The Effect of the Reducing Sugars in the Synthesis of Visible-Light-Active Copper(I) Oxide Photocatalyst
Abstract
:1. Introduction
2. Results
2.1. Investigation of Structural Properties of Cu2O Samples—Dependence on Reducing Agent
2.2. Investigation of the Effect of Reducing Sugars on the Photocatalytic Activity of Cu2O Samples
3. Materials and Methods
3.1. Materials
3.2. Characterization Methods
3.3. Assessment of the Photocatalytic Efficiencies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Herrmann, J.M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B Environ. 2010, 99, 461–468. [Google Scholar] [CrossRef]
- Herrmann, J.M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Amorim, C.C.; Brillas, E.; Puma, G.L.; Malato, S.; Dionysiou, D.D. AOPs: Recent advances to overcome barriers in the treatment of water, wastewater and air. Environ. Sci. Pollut. Res. 2017, 24, 5987–5990. [Google Scholar] [CrossRef]
- Mondal, C.; Ganguly, M.; Pal, J.; Roy, A.; Jana, J.; Pal, T. Morphology controlled synthesis of SnS2 nanomaterial for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Langmuir 2014, 30, 4157–4164. [Google Scholar] [CrossRef]
- Zhang, S. Preparation of controlled-shape ZnS microcrystals and photocatalytic property. Ceram. Int. 2014, 40, 4553–4557. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014, 6, 2009–2026. [Google Scholar] [CrossRef]
- García-Pérez, U.M.; Martínez-De La Cruz, A.; Peral, J. Transition metal tungstates synthesized by co-precipitation method: Basic photocatalytic properties. Electrochim. Acta 2012, 81, 227–232. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Y.; Jin, H.; Ning, Z. Morphology transformation of Cu2O particles for photocatalytic degradation organic wastewater: First-principles calculation. Ceram. Int. 2019, 45, 21091–21098. [Google Scholar] [CrossRef]
- Almeida, M.; Alcácer, L. Growth of large single crystals of triethylammonium BIS-tetracyanoquinodimethane—TEA (TCNQ)2. J. Cryst. Growth 1983, 62, 183–188. [Google Scholar] [CrossRef]
- Chen, K.; Xue, D. Crystallisation of cuprous oxide. Int. J. Nanotechnol. 2013, 10, 4. [Google Scholar] [CrossRef]
- Fodor, S.; Baia, L.; Focșan, M.; Hernádi, K.; Pap, Z. Designed and controlled synthesis of visible light active copper(I)oxide photocatalyst: From cubes towards the polyhedrons—With Cu nanoparticles. Appl. Surf. Sci. 2019, 484, 175–183. [Google Scholar] [CrossRef]
- Abdullah, H.; Kuo, D.H.; Chen, Y.H. High-efficient n-type TiO2/p-type Cu2O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation. J. Mater. Sci. 2016, 51, 8209–8223. [Google Scholar] [CrossRef]
- Tomar, L.J.; Desai, R.K.; Chakrabarty, B.S. Study of optical properties of hydrothermally synthesized Cu/Cu2O/CuO nanocrystals. AIP Conf. Proc. 2013, 1536, 245–246. [Google Scholar] [CrossRef]
- Yin, M.; Wu, C.-K.; Lou, Y.; Burda, C.; Koberstein, J.T.; Zhu, Y.; O’Brien, S. Copper Oxide Nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511. [Google Scholar] [CrossRef]
- Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv. Mater. 2016, 28, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Salavati-Niasari, M.; Banaiean-Monfared, G.; Emadi, H.; Enhessari, M. Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation. Comptes Rendus Chim. 2013, 16, 929–936. [Google Scholar] [CrossRef]
- Kumar, A.; Saxena, A.; De, A.; Shankar, R.; Mozumdar, S. Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions. RSC Adv. 2013, 3, 5015–5021. [Google Scholar] [CrossRef]
- Oluyamo, S.S.; Nyagba, M.S.; Ambrose, S.; Ojo, S. Optical Properties of Copper (I) Oxide Thin Films Synthesized by SILAR Technique. IOSR J. Appl. Phys. 2014, 6, 102–105. [Google Scholar] [CrossRef]
- Musza, K.; Szabados, M.; Ádám, A.A.; Kónya, Z.; Kukovecz, Á.; Sipos, P.; Pálinkó, I. Ball Milling of Copper Powder Under Dry and Surfactant-Assisted Conditions—On the Way Towards Cu/Cu2O Nanocatalyst. J. Nanosci. Nanotechnol. 2018, 19, 389–394. [Google Scholar] [CrossRef]
- Liu, J.; Xue, D. Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater. 2008, 20, 2622–2627. [Google Scholar] [CrossRef]
- Coutanceau, C.; Urchaga, P.; Brimaud, S.; Baranton, S. Colloidal Syntheses of Shape- and Size-Controlled Pt Nanoparticles for Electrocatalysis. Electrocatalysis 2012, 3, 75–87. [Google Scholar] [CrossRef]
- Boutonnet, M.; Kizling, J.; Stenius, P.; Maire, G. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf. 1982, 5, 209–225. [Google Scholar] [CrossRef]
- Barroso, F.; De Dios, M.; Tojo, C.; Blanco, M.C.; López-Quintela, M.A. A computer simulation study on the influence of the critical nucleus on the mechanism of formation of nanoparticles in microemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2005, 270–271, 78–82. [Google Scholar] [CrossRef]
