Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Treatment Sludge Characterisation
2.2. Removal of Emerging Pollutants from Water
3. Materials and Methods
3.1. Raw Material
3.2. Analytical Methods
3.2.1. WTS Characterisation
3.2.2. Stock Solution and Determination of the Emerging Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Sustainable Development Goal 6: Synthesis Report on Water and Sanitation; United Nations: New York, NY, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Nika, C.E.; Vasilaki, V.; Expósito, A.; Katsou, E. Water cycle and circular economy: Developing a circularity assessment framework for complex water systems. Water Res. 2020, 187, 116423. [Google Scholar] [CrossRef]
- Kakwani, N.S.; Kalbar, P.P. Review of circular economy in urban water sector: Challenges and opportunities in India. J. Environ. Manag. 2020, 271, 111010. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Ben, W.; Zhu, B.; Yuan, X.; Zhang, Y.; Yang, M.; Qiang, Z. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across china: Comparison of wastewater treatment processes. Water Res. 2018, 130, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Guillossou, R.; Le Roux, J.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Gasperi, J.; Rocher, V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 2019, 218, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Hamid, H.; Eskicioglu, C. Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Res. 2012, 46, 5813–5833. [Google Scholar] [CrossRef] [PubMed]
- Barreiros, L.; Queiroz, J.F.; Magalhães, L.M.; Silva, A.M.T.; Segundo, M.A. Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices—A review. Microchem. J. 2016, 126, 243–262. [Google Scholar] [CrossRef]
- Coello-Garcia, T.; Curtis, T.P.; Mrozik, W.; Davenport, R.J. Enhanced estrogen removal in activated sludge processes through the optimization of the hydraulic flow pattern. Water Res. 2019, 164, 114905. [Google Scholar] [CrossRef]
- Riva, F.; Zuccato, E.; Davoli, E.; Fattore, E.; Castiglioni, S. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in italy. J. Hazard. Mater. 2019, 361, 103–110. [Google Scholar] [CrossRef]
- Gosset, A.; Polomé, P.; Perrodin, Y. Ecotoxicological risk assessment of micropollutants from treated urban wastewater effluents for watercourses at a territorial scale: Application and comparison of two approaches. Int. J. Hyg. Environ. Health 2020, 224, 113437. [Google Scholar] [CrossRef]
- Díaz-Garduño, B.; Pintado-Herrera, M.G.; Biel-Maeso, M.; Rueda-Márquez, J.J.; Lara-Martín, P.A.; Perales, J.A.; Manzano, M.A.; Garrido-Pérez, C.; Martín-Díaz, M.L. Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration. Water Res. 2017, 119, 136–149. [Google Scholar] [CrossRef]
- Schröder, P.; Helmreich, B.; Škrbić, B.; Carballa, M.; Papa, M.; Pastore, C.; Emre, Z.; Oehmen, A.; Langenhoff, A.; Molinos, M.; et al. Status of Hormones and Painkillers in Wastewater Effluents across Several European States—Considerations for the EU Watch List Concerning Estradiols and Diclofenac. Environ. Sci. Pollut. Res. 2016, 23, 12835–12866. [Google Scholar] [CrossRef]
- Ting, Y.F.; Praveena, S.M. Sources, Mechanisms, and Fate of Steroid Estrogens in Wastewater Treatment Plants: A Mini Review. Environ. Monit. Assess. 2017, 189, 27. [Google Scholar] [CrossRef]
- Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int. 2017, 99, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Aris AZShamsuddin, A.S.; Praveena, S.M. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: A review. Environ. Int. 2014, 69, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Luján-Facundo, M.J.; Iborra-Clar, M.I.; Mendoza-Roca, J.A.; Alcaina-Miranda, M.I. Pharmaceutical compounds removal by adsorption with commercial and reused carbon coming from a drinking water treatment plant. J. Clean. Prod. 2019, 238. [Google Scholar] [CrossRef]
- Shah, A.I.; Din Dar, M.U.; Bhat, R.A.; Singh, J.P.; Singh, K.; Bhat, S.A. Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecol. Eng. 2020, 152, 105882. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs. new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef] [PubMed]
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Derome, C.; Buleté, A.; Vulliet, E.; Bressy, A.; Varrault, G.; Chebbo, G.; Rocher, V. Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. J. Environ. Chem. Eng. 2016. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Bhadra, B.N.; Jhung, S.H. Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon. Microporous Mesoporous Mater. 2017, 243, 221–228. [Google Scholar] [CrossRef]
- Ifelebuegu, A. Removal of steriod hormones by activated carbon adsorption—kinetic and thermodynamic studies. J. Environ. Prot. (Irvine) 2012, 3, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, T.; Iwasaki, S.; Kawashima, M.; Shinohara, O.; Abe, I. Adsorbability of estrone and 17β- estradiol in water onto activated carbon. Water Res. 2006, 40, 241–248. [Google Scholar] [CrossRef]
- Saha, B.; Karounou, E.; Streat, M. Removal of 17β-oestradiol and 17α-ethinyl oestradiol from water by activated carbons and hypercrosslinked polymeric phases. React. Funct. Polym. 2010, 70, 531–544. [Google Scholar] [CrossRef]
- Polloni-Silva, J.; Valdehita, A.; Fracácio, R.; Navas, J.M. Remediation efficiency of three treatments on water polluted with endocrine disruptors: Assessment by means of in vitro techniques. Chemosphere 2017, 173, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Nolasco, M.A.; Guimarães, K.O.; Cardoso, G. Determination and removal of endocrine disruptors in wastewater by activated carbon. J. Civ. Eng. Archit. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Westerhoff, P.; Snyder, S.A.; Esparza, M. HPLC-Fluorescence detection and adsorption of bisphenol a, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res. 2003. [Google Scholar] [CrossRef]
- Fuerhacker, M.; Dürauer, A.; Jungbauer, A. Adsorption isotherms of 17β-estradiol on granular activated carbon (gac). Chemosphere 2001. [Google Scholar] [CrossRef]
- Rowsell, V.F.; Pang, D.S.C.; Tsafou, F.; Voulvoulis, N. Removal of steroid estrogens from wastewater using granular activated carbon: Comparison between virgin and reactivated carbon. Water Environ. Res. 2009, 81, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, C.E.; Arayici, S. Adsorption of 17β-estradiol and estrone by activated carbon derived from sewage sludge. Desalin. Water Treat. 2016, 57, 2503–2514. [Google Scholar] [CrossRef]
- Ifelebuegu, A.O.; Lester, J.N.; Churchley, J.; Cartmell, E. Removal of an endocrine disrupting chemical (17α-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: Effects of activated carbon type and competitive adsorption. Environ. Technol. 2006, 27, 1343–1349. [Google Scholar] [CrossRef]
