Optimization of the Vacuum Microwave Assisted Extraction of the Natural Polyphenols and Flavonoids from the Raw Solid Waste of the Pomegranate Juice Producing Industry at Industrial Scale
Abstract
:1. Introduction
2. Results
2.1. Predictive Modeling and Optimization of the Extracted Amount of PP Total Polyphenols
- A = Microwave power (W) = 4961.07 W
- B = Water to raw PP ratio = 29.90
- C = Extraction Time (min) = 119.53
- Maximum TPE (mg GAE 2 kg−1 raw PP) = 138,404 mg GAE 2 kg−1 raw PP or equivalently: 69,202 mg GAE kg−1 of raw PP.
2.2. Predictive Modeling and Optimization of the Extracted Amount of PP Total Flavonoids (TFE)
- A = Microwave power (W) = 4147.76 W
- B = Water to raw PP ratio= 19.32
- C = t= Extraction Time (min) = 63.32 min
- Maximum TFE (mg QE 2 kg−1 raw PP pomace) = 14,479.3 mg QE 2 kg−1 raw PP pomace or equivalently: 7239.65 mg QE kg−1 of raw PP pomace.
- A = Microwave power (W) = 3807.85 W
- B = Water to raw PP ratio = 21.68
- C = Extraction Time (min) = 64.5 min.
- Optimum of PP total polyphenols = 126,224 mg GAE 2 kg−1 raw PP = 63,112 mg GAE kg−1 raw PP
- Optimum of PP total flavonoids = 13,799.2 mg GAE 2 kg−1 raw PP = 6899.6 mg QE kg−1 raw PP
- 191,248.5 mg GAE kg−1 dried PP and 20,907.88 mg QE kg−1 dried PP respectively or expressed as % of the individual optima of PP Total polyphenols and PP total flavonoids 91.2% and 95.3%.
2.3. Economic Optimization of the PP VMA Extraction at an Industrial Scale and Determination of the Corresponding Optimum Extraction Condition Values to Obtain the Maximum Rate of Extraction (Productiviy) for PP Total Polyphenols and PP Total Flavonoids, Respectively
2.3.1. Maximization of the Rate of the Extraction (Productivity) of Raw PP Total Polyphenols
- A = Microwave power (W) = 2048.62 W
- B = Water to raw PP ratio = 23.11
- C = Extraction Time (min) = 15.04 min
- Value of maximum rate of PP total polyphenols VMAE = 3782.67 mg GAE kg−1 min−1 raw PP
2.3.2. Maximization of the Rate of the Extraction (Productivity) of Raw PP Total Flavonoids
- A = Microwave power (W) = 4008.62 W
- B = Water to raw PP ratio = 18.08
- C = t = Extraction Time (min) = 15.29 min
- Value of maximum Rate of PP total flavonoids VMAE = 339.869 mg QE kg−1 raw pomace min−1
2.4. Statistical Validation of the Mathematical Models Developed to Predict the Extracted Amount of PP Total Polyphenols and PP Total Flavonoids by Aqueous VMAE
3. Discussion
3.1. The Effect of Process Parameters on the Extracted Amounts of PP Total Polyphenols and Flavonoids by Industrial Scale VMAE Extraction
3.2. The Effect of Process Parameters on the Productivities of the Industrial Scale VMAE Extraction of Raw PP Total Polyphenols
3.3. Comparison of the Optimized Values of Extracted PP Total Polyphenols and Flavonoids of the Present Research Work with the Corresponding Results of Previous Works
3.4. Summary of the Points of Novelty of the Present Research Work
3.5. Comparison of the Models Derived in the Present Work with Models Suggested in the Literature
4. Materials and Methods
4.1. Pomegranate Pomace
4.2. Description of the Microwave Extractor and of the Extraction Methodology
4.3. Total Polyphenols Determination Method
sample at 765 nm/0.001
4.4. Total Flavonoids Determination Method
sample at 420 nm/0.0055
4.5. Chemicals Used for Antioxidant Tests
4.6. Modeling and Optimization Methodology
- Modeling and optimization of total pomegranate pomace polyphenol extraction.
- Modeling and optimization of total pomegranate pomace flavonoids extraction.
- Simultaneous optimization of total pomegranate pomace polyphenols, total flavonoids.
- Modeling and optimization (maximization) of the rate extraction of pomegranate pomace polyphenols to achieve the maximum productivity (economic optimum)
- Modeling and optimization (maximization) of the rate of extraction of pomegranate pomace flavonoids to achieve the maximum productivity (economic optimum)
4.7. Determination Method of the Extraction Rates of PP Total Polyphenols and Flavonoids
(Amount of extracted OP total polyphenols in mg GAE)/(OP mass in kg) ×
(t + tdelay in min)
(Amount of extracted OP total flavonoids in mg GAE)/(OP mass in kg) ×
(t+ t delay in min)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
CUAE | Conventional Ultrasound-Assisted Extraction |
DM | Dry Matters. |
GAE | Gallic Acid Equivalents |
PP | Pomegranate Pomace |
PPL | Pomegranate Peel |
PUAE | Pulsed Ultrasound-Assisted Extraction |
QE | Quercetin Equivalents |
RSM | Response Surface Methodology |
TPE | Amount of extracted Total PP polyphenols |
TFE | Amount of extracted Total PP flavonoids |
VMAE | Vacuum Microwave-Assisted Extraction |
VMA | Vacuum Microwave-Assisted |
References
- Market Intelligence Report for Pomegranates. Available online: https://agriexchange.apeda.gov.in/Weekly_eReport/Pomegranate_Report.pdf (accessed on 3 February 2020).
