3D Metal–Organic Frameworks Based on Co(II) and Bithiophendicarboxylate: Synthesis, Crystal Structures, Gas Adsorption, and Magnetic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Characterization
2.2. IR-Spectroscopy, Thermal Activation, and Porosity
2.3. Gas Adsorption Selectivity
2.4. Magnetic Properties of Compounds 1 and 2
3. Materials and Methods
3.1. Instruments and Methods
3.2. Single-Crystal X-ray Diffraction
3.3. Synthesis of Coordination Polymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurmoo, M. Magnetic Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. [Google Scholar] [CrossRef] [PubMed]
- Coronado, E.; Minguez Espallargas, G. Dynamic Magnetic MOFs. Chem. Soc. Rev. 2013, 42, 1525–1539. [Google Scholar] [CrossRef] [PubMed]
- Mínguez Espallargas, G.; Coronado, E. Magnetic Functionalities in MOFs: From the Framework to the Pore. Chem. Soc. Rev. 2018, 47, 533–557. [Google Scholar] [CrossRef] [Green Version]
- Saines, P.J.; Bristowe, N.C. Probing Magnetic Interactions in Metal–Organic Frameworks and Coordination Polymers Microscopically. Dalton Trans. 2018, 47, 13257–13280. [Google Scholar] [CrossRef] [Green Version]
- Thorarinsdottir, A.E.; Harris, T.D. Metal–Organic Framework Magnets. Chem. Rev. 2020, 120, 8716–8789. [Google Scholar] [CrossRef]
- Wang, T.; Qin, L.; Zhang, C.; Zheng, H. Syntheses, Characterization, and Magnetic Properties of Novel Divalent Co/Ni Coordination Polymers Based on a V-shaped Pyridine Ligand and Dicarboxylate Acids. RSC Adv. 2015, 5, 64514–64519. [Google Scholar] [CrossRef]
- Kong, J.-J.; Jiang, Y.-X.; Zhang, J.-C.; Shao, D.; Huang, X.-C. Two-Dimensional Magnetic Materials of Cobalt(II) Triangular Lattices Constructed by a Mixed Benzimidazole-Dicarboxylate Strategy. CrystEngComm 2019, 21, 2596–2604. [Google Scholar] [CrossRef]
- Huang, F.-P.; Yang, C.; Li, H.-Y.; Yao, P.-F.; Qin, X.-H.; Yan, S.-P.; Kurmoo, M. Solvent Effects on the Structures and Magnetic Properties of Two Doubly Interpenetrated Metal–Organic Frameworks. Dalton Trans. 2015, 44, 6593–6599. [Google Scholar] [CrossRef]
- Hua, C.; D’Alessandro, D.M. Systematic Tuning of Zn(II) frameworks with Furan, Thiophene and Selenophene Dipyridyl and Dicarboxylate Ligands. Cryst. Growth Des. 2017, 17, 6262–6272. [Google Scholar] [CrossRef]
- Einkauf, J.D.; Ortega, R.E.; Mathivathanan, L.; Lill, D.T. Nitroaromatic Sensing with a New Lanthanide Coordination Polymer [Er2(C10H4O4S2)3(H2O)6]n Assembled by 2,2´-Bithiophene-5,5´-Dicarboxylate. New J. Chem. 2017, 41, 10929–10934. [Google Scholar] [CrossRef]
- Demakov, P.A.; Volynkin, S.S.; Samsonenko, D.G.; Fedin, V.P.; Dybtsev, D.N. A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules 2020, 25, 4396. [Google Scholar] [CrossRef]
- Ding, B.; Hua, C.; Kepert, C.J.; D’Alessandro, D.M. Influence of Structure-Activity Relationships on Through-Space Intervalence Charge Transfer in Metal–Organic Frameworks with Cofacial Redox-Active Units. Chem. Sci. 2019, 10, 1392–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Shi, X.; Li, G.; Wang, X.; Li, C.; Yang, Q. Zinc and Cadmium Coordination Polymers Assembled with 2,2′-Bipyridine and Bithiophenedicarboxylic acid: Effect of Metal Ions on the Conformation of Ligand. Inorg. Chim. Acta 2012, 383, 185–189. [Google Scholar] [CrossRef]