- Kovalova, L.; Knappe, D.R.U.; Lehnberg, K.; Kazner, C.; Hollender, J. Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ. Sci. Pollut. Res. 2013, 20, 3607–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, T.; Ahmad, K.; Alam, M. Sustainable management of water treatment sludge through 3′R’ concept. J. Clean. Prod. 2016, 1–13. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Utilization of sludge based adsorbents for the removal of various pollutants: A review. Sci. Total Environ. 2017, 578, 16–33. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Haynes, R.J. A comparison of water treatment sludge and red mud as adsorbents of as and se in aqueous solution and their capacity for desorption and regeneration. Water. Air. Soil Pollut. 2012, 223, 5563–5573. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Haynes, R.J. Water treatment sludge can be used as an adsorbent for heavy metals in wastewater streams. WIT Trans. Ecol. Environ. 2010, 140, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, M.K.; Gagnon, G.A. Adsorption of arsenic from a nova scotia groundwater onto water treatment residual solids. Water Res. 2010, 44, 5740–5749. [Google Scholar] [CrossRef]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manage. 2014, 133, 309–314. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, S.; Chen, H.; Huang, L.; Qiu, R. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Technol. 2013, 147, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yuan, B.; Zhang, B.; Hu, H.; Li, A.; Luo, G.; Yao, H. Removal of mercury from flue gas using sewage sludge-based adsorbents. J. Mater. Cycles Waste Manag. 2014, 16, 101–107. [Google Scholar] [CrossRef]
- Tong, D.S.; Liu, M.; Li, L.; Lin, C.X.; Yu, W.H.; Xu, Z.P.; Zhou, C.H. Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red g dye. Appl. Clay Sci. 2012, 70, 1–7. [Google Scholar] [CrossRef]
- Kayranli, B. Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chem. Eng. J. 2011, 173, 782–791. [Google Scholar] [CrossRef]
- Utomo, H.D.; Ong, X.C.; Lim, S.M.S.; Ong, G.C.B.; Li, P. Thermally processed sewage sludge for methylene blue uptake. Int. Biodeterior. Biodegrad. 2013, 85, 460–465. [Google Scholar] [CrossRef]
- Zou, J.; Dai, Y.; Wang, X.; Ren, Z.; Tian, C.; Pan, K.; Li, S.; Abuobeidah, M.; Fu, H. Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity. Bioresour. Technol. 2013, 142, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Monsalvo, V.M.; Mohedano, A.F.; Rodriguez, J.J. Adsorption of 4-chlorophenol by inexpensive sewage sludge-based adsorbents. Chem. Eng. Res. Des. 2012, 90, 1807–1814. [Google Scholar] [CrossRef]
- Boyer, T.H.; Persaud, A.; Banerjee, P.; Palomino, P. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water. Water Res. 2011, 45, 4803–4814. [Google Scholar] [CrossRef]
- Hu, Y.S.; Zhao, Y.Q.; Sorohan, B. Removal of glyphosate from aqueous environment by adsorption using water industrial residual. Desalination 2011, 271, 150–156. [Google Scholar] [CrossRef]
- Mohammed, W.T.; Rashid, S.A. Phosphorus removal from wastewater using oven-dried alum sludge. Int. J. Chem. Eng. 2012, 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Shih, Y.J.; Chang, C.C.; Huang, Y.H. Novel adsorbent of removal phosphate from TFT LCD wastewater. J. Taiwan Inst. Chem. Eng. 2013, 44, 61–66. [Google Scholar] [CrossRef]
- Ding, R.; Zhang, P.; Seredych, M.; Bandosz, T.J. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents. Water Res. 2012, 46, 4081–4090. [Google Scholar] [CrossRef] [PubMed]
- Clara, M.; Strenn, B.; Saracevic, E.; Kreuzinger, N. Adsorption of bisphenol-a, 17β-estradiole and 17α- ethinylestradiole to sewage sludge. Chemosphere 2004, 56, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Ahmad, K.; Alam, M. Sludge quantification at water treatment plant and its management scenario. Environ. Monit. Assess. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Babatunde, A.O.; Zhao, Y.Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Crit. Rev. Environ. Sci. Technol. 2007, 37, 129–164. [Google Scholar] [CrossRef]