- Pan, Z.; Zhang, R.; Zicari, S. Integrated Processing Technologies for Food and Agricultural By-Products; Academic Press: Cambridge, MA, USA, 2019; pp. 182–194. [Google Scholar]
- Petrotos, K.B.; Giavasis, I.; Gerasopoulos, K.; Mitsagga, C.; Papaioannou, C.; Gkoutsidis, P. Mathematical modeling and optimization of the microwave assisted extraction of the solid waste of the pomegranate juice industry. J. Food Sci. Eng. 2020, 10, 55–81. [Google Scholar] [CrossRef]
- Damian, C. Valorization of pomegranate (Punica granatum L.) By-products. Chem. Res. J. 2018, 3, 40–44. [Google Scholar]
- Wang, Z.; Pan, Z.; Ma, H.; Atungulu, G.G. Extract of phenolics from pomegranate peels. Open Food Sci. J. 2011, 5, 17–25. [Google Scholar] [CrossRef]
- Vlachojannis, C.; Zimmermann, B.F.; Chrubasik-Hausmann, S. Efficacy and safety of pomegranate medicinal products for cancer. Evid. Based Complement. Altern. Med. 2015, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Syed, D.N.; Afaq, F.; Mukhtar, H. Pomegranate derived products for cancer chemoprevention. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2007; pp. 377–385. [Google Scholar]
- Lansky, E.P. Beware of pomegranates bearing 40% ellagic acid. J. Med. Food 2006, 9, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Fischer, U.A.; Dettmann, J.S.; Reinhold, C.; Dietmar, R.K. Impact of processing and storage on the phenolic profiles and contents of pomegranate (Punica granatum L.) juices. Eur. Food Res. Technol. 2011, 233, 797–816. [Google Scholar] [CrossRef]
- Saad, H.; Charrier-El Bouhtoury, F.; Pizzi, A.; Rode, K.; Charrier, B.; Ayed, N. Characterization of pomegranate peels tannin extractives. Ind. Crops Prod. 2012, 40, 239–246. [Google Scholar] [CrossRef]
- Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res. 2012, 6, 4724–4730. [Google Scholar] [CrossRef]
- Farag, R.S.; Abdel-Latif, M.S.; Emam, S.S.; Tawfeek, L.S. Phytochemical screening and polyphenol constituents of pomegranate peels and leave juices. Agric. Soil Sci. 2014, 1, 86–93. [Google Scholar]
- Dimou, C.; Koutelidakis, A.E. From Pomegranate Processing By-Products to Innovative value added Functional Ingredients and Bio-Based Products with Several Applications in Food Sector. BAOJ Biotechnol. 2017, 3, 1–7. [Google Scholar]
- Leahu, A.; Oroian, M.; Ropciuc, S. Total phenolics of fresh and frozen minor berries and their antioxidant properties. Food Environ. Saf. J. 2014, 1, 87–93. [Google Scholar]
- Ropciuc, S. Physico-chemical and antioxidant properties of two medicinal wild plants grown in Moldova region. Sci. Pap. Anim. Sci. Biotechnol. 2015, 48, 382–388. [Google Scholar]
- Skenderidis, P.; Mitsagga, C.; Giavasis, I.; Petrotos, K.; Lampakis, D.; Leontopoulos, S.; Hadjichristodoulou, C.; Tsakalof, A. The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels. J. Food Meas. Charact. 2019, 13, 2017–2031. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Licciardello, F.; Siracusa, L.; Muratore, G.; Hamdi, M.; Restuccia, C. Antimicrobial and antioxidant features of ‘Gabsi’ pomegranate peel extracts. Ind. Crops Prod. 2018, 111, 345–352. [Google Scholar] [CrossRef]
- Çam, M.; Erdoğan, F.; Aslan, D.; Dinç, M. Enrichment of Functional Properties of Ice Cream with Pomegranate By-products. J. Food Sci. 2013, 78, C1543–C1550. [Google Scholar] [CrossRef] [PubMed]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int. J. Food Sci. Technol. 2010, 45, 216–222. [Google Scholar] [CrossRef]