- De Dios, M.; Barroso, F.; Tojo, C.; Blanco, M.C.; López-Quintela, M.A. Effects of the reaction rate on the size control of nanoparticles synthesized in microemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2005, 270–271, 83–87. [Google Scholar] [CrossRef]
- Eriksson, S.; Nylén, U.; Rojas, S.; Boutonnet, M. Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal. A Gen. 2004, 265, 207–219. [Google Scholar] [CrossRef]
- Jiang, D.; Xing, C.; Liang, X.; Shao, L.; Chen, M. Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities. J. Colloid Interface Sci. 2016, 461, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Song, S.; Xue, D. Faceted Cu2O structures with enhanced Li-ion battery anode performances. CrystEngComm 2015, 17, 2110–2117. [Google Scholar] [CrossRef]
- Liu, Q.M.; Yasunami, T.; Kuruda, K.; Okido, M. Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans. Nonferrous Met. Soc. China 2012, 22, 2198–2203. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, K. Effect of OH− on morphology of Cu2O particles prepared through reduction of Cu(II) by glucose. J. Cent. South Univ. 2012, 19, 2125–2129. [Google Scholar] [CrossRef]
- Liu, F.; Wu, J.; Chen, K.; Xue, D. Morphology Study by Using Scanning Electron Microscopy. Education 2010, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wang, Y.J.; Zhou, K.G.; Bi, Z. Morphology control of ultrafine cuprous oxide powder and its growth mechanism. Trans. Nonferrous Met. Soc. China 2010, 20, s216–s220. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Y.; Wang, C.; Cui, A.; Deng, Z. Preparation of cuprous oxide particles of different crystallinity. J. Colloid Interface Sci. 2001, 243, 85–89. [Google Scholar] [CrossRef]
- Hawkins, A.J. Reducing power of different sugars for the ferricyanide reagent used in the gasometric sugar method. Med. Res. 1926, 79–82. [Google Scholar]
- Kumbhar, P.; Sawant, J.; Ghosalkar, A. Catalysis for Renewable Chemicals. In Industrial Catalytic Processes for Fine and Specialty Chemicals; Elsevier: Amsterdam, The Netherlands, 2016; pp. 597–662. ISBN 9780128014578. [Google Scholar]
- Hutter, E.; Fendler, J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Lan, T.; Fallatah, A.; Suiter, E.; Padalkar, S. Size controlled copper (I) oxide nanoparticles influence sensitivity of glucose biosensor. Sensors 2017, 17, 1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Stam, W.; Berends, A.C.; de Mello Donega, C. Prospects of Colloidal Copper Chalcogenide Nanocrystals. ChemPhysChem 2016, 17, 559–581. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu2−xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 2009, 131, 4253–4261. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczuk, T.; Fröhlich, D.; Scheel, S.; Stolz, H.; Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 2014, 514, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavoulakis, G.; Chang, Y.C.; Baym, G. Fine structure of excitons in CuO2. Phys. Rev. B Condens. Matter Mater. Phys. 1997, 55, 7593–7599. [Google Scholar] [CrossRef] [Green Version]
- Borgohain, K.; Murase, N.; Mahamuni, S. Synthesis and properties of Cu2O quantum particles. J. Appl. Phys. 2002, 92, 1292–1297. [Google Scholar] [CrossRef]
- Flak, D.; Braun, A.; Mun, B.S.; Park, J.B.; Parlinska-Wojtan, M.; Graule, T.; Rekas, M. Spectroscopic assessment of the role of hydrogen on surface defects, on the electronic structure and transport properties of TiO2, ZnO and SnO2 nanoparticles. Phys. Chem. Chem. Phys. 2013, 15, 1417–1430. [Google Scholar] [CrossRef] [PubMed]
- Kubelka, P. Ein Beitrag Zur Optik Der Farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Wang, G.; van den Berg, R.; de Mello Donega, C.; de Jong, K.P.; de Jongh, P.E. Silica-supported Cu2O nanoparticles with tunable size for sustainable hydrogen generation. Appl. Catal. B Environ. 2016, 192, 199–207. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fodor, S.; Baia, L.; Baán, K.; Kovács, G.; Pap, Z.; Hernadi, K. The Effect of the Reducing Sugars in the Synthesis of Visible-Light-Active Copper(I) Oxide Photocatalyst. Molecules 2021, 26, 1149. https://doi.org/10.3390/molecules26041149
Fodor S, Baia L, Baán K, Kovács G, Pap Z, Hernadi K. The Effect of the Reducing Sugars in the Synthesis of Visible-Light-Active Copper(I) Oxide Photocatalyst. Molecules. 2021; 26(4):1149. https://doi.org/10.3390/molecules26041149
Chicago/Turabian StyleFodor, Szilvia, Lucian Baia, Kornélia Baán, Gábor Kovács, Zsolt Pap, and Klara Hernadi. 2021. "The Effect of the Reducing Sugars in the Synthesis of Visible-Light-Active Copper(I) Oxide Photocatalyst" Molecules 26, no. 4: 1149. https://doi.org/10.3390/molecules26041149
APA StyleFodor, S., Baia, L., Baán, K., Kovács, G., Pap, Z., & Hernadi, K. (2021). The Effect of the Reducing Sugars in the Synthesis of Visible-Light-Active Copper(I) Oxide Photocatalyst. Molecules, 26(4), 1149. https://doi.org/10.3390/molecules26041149