- Muisa, N.; Nhapi, I.; Ruziwa, W.; Manyuchi, M.M. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review. J. Water Process. Eng. 2020. [Google Scholar] [CrossRef]
- Lee, Y.E.; Shin, D.C.; Jeong, Y.; Kim, I.T.; Yoo, Y.S. Pyrolytic valorization of water treatment residuals containing powdered activated carbon as multifunctional adsorbents. Chemosphere 2020, 252. [Google Scholar] [CrossRef]
- Bernardo, M.; Correa, C.R.; Ringelspacher, Y.; Becker, G.C.; Lapa, N.; Fonseca, I.; Esteves, I.A.A.C.; Kruse, A. Porous carbons derived from hydrothermally treated biogas digestate. Waste Manag. 2020, 105, 170–179. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhou, L.; Liu, Z.; Heng, J.Y.Y.; Chen, W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Sep. Purif. Technol. 2020, 253, 117536. [Google Scholar] [CrossRef]
- Salvador, F.; Martin-Sanchez, N.; Sanchez-Hernandez, R.; Sanchez-Montero, M.J.; Izquierdo, C. Regeneration of carbonaceous adsorbents. Part. I: Thermal regeneration. Microporous Mesoporous Mater. 2015, 202, 259–276. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.Q.; Babatunde, A.O.; Wang, L.; Ren, Y.X.; Han, Y. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Sep. Purif. Technol. 2006, 51, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Tomeczek, J.; Palugniok, H. Kinetics of mineral matter transformation during coal combustion. Fuel 2002, 81, 1251–1258. [Google Scholar] [CrossRef]
- Auriol, M.; Filali-Meknassi, Y.; Tyagi, R.D.; Adams, C.D.; Surampalli, R.Y. Endocrine disrupting compounds removal from wastewater, a new challenge. Process. Biochem. 2006, 41, 525–539. [Google Scholar] [CrossRef]
- Bodzek, M.; Dudziak, M. Removal of natural estrogens and synthetic compounds considered to be endocrine disrupting substances (EDS) by coagulation and nanofiltration. Polish J. Environ. Stud. 2006, 15, 35–40. [Google Scholar]
- Kulandaivelu, J.; Choi, P.M.; Shrestha, S.; Li, X.; Song, Y.; Li, J.; Sharma, K.; Yuan, Z.; Mueller, J.F.; Wang, C.; et al. Assessing the removal of organic micropollutants from wastewater by discharging drinking water sludge to sewers. Water Res. 2020, 181, 115945. [Google Scholar] [CrossRef]
- Qureshi, U.A.; Hameed, B.H.; Ahmed, M.J. Adsorption of endocrine disrupting compounds and other emerging contaminants using lignocellulosic biomass-derived porous carbons: A review. J. Water Process. Eng. 2020, 38, 101380. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Buleté, A.; Vulliet, E.; Deshayes, S.; Zedek, S.; Mirande-Bret, C.; Eudes, V.; Bressy, A.; et al. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Sci. Total Environ. 2016, 542, 983–996. [Google Scholar] [CrossRef] [Green Version]
- Krahnstöver, T.; Wintgens, T. Separating powdered activated carbon (PAC) from wastewater—Technical process options and assessment of removal efficiency. J. Environ. Chem. Eng. 2018, 5744–5762. [Google Scholar] [CrossRef]
- Guillossou, R.; Le Roux, J.; Mailler, R.; Morlay, C.; Vulliet, E.; Nauleau, F.; Rocher, V.; Gasperi, J. Influence of the properties of 7 micro-grain activated carbons on organic micropollutants removal from wastewater effluent. Chemosphere 2020, 243, 125306. [Google Scholar] [CrossRef]
- ASTM D1762-84(2013). Standard Test Method for Chemical Analysis of Wood Charcoal; ASTM International: West Conshohocken, PA, USA, 2013. Available online: www.astm.org (accessed on 7 December 2020).