- Naveena, B.M.; Sen, A.R.; Vaithiyanathan, S.; Babji, Y.; Kondaiah, N. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Sci. 2008, 80, 1304–1308. [Google Scholar] [CrossRef] [PubMed]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Iqbal, S.; Haleem, S.; Akhtar, M.; Zia-ul-Haq, M.; Akbar, J. Efficiency of pomegranate peel extracts in stabilization of sunflower oil under accelerated conditions. Food Res. Int. 2008, 41, 194–200. [Google Scholar] [CrossRef]
- Topuz, O.K.; Yerlikaya, P.; Ucak, I.; Gumus, B.; Büyükbenli, H.A. Effects of olive oil and olive oil-pomegranate juice sauces on chemical, oxidative and sensorial quality of marinated anchovy. Food Chem. 2014, 154, 63–70. [Google Scholar] [CrossRef]
- Kumudavally, K.V.; Tabassum, A.; Radhakrishna, K.; Bawa, A.S. Hydrolysable tannins of pomegranate peel have the capacity of efficiently inhibiting lipid oxidation in foods. Indian Pat IN 2007DE01607A, 2009. [Google Scholar]
- Devatkal, S.K.; Thorat, P.R.; Manjunatha, M.; Anurag, R.K. Comparative antioxidant effect of aqueous extracts of curry leaves, fenugreek leaves and butylated hydroxytoluene in raw chicken patties. J. Food Sci. Technol. 2012, 49, 781–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, J.; Alarcón-Aguilar, F.; Roman-Ramos, R.; Campos-Sepulveda, E.; Reyes Vega, M.L.; Boone-Villa, V.D.; Jasso-Villagómez, E.I.; Aguilar, C.N. Quality and antioxidant properties of a reduced-sugar pomegranate juice jelly with an aqueous extract of pomegranate peels. Food Chem. 2013, 136, 109–115. [Google Scholar] [CrossRef]
- Wasila, H.; Li, X.; Liu, L.; Ahmad, I.; Ahmad, S. Peel effects on phenolic composition, antioxidant activity, and making of pomegranate juice and wine. J. Food Sci. 2013, 78, C1166–C1172. [Google Scholar] [CrossRef] [PubMed]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Rongai, D.; Pulcini, P.; Di Lernia, G.; Nota, P.; Preka, P.; Milano, F. Punicalagin Content and Antifungal Activity of Different Pomegranate (Punica ganatum L.) Genotypes. Horticulturae 2019, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Rongai, D.; Sabatini, N.; Pulcini, P.; Di Marco, C.; Storchi, L.; Marrone, A. Effect of pomegranate peel extract on shelf life of 1 fresh strawberries: Phytochemical analysis, antifungal activity and possible mechanisms involved. J. Food Sci. Technol. 2018, 55, 2702–2711. [Google Scholar] [CrossRef]
- Romeo, F.V.; Ballistreri, G.; Fabroni, S.; Pangallo, S.; Nicosia, M.G.; Schena, L.; Rapisarda, P. Chemical characterization of different sumac and pomegranate extracts effective against botrytis cinerea rots. Molecules 2015, 20, 11941–11958. [Google Scholar] [CrossRef] [Green Version]
- Fourati, M.; Smaoui, S.; Ennouri, K.; Hlima, H.B.; Elhadef, K.; Chakchouk-Mtibaa, A.; Sellem, I.; Mellouli, L. Multiresponse Optimization of Pomegranate Peel Extraction by Statistical versus Artificial Intelligence: Predictive Approach for Foodborne Bacterial Pathogen Inactivation. Evid. Based Complement. Altern. Med. 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- De Castro, M.D.L.; Castillo-Peinado, L.S. Microwave-Assisted Extraction of Food Components. In Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification, 1st ed.; Knoerzer, K., Juliano, P., Smithers, G., Eds.; Woodhead Publishing: Duxford, UK, 2016; pp. 57–110. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.B.; Giavasis, I. Optimization of Vacuum Microwave-Assisted Extraction of Pomegranate Fruits Peels by the Evaluation of Extracts’ Phenolic Content and Antioxidant Activity. Foods 2020, 9, 1655. [Google Scholar] [CrossRef]
- Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N. Optimization of Nanocomposite Modified Asphalt Mixtures Fatigue Life using Response Surface Methodology. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012064. [Google Scholar] [CrossRef] [Green Version]
- Magangana, T.P.; Makunga, N.P.; Fawole, O.A.; Opara, U.L. Processing Factors Affecting the Phytochemical and Nutritional Properties of Pomegranate (Punica granatum L.) Peel Waste: A Review. Molecules 2020, 25, 4690. [Google Scholar] [CrossRef] [PubMed]
- Fawole, O.A.; Makunga, N.P.; Opara, U.L. Antibacterial, antioxidant and tyrosine-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement. Altern. Med. 2012, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2012, 19, 365–372. [Google Scholar] [CrossRef]
- Castro-López, A.; Ventura-Sobrevilla, J.M.; González-Hernández, M.D.; Rojas, R.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Martínez-Ávila, G.C.G. Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chem. 2017, 237, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, B.; Li, L.; Zhu, X. Microwave-assisted extraction and antioxidant activity of total phenolic compounds from pomegranate peel. J. Med. Plants Res. 2011, 5, 1004–1011. [Google Scholar] [CrossRef]
- Shiban, M.S.; Al-Otaibi, M.M.; Al-Zoreky, N.S. Antioxidant activity of pomegranate (Punica granatum L.) fruit peels. Food Nutr. Sci. 2012, 3, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Nag, S.; Sit, N. Optimization of ultrasound assisted enzymatic extraction of polyphenols from pomegranate peels based on phytochemical content and antioxidant property. J. Food Meas. Charact. 2018, 12, 1734–1743. [Google Scholar] [CrossRef]
- Yasoubi, P.; Barzegar, M.; Sahari, M.A.; Azizi, M.H. Total phenolic contents and antioxidant activity of pomegranate (Punica granatum L.) peel extracts. J. Agric. Sci. Technol. 2007, 9, 35–42. [Google Scholar]
- Mushtaq, M.; Sultana, B.; Anwar, F.; Adnan, A.; Rizvi, S.S.H. Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. J. Supercrit. Fluids 2015, 104, 122–131. [Google Scholar] [CrossRef]
- Kazemi, M.; Karim, R.; Mirhosseini, H.; Hamid, A.A. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids. Food Chem. 2016, 206, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, I.G.; Maran, J.P.; Surya, S.M.; Naganyashree, S.; Shivamathi, C.S. Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int. J. Biol. Macromol. 2015, 72, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.C.; Araujo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food Bioprocess Technol. 2017, 10, 886–900. [Google Scholar] [CrossRef]
- Wijngaard, H.; Hossain, M.B.; Rai, D.P.; Brunton, N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 2012, 46, 505–513. [Google Scholar] [CrossRef]
- Hartati, I.; Kurniasaria, L.; Anasb, Y. Mathematical Model of the Hydrotropic Microwave Assisted Extraction of Anti Malarial Agent from Andrographis paniculata. Procedia Chem. 2015, 14, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Zghaibi, N.; Omar, R.; Kamal, S.M.M.; Biak, D.R.A.; Harun, R. Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp. Molecules 2020, 25, 784. [Google Scholar] [CrossRef] [Green Version]
- Susanti, D.Y.; Sediawan, W.B.; Fahrurrozi, M.; Hidayat, M. A Mechanistic Model of Mass Transfer in the Extraction of Bioactive Compounds from Intact Sorghum Pericarp. Processes 2019, 7, 837. [Google Scholar] [CrossRef] [Green Version]