- Bolotov, V.A.; Kovalenko, K.A.; Samsonenko, D.G.; Han, X.; Zhang, X.; Smith, G.L.; McCormick, L.J.; Teat, S.J.; Yang, S.; Lennox, M.J.; et al. Enhancement of CO2 Uptake and Selectivity in a Metal-Organic Framework by the Incorporation of Thiophene Functionality. Inorg. Chem. 2018, 57, 5074–5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, M.; Moon, D. New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of CO2 and H2 storage capacity. Microporous Mesoporous Mater. 2015, 215, 116–122. [Google Scholar] [CrossRef]
- Shi, Y.-X.; Li, W.-X.; Zhang, W.-H.; Lang, J.-P. Guest-Induced Switchable Breathing Behavior in a Flexible Metal–Organic Framework with Pronounced Negative Gas Pressure. Inorg. Chem. 2018, 57, 8627–8633. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Fu, L.; Chen, L.; Li, B. The Effect of Coordination Habits of Metal Ions on Fabricating Metal-Organic Frameworks with Thiophenedicarboxylate. Inorg. Chem. Commun. 2019, 101, 81–86. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, S.; Chen, Y.-S.; Ma, S.; Lee, Y.; Phely-Bobin, T.; Chen, B. A Robust Highly Interpenetrated Metal-Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules. Inorg. Chem. 2010, 49, 8444–8448. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-G.; Zhai, Z.-M.; Liu, X.-Y.; Li, J.-Y.; Li, F.-F.; Ma, L.-F. Sulfur Heteroatom-Based MOFs with Long-Lasting Room-Temperature Phosphorescence and High Photoelectric Response. Dalton Trans. 2020, 49, 598–602. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zhang, Y. Two Double and Triple Interpenetrated Cd(II) and Zn(II) Coordination Polymers Based on Mixed O- and N-Donor Ligands: Syntheses, Crystal Structures and Luminescent Properties. J. Mol. Struct. 2016, 1103, 56–60. [Google Scholar] [CrossRef]
- Gu, T.-Y.; Dai, M.; Young, D.J.; Ren, Z.-G.; Lang, J.-P. Luminescent Zn(II) Coordination Polymers for Highly Selective Sensing of Cr(III) and Cr(VI) in Water. Inorg. Chem. 2017, 56, 4668–4678. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, X.; Zhang, N.; Wang, Y.; Zhao, L.; Yang, Q. Novel Multifunctional Zn Metal–Organic Framework Fluorescent Probe Demonstrating Unique Sensitivity and Selectivity for Detection of PA and Fe3+ Ions in Water Solution. Cryst. Growth Des. 2019, 19, 5729–5736. [Google Scholar] [CrossRef]
- Prabu, M.; Asha, K.S.; Sinha, M.; Poduval, A.; Mandal, S. The Structural Diversity, Band Gap Energy and Photoluminescence Properties of Thiophenedicarboxylate Based Coordination Polymers. CrystEngComm 2016, 18, 536–543. [Google Scholar]
- Sapchenko, S.A.; Samsonenko, D.G.; Fedin, V.P. Synthesis, Structure and Luminescent Properties of Metal–Organic Frameworks Constructed from Unique Zn- and Cd-Containing Secondary Building Blocks. Polyhedron 2013, 55, 179–183. [Google Scholar] [CrossRef]
