O12 | 465.1022, 465.1033/465.1023, 465.1029 | 465.1050 | 2.54 | 465.1050 | 2.39 | 465.1023 | 3.31 | [24] |
12 | Verbascoside/Isoverbascoside/Forsitoside A | C29 H36 O15 | 623.1981 | 623.2023 | 4.21 | 623.2008 | 3.50 | 623.2007 | 0.26 | [24] |
13 | 3-Hydroxyphloretin 6′-O-hexoside | C21 H24 O11 | 451.1246 | - | - | 451.1252 | 1.47 | 451.1241 | 1.18 | [9] |
14 | (a) | C30 H28 O15 | 627.1355 | - | - | 627.1378 | 0.62 | - | - | - |
15 | Taxifolin | C15 H12 O7 | 303.0505 | 303.0511 | 0.24 | 303.0503 | 2.36 | 303.0571 | 6.65 | Standard |
16 | Cosmoside | C21 H20 O10 | 431.0984 | 431.0989 | 0.53 | 431.0989 | 2.37 | 431.0957 | 6.22 | Standard |
17 | Phlorizin | C21 H24 O10 | 435.1297 | 435.1302 | 0.90 | 435.1307 | 2.27 | 435.1283 | 3.22 | Standard |
18 | 4-methoxyphenyl 1-O-β-d-[5-O-(3,4-dimethoxybenzoyl)]-apio-furanosyl-(1-6)-β-d-glucopiranoside | C27 H34 O14 | 581.1876 | 581.1886 | 1.83 | - | - | - | - | Tabebuia impetiginosa |
19 | (b) | C21 H24 O9 | 419.1348 | 419.1347 | 0.13 | - | - | - | - | - |
20 | Eriodictyol | C15 H12 O6 | 287.0569 | 287.0554 | 2.55 | 287.0576 | 6.69 | 287.0581 | 11.89 | Standard |
21 | 2′′-O-(3′′′,4′′′-dimethoxybenzoyl) orientin | C30 H28 O14 | 611.1406 | 611.1413 | 1.12 | 611.1424 | 2.82 | 611.1393 | 2.24 | Trollius ledebourii (flowers). |
22 | Ikarisoside F | C31 H36 O14 | 631.2032 | - | - | 631.2057 | 3.85 | - | - | Epimedium koreanum, E. Sagittatum, E. pubescens, E. wushanense, E. brevicornum |
23 | 6′′-O-p-hidroxybenzoyliridyn | C31 H30 O15 | 641.1512 | - | - | 641.1531 | 2.90 | - | - | Belamcanda chinensis |
24 | (c) | C23 H32 O18 | 595.1516 | - | - | 595.1494 | 3.65 | 595.1426 | 5.23 | - |
25 | Quercetin | C15 H10 O7 | 301.0354 | 301.0346 | 1.62 | 301.0353 | 0.19 | 301.0329 | 7.59 | Standard |
26 | Sinapic C-hexoside acid | C17 H22 O10 | 385.1140 | 385.1138 | 0.58 | - | - | - | - | [25] |
27 | (d) | C18 H26 O7 | 353.1606 | - | - | - | - | 353.1595 | 3.18 | - |
28 | Phloretin | C15 H14 O5 | 273.0763 | 273.0755 | 4.82 | 273.0768 | 0.10 | 273.0774 | 10.90 | [24] |
29 | Naringenin | C15 H12 O5 | 271.0612 | 271.0604 | 3.05 | 271.0609 | 1.24 | 271.0593 | 6.96 | Standard |
30 | Hispidulin | C16 H12 O6 | 299.0561 | 299.0551 | 3.35 | 299.0559 | 0.77 | 299.0568 | 7.06 | Standard |
31 | Diterpenic taxoid | C30 H42 O12 | 593.2662/593.2604 | 593.2632 | 4.73/5.04 | - | - | - | - | - |
32 | Cirsimaritin | C17 H14 O6 | 313.0718 | 313.0705 | 4.03 | 313.0718 | 0.17 | 313.0723 | 5.12 | [9,12] |
33 | Pinocembrin | C15 H12 O4 | 255.0663 | 255.0673 | 3.99 | 255.0657 | 1.89 | 255.0644 | 7.50 | Standard |
34 | Galangin | C15 H10 O5 | 269.0501 | 269.0463 | 2.76 | 269.0451 | 1.66 | 269.0434 | 8.13 | Standard |
35 | Genkwanin | C16 H12 O5 | 283.0612 | 283.0605 | 0.01 | 283.0608 | 1.30 | 283.0620 | 8.12 | Standard |
36 | Diterpenic quinone | C20 H26 O3 | 313.1809 | - | - | 313.1814 | 1.63 | - | - | - |
37 | (e) | C20 H24 O4 | 327.1602 | - | - | 327.1599 | 0.71 | - | - | - |
38 | 13(R)-Hydroxy-octadeca-(9Z,11E,15Z)-trien-oic acid/Higrosforone F | C18 H30 O3 | 293.2122 | 293.2112 | 3.55 | - | - | - | - | Potamogeton lucens/Hygrophorus persoonii |