- Koturevic, B.; Adnadjevic, B.; Jovanovic, J. Isothermal green microwave-assisted extraction of caffeine from guarana: A kinetic study. Green Process. Synth. 2017, 6, 555–563. [Google Scholar] [CrossRef]
- Özbek, H.N.; Yanık, D.K.; Fadıloglu, S.; Gögüs, F. Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Sep. Sci. Technol. 2020, 55, 289–299. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Dou, H.; He, Z.; Wu, H.; Sun, Z.; Wang, H.; Huang, X.; Ma, Y. Optimization of Nobiletin Extraction Assisted by Microwave from Orange Byproduct Using Response Surface Methodology. Food Sci. Biotechnol. 2013, 22, 153–159. [Google Scholar] [CrossRef]
- Xu, B.; Tao, R.; Huang, Z.; Zhu, D.; Liu, J. Process Optimization of Microwave-Assisted Extraction of Flavonoids from Salvia Plebeian Using Response Surface Methodology. J. Phys. Conf. Ser. 2020, 1578, 012222. [Google Scholar] [CrossRef]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef] [PubMed]
- Petrotos, K.; Giavasis, I.; Gerasopoulos, K.; Mitsagga, C.; Papaioannou, C.; Gkoutsidis, P. Optimization of Vacuum-Microwave-Assisted Extraction of Natural Polyphenols and Flavonoids from Raw Solid Waste of the Orange Juice Producing Industry at Industrial Scale. Molecules 2021, 26, 246. [Google Scholar] [CrossRef]
- Ganesan, V.; Gurumani, V.; Kunjiappan, S.; Panneerselvam, T.; Somasundaram, B.; Kannan, S.; Chowdhury, A.; Saravanan, G.; Bhattacharjee, C. Optimization and analysis of microwave-assisted extraction of bioactive compounds from Mimosa pudica L. using RSM & ANFIS modeling. J. Food Meas. Charact. 2018, 12, 228–242. [Google Scholar] [CrossRef]
- Baskararaj, S.; Theivendren, P.; Palanisamy, P.; Kannan, S.; Pavadai, P.; Arunachalam, S.; Sankaranarayanan, M.; Mohan, U.P.; Ramasamy, L.; Kunjiappan, S. Optimization of bioactive compounds extraction assisted by microwave parameters from Kappaphycus alvarezii using RSM and ANFIS modeling. J. Food Meas. Charact. 2019, 13, 2773–2789. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of Total Phenolics. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. I1.1.1–I1.1.8. [Google Scholar]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evid. Based Complement. Altern. Med. 2014, 9. [Google Scholar] [CrossRef]
A/A | Microwave Power (W) | Water to Solid Ratio (***) | Extraction Time (min) | * Amount of TPE (mg GAE) × 10−3 | ** Amount of TFE (mg QE) × 10−3 | Cor. Rate of Extraction of PP TP (mg GAE kg−1 min−1) | Cor. Rate of Extraction of PP TF (mg QE kg−1 min−1) | Calculated Value of TPE/t (mg GAE/min) | Calculated Value of TFE/t2 (mg QE/min2) |
---|---|---|---|---|---|---|---|---|---|
1 | 4000 | 20 | 15 | 108.800 ± 2.300 | 14.1333 ± 0.432 | 3219.09 | 322.113 | 7253.33 | 62.8147 |
2 | 4000 | 20 | 30 | 129.600 ± 1.867 | 14.497 ± 0.334 | 2577.4 | 291.702 | 4320 | 16.1078 |
3 | 4000 | 20 | 45 | 124.000 ± 1.218 | 14.9333 ± 0.354 | 1963.17 | 225.649 | 2755.56 | 7.37447 |
4 | 4000 | 20 | 60 | 138.400 ± 1.879 | 14.9091 ± 0.234 | 1582.65 | 181.49 | 2306.67 | 4.14142 |
5 | 4000 | 20 | 75 | 128.800 ± 1.216 | 15.4424 ± 0.165 | 1336.32 | 155.27 | 1717.33 | 2.74532 |
6 | 4000 | 20 | 90 | 131.200 ± 1.934 | 15.8061 ± 0.765 | 1159.62 | 133.708 | 1457.78 | 1.95137 |
7 | 4000 | 20 | 120 | 125.600 ± 2.300 | 14.0606 ± 0.453 | 855.954 | 814.271 | 1046.67 | 0.976431 |
8 | 2000 | 30 | 15 | 106.800 ± 1.800 | 6.36364 ± 0.545 | 3317.12 | 149.143 | 7120 | 28.2828 |
9 | 2000 | 30 | 30 | 103.200 ± 1.945 | 6.54545 ± 0.765 | 2427.3 | 133.718 | 3440 | 7.27272 |