- Tranchemontagne, D.J.; Mendoza-Cortés, J.L.; O’Keeffe, M.; Yaghi, O.M. Secondary Building Units, Nets and Bonding in the Chemistry of Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapchenko, S.A.; Dybtsev, D.N.; Samsonenko, D.G.; Fedin, V.P. Synthesis, Crystal Structures, Luminescent and Thermal Properties of Two New Metal–Organic Coordination Polymers Based on Zinc(II) Carboxylates. New J. Chem. 2010, 34, 2445–2450. [Google Scholar] [CrossRef]
- Dubskikh, V.A.; Lysova, A.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Topological Polymorphism and Temperature-Driven Topotactical Transitions of Metal-Organic Coordination Polymers. CrystEngComm 2020, 22, 6295–6301. [Google Scholar] [CrossRef]
- Demakov, P.A.; Sapchenko, S.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Coordination Polymers Based on Zinc(II) and Manganese(II) with 1,4-Cyclohexanedicarboxylic Acid. Russ. Chem. Bull., Int. Ed. 2018, 67, 490–496. [Google Scholar] [CrossRef]
- Lysova, A.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Cadmium(II) Terephthalates Based on Trinuclear Units {Cd3(bdc)3}: Control of Coordination Structure Dimensionality and Luminescence Properties. Russ. Chem. Bull., Int. Ed. 2017, 66, 1580–1588. [Google Scholar] [CrossRef]
- Marakulin, A.V.; Lysova, A.A.; Samsonenko, D.G.; Dorovatovskii, P.V.; Lazarenko, V.A.; Dybtsev, D.N.; Fedin, V.P. New One-, Two-, and Three-Dimensional Metal-Organic Frameworks Based on Magnesium(II): Synthesis and Structure. Russ. Chem. Bull. Int. Ed. 2020, 69, 360–368. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Yuan, H.-B.; Xu, X.-B.; Huang, R.-B. Influential Factors on Assembly of First-Row Transition Metal Coordination Polymers. Inorg. Chim. Acta 2013, 403, 53–62. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr. 2015, C71, 9–18. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Willems, T.F.; Rycroft, C.H.; Kazi, M.; Meza, J.C.; Haranczyk, M. Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater. 2012, 149, 134–141. [Google Scholar] [CrossRef]
- Pinheiro, M.; Martin, R.L.; Rycroft, C.H.; Jones, A.; Iglesia, E.; Haranczyk, M. Characterization and Comparison of Pore Landscapes in Crystalline Porous Materials. J. Mol. Graph. Model. 2013, 44, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.L.; Prausnitz, J.M. Thermodynamics of Mixed-Gas Adsorption. AIChE J. 1965, 11, 121–127. [Google Scholar] [CrossRef]
- Yang, S.; Lin, X.; Lewis, W.; Suyetin, M.; Bichoutskaia, E.; Parker, J.E.; Tang, C.C.; Allan, D.R.; Rizkallah, P.J.; Hubberstey, P.; et al. A Partially Interpenetrated Metal–Organic Framework for Selective Hysteretic Sorption of Carbon Dioxide. Nat. Mater. 2012, 11, 710–716. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, L.; Xu, F.; Li, F.; Zhou, H.-Y.; Liu, Y.-L.; Gabelica, Z.; Schick, C. H2 Storage and CO2 Capture on a Nanoscale Metal Organic Framework with High Thermal Stability. Chem. Commun. 2012, 48, 759–761. [Google Scholar] [CrossRef]