- Gaffney, V.D.J.; Cardoso, V.V.; Rodrigues, A.; Ferreira, E.; Benoliel, M.J.; Almeida, C.M.M. Análise de fármacos em águas por SPE-UPLC-ESI-MS/MS. Quim. Nova 2014, 37, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, V.D.J.; Almeida, C.M.M.; Rodrigues, A.; Ferreira, E.; Benoliel, M.J.; Cardoso, V.V. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 2015, 72, 199–208. [Google Scholar] [CrossRef] [PubMed]
Parameter | WTS1 | WTS2 |
---|---|---|
C (w/w%) | 24.31 | 34.09 |
N (w/w%) | 0.24 | 0.46 |
H (w/w%) | 2.64 | 2.92 |
S (w/w%) | 0.16 | 0.18 |
O (w/w%) * | 29.78 | 31.49 |
Ash (w/w%) | 42.9 ± 0.2 | 30.8 ± 0.8 |
Surface area (m2/g) | 127 | 318 |
Vtotal (cm3/g) | 0.065 | 0.161 |
pHpzc | 11.29 | 7.46 |
Mineral Composition (mg/kg) | WTS1 | WTS2 |
---|---|---|
Al | 53,000 ± 800 | 54,450 ± 5 350 |
As | 37.4 ± 0.9 | 65.6 ± 7.9 |
Ca | 115,350 ± 1650 | 6429.54 ± 733.41 |
Cd | n.d. | n.d. |
Cr | n.d. | n.d. |
Cu | 4.1 ± 0.4 | 10.5 ± 1.1 |
Fe | 6890.5 ± 502.9 | 9442.5 ± 1328.5 |
Hg | n.d. | n.d. |
K | 275.8 ± 10.7 | 119.9 ± 13.0 |
Mg | 5424.0 ± 112.0 | 2280.3 ± 458.7 |
Mn | 468.6 ± 19.0 | 150.4 ± 14.1 |
Mo | 5.3 ± 0.1 | 5.2 ± 0.6 |
Na | 16.1 ± 0.3 | 5.4 ± 0.5 |
Ni | n.d. | n.d. |
P | 33,817.6 ± 588.5 | 34,947.3 ± 4242.3 |
Pb | 13.1 ± 0.2 | 14.1 ± 2.6 |
Sb | 37.0 ± 0.6 | 37.4 ± 3.8 |
Se | 38.4 ± 0.2 | 41.3 ± 3.8 |
Zn | 21.8 ± 1.4 | 15.5 ± 1.4 |
Compound | Initial Concentration (ng/L) | WTS1 | WTS2 |
---|---|---|---|
Final Concentration (ng/L) | Final Concentration (ng/L) | ||
E2 | 600 ± 200 (500 (2)) | 60 ± 20 | <LOQ (1) |
400 ± 100 (350 (2)) | 80 ± 30 | <LOQ (1) | |
300 ± 100 (200 (2)) | <LOQ (1) | <LOQ (1) | |
EE2 | 600 ± 200 (500 (2)) | 150 ± 60 | <LOQ (1) |
400 ± 100 (350 (2)) | 170 ± 70 | <LOQ (1) | |
300 ± 100 (200 (2)) | 100 ± 40 | <LOQ (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, R.; Sousa, D.; Bernardo, M.; Matos, I.; Fonseca, I.; Vale Cardoso, V.; Neves Carneiro, R.; Silva, S.; Fontes, P.; Daam, M.A.; et al. Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules 2021, 26, 1010. https://doi.org/10.3390/molecules26041010
Dias R, Sousa D, Bernardo M, Matos I, Fonseca I, Vale Cardoso V, Neves Carneiro R, Silva S, Fontes P, Daam MA, et al. Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules. 2021; 26(4):1010. https://doi.org/10.3390/molecules26041010
Chicago/Turabian StyleDias, Rita, Diogo Sousa, Maria Bernardo, Inês Matos, Isabel Fonseca, Vitor Vale Cardoso, Rui Neves Carneiro, Sofia Silva, Pedro Fontes, Michiel A. Daam, and et al. 2021. "Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants" Molecules 26, no. 4: 1010. https://doi.org/10.3390/molecules26041010
APA StyleDias, R., Sousa, D., Bernardo, M., Matos, I., Fonseca, I., Vale Cardoso, V., Neves Carneiro, R., Silva, S., Fontes, P., Daam, M. A., & Maurício, R. (2021). Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules, 26(4), 1010. https://doi.org/10.3390/molecules26041010