10 | 2000 | 30 | 45 | 105.600 ± 2.310 | 6.800 ± 0.345 | 1741.18 | 100.382 | 2346.67 | 3.35802 |
11 | 2000 | 30 | 60 | 104.400 ± 3.200 | 7.56364 ± 0.432 | 1321.94 | 79.934 | 1740 | 2.10101 |
12 | 2000 | 30 | 75 | 99.600 ± 1.547 | 5.67273 ± 0.254 | 1072.43 | 670.988 | 1328 | 1.00849 |
13 | 2000 | 30 | 90 | 100.800 ± 1.675 | 5.34545 ± 0.435 | 912.191 | 571.488 | 1120 | 0.659932 |
14 | 2000 | 30 | 120 | 88.800 ± 1.189 | 5.01818 ± 0.276 | 680.084 | 334.385 | 740 | 0.348485 |
15 | 6000 | 30 | 45 | 106.800 ± 2.320 | 5.74545 ± 0.453 | 2068.41 | 970.991 | 2373.33 | 2.83726 |
16 | 6000 | 30 | 60 | 126.000 ± 2.114 | 6.72727 ± 0.348 | 1741.18 | 830.116 | 2100 | 1.86869 |
17 | 6000 | 30 | 75 | 150.000 ± 3.998 | 7.01818 ± 0.543 | 1520.59 | 75.279 | 2000 | 1.24768 |
18 | 6000 | 30 | 90 | 135.600 ± 2.645 | 7.56364 ± 0.634 | 1377.02 | 711.768 | 1506.67 | 0.933783 |
19 | 6000 | 30 | 120 | 117.600 ± 1.645 | 6.83636 ± 0.386 | 1256.2 | 684.196 | 980 | 0.474747 |
20 | 4000 | 30 | 15 | 100.800 ± 2.399 | 2.14545 ± 0.123 | 974.785 | 514.036 | 6720 | 9.53533 |
21 | 4000 | 30 | 30 | 103.200 ± 3.129 | 3.16364 ± 0.164 | 3350.46 | 129.658 | 3440 | 3.51516 |
22 | 4000 | 30 | 45 | 127.200 ± 2.765 | 4.29091 ± 0.435 | 2709.54 | 122.209 | 2826.67 | 2.11897 |
23 | 4000 | 30 | 60 | 118.800 ± 2.477 | 6.50909 ± 0.225 | 2105.52 | 983.941 | 1980 | 1.80808 |
24 | 4000 | 30 | 75 | 123.600 ± 1.276 | 7.27273 ± 0.321 | 1714.47 | 831.961 | 1648 | 1.29293 |
25 | 4000 | 30 | 90 | 139.200 ± 2.865 | 6.32727 ± 0.342 | 1462.17 | 748.261 | 1546.67 | 0.781144 |
26 | 4000 | 30 | 120 | 136.800 ± 2.654 | 6.03636 ± 0.264 | 1294.46 | 670.648 | 1140 | 0.419192 |
27 | 2000 | 10 | 15 | 60.800 ± 1.288 | 4.41212 ± 0.114 | 984.582 | 446.882 | 4053.33 | 19.6094 |
28 | 2000 | 10 | 30 | 70.400 ± 1.382 | 5.27273 ± 0.213 | 2094.04 | 113.852 | 2346.67 | 5.85859 |
29 | 2000 | 10 | 45 | 74.800 ± 1.657 | 4.65455 ± 0.221 | 1578.98 | 101.062 | 1662.22 | 2.29854 |
30 | 2000 | 10 | 60 | 73.200 ± 1.764 | 4.53333 ± 0.432 | 1167.15 | 758.669 | 1220 | 1.25926 |
31 | 2000 | 10 | 75 | 71.200 ± 2.005 | 4.52121 ± 0.276 | 913.11 | 598.117 | 949.333 | 0.803771 |
32 | 2000 | 10 | 90 | 66.800 ± 1.976 | 4.38788 ± 0.206 | 763.321 | 496.584 | 742.222 | 0.541714 |
33 | 2000 | 10 | 120 | 75.600 ± 1.645 | 4.33939 ± 0.321 | 669.044 | 419.156 | 630 | 0.301347 |
34 | 4000 | 10 | 15 | 70.400 ± 2.134 | 4.72727 ± 0.437 | 529.65 | 242.814 | 4693.33 | 21.0101 |
35 | 4000 | 10 | 30 | 80.800 ± 1.287 | 5.38182 ± 0.239 | 2482.08 | 215.919 | 2693.33 | 5.9798 |
36 | 4000 | 10 | 45 | 91.200 ± 2.345 | 8.4000 ± 0.423 | 1947.95 | 187.867 | 2026.67 | 4.14815 |
37 | 4000 | 10 | 60 | 88.800 ± 3.212 | 7.4303 ± 0.243 | 1483.74 | 138.238 | 1480 | 2.06397 |
38 | 4000 | 10 | 75 | 92.000 ± 2.345 | 6.54545 ± 0.431 | 1172.46 | 105.763 | 1226.67 | 1.16364 |
39 | 4000 | 10 | 90 | 82.400 ± 1.765 | 5.13939 ± 0.164 | 980.123 | 869.355 | 915.556 | 0.634493 |
40 | 4000 | 10 | 120 | 72.000 ± 1.745 | 4.89697 ± 0.153 | 833.68 | 713.544 | 600 | 0.340067 |
41 | 6000 | 20 | 15 | 72.800 ± 1.123 | 7.0303 ± 0.432 | 603.181 | 392.405 | 4853.33 | 31.2458 |
42 | 6000 | 20 | 30 | 80.000 ± 3.234 | 7.46667 ± 0.234 | 2291.25 | 241.026 | 2666.67 | 8.2963 |
43 | 6000 | 20 | 45 | 93.600 ± 2.314 | 7.41818 ± 0.179 | 1947.95 | 222.679 | 2080 | 3.6633 |
44 | 6000 | 20 | 60 | 97.600 ± 1.156 | 8.55758 ± 0.297 | 1591.32 | 173.987 | 1626.67 | 2.37711 |
45 | 6000 | 20 | 75 | 101.600 ± 2.165 | 11.2727 ± 0.439 | 1321.94 | 144.2 | 1354.67 | 2.00404 |