- Ortiz, G.; Brandès, S.; Rousselin, Y.; Guilard, R. Selective CO2 Adsorption by a Triazacyclononane-Bridged Microporous Metal–Organic Framework. Chem. Eur. J. 2011, 17, 6689–6695. [Google Scholar] [CrossRef]
- Evans, A.; Luebke, R.; Petit, C. The Use of Metal-Organic Frameworks for CO Purification. J. Mater. Chem. A 2018, 6, 10570–10594. [Google Scholar] [CrossRef]
- Karra, J.R.; Walton, K.S. Molecular Simulations and Experimental Studies of CO2, CO, and N2 Adsorption in Metal-Organic Frameworks. J. Phys. Chem. C 2010, 114, 15735–15740. [Google Scholar] [CrossRef]
- Rallapalli, P.; Prasanth, K.P.; Patil, D.; Somani, R.S.; Jasra, R.V.; Bajaj, H.C. Sorption Studies of CO2, CH4, N2, CO, O2 and Ar on Nanoporous Aluminum Terephthalate [MIL-53(Al)]. J. Porous Mater. 2011, 18, 205–210. [Google Scholar] [CrossRef]
- Duan, J.; Higushi, M.; Krishna, R.; Kiyonaga, T.; Tsusumi, Y.; Sato, Y.; Kubota, Y.; Takata, M.; Kitagawa, S. High CO2/N2/O2/CO Separation in a Chemically Robust Porous Coordination Polymer with Low Binding Energy. Chem. Sci. 2014, 5, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Lv, D.; Shi, R.; Chen, Y.; Chen, Y.; Wu, H.; Zhou, X.; Xi, H.; Li, Z.; Xia, Q. Selective Adsorptive Separation of CO2/CH4 and CO2/N2 by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Ind. Eng. Chem. Res. 2018, 57, 12215–12224. [Google Scholar] [CrossRef]
- Bastin, L.; Bárcia, P.S.; Hurtado, E.J.; Silva, J.A.C.; Rodrigues, A.E.; Chen, B. A Microporous Metal–Organic Framework for Separation of CO2/N2 and CO2/CH4 by Fixed-Bed Adsorption. J. Phys. Chem. C 2008, 112, 1575–1581. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Zhang, J.; Li, Z.-J.; Qin, Y.-Y.; Cheng, J.-K.; Yao, Y.-G. Antiferromagnetic Interactions in Melamine-Bridged Trinuclear Cobalt Complex. Inorg. Chem. Commun. 2008, 11, 279–282. [Google Scholar] [CrossRef]
- Kawamura, A.; Greenwood, A.R.; Filatov, A.S.; Gallagher, A.T.; Galli, G.; Anderson, J.S. Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework. Inorg. Chem. 2017, 56, 3349–3356. [Google Scholar] [CrossRef]
- Konar, S.; Zangrando, E.; Drew, M.G.B.; Ribas, J.; Chaudhuri, N.R. Synthesis, Structural Analysis, and Magnetic Behaviour of Three Fumarate Bridged Coordination Polymers: Five-Fold Interpenetrated Diamond-Like Net of Ni(II), Sheets of Ni(II) and Co(II). Dalton Trans. 2004, 2, 260–266. [Google Scholar] [CrossRef]
- Bai, L.; Wang, H.-B.; Li, D.-S.; Wu, Y.-P.; Zhao, J.; Ma, L.-F. A New Penta-Carboxylate and N-donor Ligand co-Regulate 3D CoII-MOF with tcj/hc Topology: Synthesis, Structure and Magnetic Property. Inorg. Chem. Commun. 2014, 44, 188–190. [Google Scholar] [CrossRef]
- Tian, D.; Liu, S.J.; Chang, Z.; Zhang, Y.H.; Zhao, J.P.; Bu, X.H. Edge-Directed Assembly of a 3D 2p–3d Heterometallic Metal–Organic Framework Based on a Cubic Co8(TzDC)12 Cage. CrystEngComm 2013, 15, 9344–9347. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Wu, M.C.; Zeng, M.H.; Liang, H. Magneto-Structural Correlation in a Metamagnetic Cobalt (II)-Based Pillared Trilayer Motif Constructed by Mixed Pyridyl-Type Carboxylate Ligands. Inorg. Chem. 2009, 48, 10146–10150. [Google Scholar] [CrossRef]