39 | (f) | C23 H46 O16 | 577.2713 | 577.2690 | 4.00 | - | - | - | - | - |
40 | (S)-cariolic acid/coronaric acid | C18 H32 O3 | 295.2279 | 295.2270 | 2.85 | - | - | - | - | Hernandia sonora/Chysantemun coronarium |
41 | (g) | C37 H28 O8 | 599.1711 | 599.1706 | 0.97 | - | - | - | - | - |
42 | Diterpenic quinone | C20 H26 O3 | 313.1809 | - | - | - | - | 313.1795 | 4.69 | - |
43 | Sesquiterpene | C15 H22 O4 | 265.1445 | - | - | - | - | 265.1459 | 5.01 | - |
44 | Chalcone | C25 H28 O5 | 407.1864 | 407.1858 | 1.41 | - | - | - | - | - |
45 | Lancilactone B | C30 H38 O4 | 461.2691 | - | - | 461.2694 | 0.74 | 461.2692 | 1.26 | Kadsura lancilimba |
46 | Diterpenic quinone | C20 H26 O3 | 313.1809 | - | - | 313.1808 | 0.53 | 313.1796 | 4.27 | - |
47 | Lancilactone B | C30 H38 O4 | 461.2697 | - | - | 461.2705 | 1.74 | - | - | Kadsura lancilimba |
48 | Diterpene | C20 H24 O3 | 311.1653 | - | - | - | - | 311.1641 | 3.78 | - |
49 | Flavonoid | C25 H28 O4 | 391.1915 | 391.1902 | 3.35 | - | - | - | - | - |
50 | Camaric acid | C35 H52 O6 | 567.3691 | - | - | - | - | 567.3688 | 0.23 | Lantana camara (aerial parts), Lantana cujabensis. |
51 | Flavonoid | C25 H28 O4 | 391.1915 | - | - | 391.1923 | 2.15 | - | - | - |
52 | Salviol | C20 H30 O2 | 301.2173 | - | - | 301.2172 | 0.48 | 301.2177 | 4.06 | [12] |
53 | Grandidone D | C40 H48 O8 | 655.3276 | - | - | - | - | 655.3278 | 0.30 | Plectranthus grandidentatus. |
54 | Flavonoid | C25 H26 O5 | 405.1707 | 405.1693 | 3.52 | - | - | - | - | - |
55 | Lespedezol B3 | C40 H36 O9 | 659.2287 | 659.2277 | 1.49 | - | - | - | - | Lespedeza homoloba. |
56 | Lantadene A/B | C35 H52 O5 | 551.3742 | 551.3721 | 3.75 | - | - | - | - | Lantana camara, Cardia multispicata. |
57 | Lancilactone B | C30 H38 O4 | 461.2684 | - | - | - | - | 461.2684 | 2.91 | Kadsura lancilimba |
58 | Anthron | C30 H36 O4 | 459.2541 | 459.2519 | 4.53 | - | - | - | - | - |
59 | (h) | C19 H30 O6 | 353.1969 | 353.1988 | 4.78 | - | - | - | - | - |
60 | (i) | C36 H60 O8 | 619.4215 | 619.4208 | 0.38 | - | - | - | - | - |
61 | (j) | C48 H82 O5 | 737.6089 | - | - | 737.6073 | 2.32 | - | - | - |
62 | (k) | C28 H44 O11 | 555.2811 | 555.2845 | 6.22 | 555.2847 | 6.62 | 555.2843 | 4.01 | - |
Compound | Importance |
---|---|
Flavanones | |
Pinocembrin | Naturally found in honey and propolis. Pinocembrin has shown anti-inflammatory, antioxidant, antiapoptotic, antimicrobial and vasodilator activity and antiproliferative properties [28]. There are reports of protective activity against cerebral ischemia. Likewise, there are several studies of application technologies and pharmaceutical use [29,30,31]. |
Naringenin | Antioxidant, anti-inflammatory, carbohydrate metabolism promoter and immune system modulator. Naringenin has high capacity to reduce plasma cholesterol level and useful for the treatment of hepatitis C [32]. Antimetastatic, naringenin stimulates DNA repair [33]. |
Eriodictyol | It is extracted from yerba santa (Eriodictyon californicum). Eriodictyol has potential use in Parkinsons treatment [9]. |
Flavonols | |