46 | 6000 | 20 | 90 | 92000 ± 2576 | 8.24242 ± 0.275 | 1150.19 | 125.86 | 1022.22 | 1.01758 |
47 | 6000 | 20 | 120 | 94.400 ± 1.346 | 7.46667 ± 0.437 | 998.096 | 110.571 | 786.667 | 0.518519 |
48 | 6000 | 10 | 15 | 83.600 ± 3.423 | 5.90303 ± 0.355 | 714.953 | 693.876 | 5573.33 | 26.2357 |
49 | 6000 | 10 | 30 | 101.600 ± 4.535 | 6.13333 ± 0.543 | 2662.05 | 161.564 | 3386.67 | 6.81481 |
50 | 6000 | 10 | 45 | 98.400 ± 2.345 | 6.29091 ± 0.397 | 2174.46 | 136.419 | 2186.67 | 3.10662 |
51 | 6000 | 10 | 60 | 96.800 ± 1.786 | 6.49697 ± 0.487 | 1689.72 | 983.941 | 1613.33 | 1.80471 |
52 | 6000 | 10 | 75 | 97.600 ± 1.435 | 5.23636 ± 0.345 | 1348.65 | 737.884 | 1301.33 | 0.930908 |
53 | 6000 | 10 | 90 | 99.200 ± 1.765 | 4.89697 ± 0.543 | 1127.41 | 589.781 | 1102.22 | 0.604564 |
54 | 6000 | 10 | 120 | 96.800 ± 2.154 | 4.77576 ± 0.345 | 939.971 | 477.347 | 806.667 | 0.33165 |
55 | 4000 | 20 | 15 | 96.800 ± 2.134 | 12.5333 ± 0.499 | 621.55 | 250.208 | 6453.33 | 55.7036 |
56 | 4000 | 20 | 30 | 104.000 ± 2.165 | 14.303 ± 0.543 | 3219.09 | 322.113 | 3466.67 | 15.8922 |
57 | 4000 | 20 | 45 | 112.000 ± 1.345 | 15.1758 ± 0.876 | 2577.4 | 291.702 | 2488.89 | 7.49422 |
58 | 4000 | 20 | 60 | 127.200 ± 2.545 | 15.6121 ± 0.645 | 1963.17 | 225.649 | 2120 | 4.33669 |
59 | 4000 | 20 | 75 | 112.000 ± 2.643 | 17.600 ± 0.445 | 1582.65 | 181.49 | 1493.33 | 3.12889 |
60 | 4000 | 20 | 90 | 105.600 ± 3.567 | 21.0424 ± 0.654 | 1336.32 | 155.27 | 1173.33 | 2.59783 |
61 | 4000 | 20 | 120 | 118.400 ± 2.145 | 6.01212 ± 0.345 | 1159.62 | 133.708 | 986.667 | 0.417508 |
62 | 4000 | 20 | 15 | 96.000 ± 1.654 | 13.8909 ± 0.654 | 855.954 | 814.271 | 6400 | 61.7373 |
63 | 4000 | 20 | 30 | 120.000 ± 3.288 | 14.8364 ± 0.876 | 3219.09 | 322.113 | 4000 | 16.4849 |
64 | 4000 | 20 | 45 | 125.600 ± 1.234 | 14.9333 ± 0.567 | 2577.4 | 291.702 | 2791.11 | 7.37447 |
65 | 4000 | 20 | 60 | 125.600 ± 1.456 | 15.0788 ± 0.823 | 1963.17 | 225.649 | 2093.33 | 4.18856 |
66 | 4000 | 20 | 75 | 118.400 ± 2.143 | 15.5636 ± 0.455 | 1582.65 | 181.49 | 1578.67 | 2.76686 |
67 | 4000 | 20 | 90 | 119.200 ± 3.215 | 16.0242 ± 0.774 | 1336.32 | 155.27 | 1324.44 | 1.9783 |
68 | 4000 | 20 | 120 | 118.400 ± 2.154 | 13.9152 ± 0.345 | 1159.62 | 133.708 | 986.667 | 0.966333 |
69 | 2000 | 20 | 15 | 115.200 ± 3.276 | 4.77576 ± 0.222 | 855.954 | 814.271 | 7680 | 21.2256 |
70 | 2000 | 20 | 30 | 100.800 ± 1.222 | 6.95758 ± 0.342 | 3593.4 | 253.383 | 3360 | 7.73064 |
71 | 2000 | 20 | 90 | 94.400 ± 2.345 | 6.30303 ± 0.678 | 2655.89 | 224.917 | 1048.89 | 0.778152 |
72 | 4000 | 20 | 45 | 112.800 ± 3.123 | 7.63636 ± 0.543 | 1059.81 | 942.225 | 2506.67 | 3.77104 |
73 | 4000 | 20 | 60 | 86.400 ± 1.325 | 5.79394 ± 0.386 | 806.107 | 551.308 | 1440 | 1.60943 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 29.28 | 14 | 2.09 | 288.18 | <0.0001 | significant |
A-A | 0.013 | 1 | 0.013 | 1.84 | 0.1797 | |
B-B | 0.54 | 1 | 0.54 | 74.07 | <0.0001 | |
C-C | 2.12 | 1 | 2.12 | 292.37 | <0.0001 | |
AB | 0.062 | 1 | 0.062 | 8.59 | 0.0048 | |
AC | 0.10 | 1 | 0.10 | 14.23 | 0.0004 | |
BC | 0.035 | 1 | 0.035 | 4.81 | 0.0324 | |
A2 | 0.23 | 1 | 0.23 | 31.31 | <0.0001 | |
B2 | 0.19 | 1 | 0.19 | 26.24 | <0.0001 | |
C2 | 1.32 | 1 | 1.32 | 181.59 | <0.0001 | |
ABC | 0.097 | 1 | 0.097 | 13.43 | 0.0005 | |
A2B | 0.043 | 1 | 0.043 | 5.88 | 0.0185 | |
AB2 | 0.27 | 1 | 0.27 | 36.73 | <0.0001 | |
AC2 | 0.053 | 1 | 0.053 | 7.32 | 0.0090 | |
C3 | 0.14 | 1 | 0.14 | 18.69 | <0.0001 | |
Residual | 0.42 | 58 | 7.258 × 10−3 | |||
Lack of Fit | 0.34 | 44 | 7.657 × 10−3 | 1.27 | 0.3203 | |