- Zeng, M.H.; Zhang, W.X.; Sun, X.Z.; Chen, X.M. Spin Canting and Metamagnetism in a 3D Homometallic Molecular Material Constructed by Interpenetration of Two Kinds of Cobalt (II)-Coordination-Polymer Sheets. Angew. Chem. Int. Ed. 2005, 44, 3079–3082. [Google Scholar] [CrossRef]
- De Munno, G.; Julve, M.; Lloret, F.; Faus, J.; Caneschi, A. 2,2′-Bipyrimidine (Bipym)-Bridged Dinuclear Complexes. Part 4. Synthesis, Crystal Structure and Magnetic Properties of [Co2(H2O)8(bipym)][NO3]4, [Co2(H2O)8(bipym)][SO4]2·2H2O and [Co2(bipym)3(NCS)4]. J. Chem. Soc. Dalton Trans. 1994, 8, 1175–1183. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Acta Crystallogr. 2010, D66, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
Gas | 273 K | 298 K | ||||
---|---|---|---|---|---|---|
mL(STP)/g | mmol/g | wt. % | mL(STP)/g | mmol/g | wt. % | |
CO2 | 57.2 | 2.55 | 11.2 | 35.7 | 1.59 | 7.0 |
CH4 | 22.5 | 1.00 | 1.6 | 13.4 | 0.60 | 1.0 |
N2 | 4.7 | 0.21 | 0.6 | 3.5 | 0.16 | 0.4 |
O2 | 3.5 | 0.16 | 0.5 | 2.4 | 0.11 | 0.3 |
CO | 6.9 | 0.31 | 0.9 | 3.9 | 0.17 | 0.5 |
273 K | 298 K | ||||||
---|---|---|---|---|---|---|---|
CO2/N2 | CO2/CH4 | CO2/O2 | CO2/CO | CO2/N2 | CO2/CH4 | CO2/O2 | CO2/CO |
Selectivity factors as ratio of adsorbed amount S = V1/V2 | |||||||
12.2 | 2.5 | 16.3 | 8.3 | 10.2 | 2.7 | 14.9 | 9.2 |
Selectivity factors as ratio of Henry constants S = KH1/KH2 | |||||||
35.7 | 4.8 | 45.4 | 20.8 | 18.9 | 3.8 | 25.4 | 15.1 |
IAST selectivity at total pressure 1 bar and gas mixture composition 1:1 | |||||||
10.0 16.3 | 3.5 | 11.5 | 7.9 | 7.9 12.8 | 3.3 | 9.4 | 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubskikh, V.A.; Lysova, A.A.; Samsonenko, D.G.; Lavrov, A.N.; Kovalenko, K.A.; Dybtsev, D.N.; Fedin, V.P. 3D Metal–Organic Frameworks Based on Co(II) and Bithiophendicarboxylate: Synthesis, Crystal Structures, Gas Adsorption, and Magnetic Properties. Molecules 2021, 26, 1269. https://doi.org/10.3390/molecules26051269
Dubskikh VA, Lysova AA, Samsonenko DG, Lavrov AN, Kovalenko KA, Dybtsev DN, Fedin VP. 3D Metal–Organic Frameworks Based on Co(II) and Bithiophendicarboxylate: Synthesis, Crystal Structures, Gas Adsorption, and Magnetic Properties. Molecules. 2021; 26(5):1269. https://doi.org/10.3390/molecules26051269
Chicago/Turabian StyleDubskikh, Vadim A., Anna A. Lysova, Denis G. Samsonenko, Alexander N. Lavrov, Konstantin A. Kovalenko, Danil N. Dybtsev, and Vladimir P. Fedin. 2021. "3D Metal–Organic Frameworks Based on Co(II) and Bithiophendicarboxylate: Synthesis, Crystal Structures, Gas Adsorption, and Magnetic Properties" Molecules 26, no. 5: 1269. https://doi.org/10.3390/molecules26051269
APA StyleDubskikh, V. A., Lysova, A. A., Samsonenko, D. G., Lavrov, A. N., Kovalenko, K. A., Dybtsev, D. N., & Fedin, V. P. (2021). 3D Metal–Organic Frameworks Based on Co(II) and Bithiophendicarboxylate: Synthesis, Crystal Structures, Gas Adsorption, and Magnetic Properties. Molecules, 26(5), 1269. https://doi.org/10.3390/molecules26051269