Galangin | It is found in high concentrations in Alpinia officinarum and Helichrysum aureonitens. Galangin has antiviral and antibacterial properties [9]. |
Quercetin | It is found in high concentrations in onions. Presents antihistamine activity and antimutagenic, proapoptotic, antiangiogenic, antimetastatic properties and is a modulator of epigenetic changes [34]. |
Flavones | |
Genkwanin | Antioxidant and antitumoral activities [35]. This is swine fever inhibitor [36]. |
Hispidulin | It has only been reported in Rosmarinus officinalis. Presents antihepatotoxic, cough suppressant, platelet aggregation inhibitor activities and anticancer properties in liver cells [37]. |
Apigenin 7-O-glucoside | Anti-inflammatory, antioxidant and antihemolysis [28]. Antimutagenic, pro-apoptotic, anti-angiogenic, anti-metastatic [38,39]. |
Flavanonols | |
Taxifolin | Protective action of vascular system, anticancer. Promotes formation and stabilization of collagen fibrils [9]. |
Chalcones | |
Phlorizin | It is found in high concentration in cultivated apples, their leaves and the bark of the roots from where it is obtained in crystalline form. It produces glycosuria in animals [9]. |
Compound | OH (mg/mL Ex) | OM (mg/mL Ex) | OC (mg/mL Ex) |
---|---|---|---|
Taxifolin | 0.060 ± 0.001 b | 0.063 ± 0.000 b | 0.073 ± 0.000 a |
Apigenin 7-O-glucoside | 0.015 ± 0.002 a | 0.009 ± 0.002 a | 0.008 ± 0.002 a |
Phlorizin | 0.278 ± 0.001 a | 0.097 ± 0.000 b | 0.099 ± 0.000 b |
Eriodictyol | 0.017 ± 0.001 c | 0.033 ± 0.023 b | 0.044 ± 0.030 a |
Quercetin | 0.014 ± 0.001 a | 0.015 ± 0.007 a | 0.018 ± 0.008 a |
Naringenin | 0.119 ± 0.000 b | 0.130 ± 0.001 a | 0.115 ± 0.001 b |
Hispidulin | 0.002 ± 0.000 b | 0.022 ± 0.003 a | 0.023 ± 0.004 a |
Pinocembrin | 3.231 + 0.390 a | 0.356 + 0.002 b | 0.020 + 0.002 b |
Genkwanin | 0.090 ± 0.001 a | 0.001 + 0.000 b | 0.104 + 0.005 a |
Galangin | 0.436 ± 0.020 c | 0.082 + 0.004 b | 0.003 + 0.000 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés-Chitala, M.d.C.; Flores-Martínez, H.; Orozco-Ávila, I.; León-Campos, C.; Suárez-Jacobo, Á.; Estarrón-Espinosa, M.; López-Muraira, I. Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity. Molecules 2021, 26, 702. https://doi.org/10.3390/molecules26030702
Cortés-Chitala MdC, Flores-Martínez H, Orozco-Ávila I, León-Campos C, Suárez-Jacobo Á, Estarrón-Espinosa M, López-Muraira I. Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity. Molecules. 2021; 26(3):702. https://doi.org/10.3390/molecules26030702
Chicago/Turabian StyleCortés-Chitala, María del Carmen, Héctor Flores-Martínez, Ignacio Orozco-Ávila, Carolina León-Campos, Ángela Suárez-Jacobo, Mirna Estarrón-Espinosa, and Irma López-Muraira. 2021. "Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity" Molecules 26, no. 3: 702. https://doi.org/10.3390/molecules26030702
APA StyleCortés-Chitala, M. d. C., Flores-Martínez, H., Orozco-Ávila, I., León-Campos, C., Suárez-Jacobo, Á., Estarrón-Espinosa, M., & López-Muraira, I. (2021). Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity. Molecules, 26(3), 702. https://doi.org/10.3390/molecules26030702