not significant | ||||||
Std. Dev. | 0.085 | R-Squared | 0.9858 | |||
Mean | 7.57 | Adj R-Squared | 0.9824 | |||
C.V.% | 1.13 | Pred R-Squared | 0.9740 | |||
PRESS | 0.77 | Adeq Precision | 64.474 |
Source Model | Sum of | Mean | F | p-Value | ||
---|---|---|---|---|---|---|
Squares | df | Square | Value | Prob > F | ||
132.01 | 12 | 11.00 | 157.72 | <0.0001 | Significant | |
A-A | 0.080 | 1 | 0.080 | 1.15 | 0.2873 | |
B-B | 0.13 | 1 | 0.13 | 1.91 | 0.1716 | |
C-C | 8.53 | 1 | 8.53 | 122.35 | <0.0001 | |
AB | 0.062 | 1 | 0.062 | 0.89 | 0.3487 | |
AC | 0.081 | 1 | 0.081 | 1.16 | 0.2866 | |
BC | 0.41 | 1 | 0.41 | 5.88 | 0.0184 | |
A2 | 1.20 | 1 | 1.20 | 17.22 | 0.0001 | |
B2 | 6.90 | 1 | 6.90 | 98.89 | <0.0001 | |
C2 | 4.53 | 1 | 4.53 | 64.94 | <0.0001 | |
ABC | 0.23 | 1 | 0.23 | 3.23 | 0.0775 | |
A2B | 0.35 | 1 | 0.35 | 5.09 | 0.0278 | |
C3 | 0.88 | 1 | 0.88 | 12.59 | 0.0008 | |
Residual | 4.19 | 60 | 0.070 | |||
Lack of Fit | 3.771 × 10−3 | 50 | 7.541 × 10−5 | 0.19 | 1.0000 | not significant |
Pure Error | 0.011 | 28 | 3.913 × 10−4 | |||
Cor Total | 0.094 | 86 | ||||
Fit Statistics | ||||||
Std. Dev. | 0.26 | R² | 0.9693 | |||
Mean | 1.02 | Adjusted R² | 0.9631 | |||
C.V.% | 25.82 | Predicted R² | 0.9510 | |||
Adeq Precision | 47.084 |
a/a | t Value | p Value | Statistical Significance (2-Tailed) Significance Level = 0.05 | |
---|---|---|---|---|
1 | Pair 1 PM-PP | −0.315486 | 0.7533 | p value = 0.7533 > 0.05 Therefore no significant difference between predicted and measured amounts of PP total polyphenols |
2 | Pair 2 FM-FP | 1.127934 | 0.26309 | p value = 0.26309 > 0.05 Therefore no significant difference between predicted and measured amounts of PP total flavonoids. |
(1) PM Measured values of extracted total PP polyphenols (2) PP Predicted values of extracted total PP polyphenols (3) FM Measured values of extracted total PP flavonoids (4) FP Predicted values of extracted total PP flavonoids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrotos, K.; Giavasis, I.; Gerasopoulos, K.; Mitsagga, C.; Papaioannou, C.; Gkoutsidis, P. Optimization of the Vacuum Microwave Assisted Extraction of the Natural Polyphenols and Flavonoids from the Raw Solid Waste of the Pomegranate Juice Producing Industry at Industrial Scale. Molecules 2021, 26, 1033. https://doi.org/10.3390/molecules26041033
Petrotos K, Giavasis I, Gerasopoulos K, Mitsagga C, Papaioannou C, Gkoutsidis P. Optimization of the Vacuum Microwave Assisted Extraction of the Natural Polyphenols and Flavonoids from the Raw Solid Waste of the Pomegranate Juice Producing Industry at Industrial Scale. Molecules. 2021; 26(4):1033. https://doi.org/10.3390/molecules26041033
Chicago/Turabian StylePetrotos, Konstantinos, Ioannis Giavasis, Konstantinos Gerasopoulos, Chrysanthi Mitsagga, Chryssoula Papaioannou, and Paschalis Gkoutsidis. 2021. "Optimization of the Vacuum Microwave Assisted Extraction of the Natural Polyphenols and Flavonoids from the Raw Solid Waste of the Pomegranate Juice Producing Industry at Industrial Scale" Molecules 26, no. 4: 1033. https://doi.org/10.3390/molecules26041033
APA StylePetrotos, K., Giavasis, I., Gerasopoulos, K., Mitsagga, C., Papaioannou, C., & Gkoutsidis, P. (2021). Optimization of the Vacuum Microwave Assisted Extraction of the Natural Polyphenols and Flavonoids from the Raw Solid Waste of the Pomegranate Juice Producing Industry at Industrial Scale. Molecules, 26(4), 1033. https://doi.org/10.3390/molecules26041033