Rapid MALDI-MS Assays for Drug Quantification in Biological Matrices: Lessons Learned, New Developments, and Future Perspectives
Abstract
:1. Introduction
2. Results
2.1. Tissue Sections
2.1.1. Ion-Mobility for Post-Acquisition Signal Filtering
- Traveling wave (TW)IM-MS increased the resolution and overall intensity of MS signals;
- When used for post-acquisition data filtering, IM-MS yielded a higher selectivity and thus resulted in a higher sensitivity;
- Besides confirming the identity of the compound of interest, MS/MS diluted background signals from the MALDI matrix and endogenous interfering compounds because fragments of all compounds could be analyzed through a broader mass range. Therefore, fragments of the drug of interest and its internal standard (IS) could clearly be distinguished from fragments of endogenous compounds;
- The use of an LC-like data treatment method based on an estimation of the area-under-the-curve (AUC) of the extracted IM peak (“MobA”) yielded more reliable and reproducible quantification results.
2.1.2. Method Pre-Validation and Quantification in Dosed Tissues
2.2. Plasma
2.2.1. Determination of the MS Mode
2.2.2. Sample Preparation Developments for Automatic Acquisition
- Drug enrichment from the sample;
- Reduction of the sample viscosity and molecular complexity;
- Re-crystallization of heterogeneous 2,5-DHB crystals to yield a homogenous layer leading to higher and more stable signals over the time of analysis.
2.2.3. Method Validation
2.3. Further Developments for Automatic MS Acquisition in Tissue Analyses
2.3.1. Automation of MS Acquisition Using Alternative MALDI Matrices
2.3.2. Automation of MALDI-MS Analyses on Tissue Sections Using 2,5-DHB as a MALDI Matrix
3. Discussion
3.1. Biological Matrix
3.2. MALDI Matrix Selection
3.3. Sample Preparation
3.4. Analysis
3.5. Data Extraction and Processing
3.6. Cross Validation
4. Materials and Methods
4.1. Mebendazole Calibration Curves in Tissue Sections
4.1.1. Chemical Reagents
4.1.2. Matrix Preparation
4.1.3. Mebendazole Calibration Standard Preparation
4.1.4. Mass Spectrometry Parameters
4.1.5. Data Processing for MALDI-MS Measurements
4.2. Osimertinib Screening in Untreated Plasma
4.2.1. Chemical Reagents
4.2.2. Matrix Preparation
4.2.3. Solution Preparation and Deposition on the MALDI Metal Target
4.3. Testing of Different Matrices for Drug Quantification on Tissue Sections
4.3.1. Chemical Reagents
4.3.2. Matrix Preparation
4.3.3. Deposition on the MALDI Metal Target
4.3.4. Solution Preparation and Deposition on Tissue
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abonnenc, M.; Qiao, L.; Liu, B.; Girault, H.H. Electrochemical aspects of electrospray and laser desorption/ionization for mass spectrometry. Annu. Rev. Anal. Chem. (Palo Alto Calif) 2010, 3, 231–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, S.; Becker, M.; Groseclose, M.R.; Schadt, S.; Hopf, C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr. Opin. Biotechnol. 2019, 55, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Shelley, J.T.; Badal, S.P.; Engelhard, C.; Hayen, H. Ambient desorption/ionization mass spectrometry: Evolution from rapid qualitative screening to accurate quantification tool. Anal. Bioanal. Chem. 2018, 410, 4061–4076. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Monopoli, A.; Cataldi, T.R.I.; Palmisano, F. MALDI matrices for low molecular weight compounds: An endless story? Anal. Bioanal. Chem. 2018, 410, 4015–4038. [Google Scholar] [CrossRef]
- van Kampen, J.J.; Reedijk, M.L.; Burgers, P.C.; Dekker, L.J.; Hartwig, N.G.; van der Ende, I.E.; de Groot, R.; Osterhaus, A.D.; Burger, D.M.; Luider, T.M.; et al. Ultra-fast analysis of plasma and intracellular levels of HIV protease inhibitors in children: A clinical application of MALDI mass spectrometry. PLoS ONE 2010, 5, e11409. [Google Scholar] [CrossRef]
- Cabrales-Rico, A.; de la Torre, B.G.; Garay, H.E.; Machado, Y.J.; Gomez, J.A.; Audain, E.; Morales, O.; Besada, V.; Marcelo, J.L.; Reyes, V.; et al. Bio-analytical method based on MALDI-MS analysis for the quantification of CIGB-300 anti-tumor peptide in human plasma. J. Pharm Biomed. Anal. 2015, 105, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Meesters, R.J.; den Boer, E.; Mathot, R.A.; de Jonge, R.; van Klaveren, R.J.; Lindemans, J.; Luider, T.M. Ultrafast selective quantification of methotrexate in human plasma by high-throughput MALDI-isotope dilution mass spectrometry. Bioanalysis 2011, 3, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Meesters, R.J.; Cornelissen, R.; van Klaveren, R.J.; de Jonge, R.; den Boer, E.; Lindemans, J.; Luider, T.M. A new ultrafast and high-throughput mass spectrometric approach for the therapeutic drug monitoring of the multi-targeted anti-folate pemetrexed in plasma from lung cancer patients. Anal. Bioanal. Chem. 2010, 398, 2943–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresnais, M.; Roth, A.; Foerster, K.I.; Jager, D.; Pfister, S.M.; Haefeli, W.E.; Burhenne, J.; Longuespee, R. Rapid and Sensitive Quantification of Osimertinib in Human Plasma Using a Fully Validated MALDI-IM-MS/MS Assay. Cancers 2020, 12, 1897. [Google Scholar] [CrossRef] [PubMed]
- Abu Sammour, D.; Marsching, C.; Geisel, A.; Erich, K.; Schulz, S.; Ramallo Guevara, C.; Rabe, J.H.; Marx, A.; Findeisen, P.; Hohenberger, P.; et al. Quantitative Mass Spectrometry Imaging Reveals Mutation Status-independent Lack of Imatinib in Liver Metastases of Gastrointestinal Stromal Tumors. Sci. Rep. 2019, 9, 10698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresnais, M.; Muck, A.; Majewsky, M.; Statz, B.; Krausert, S.; Benzel, J.; Castel, D.; Le Dret, L.; Pfister, S.; Haefeli, W.E.; et al. Rapid and Sensitive Drug Quantification in Tissue Sections Using Matrix Assisted Laser Desorption Ionization-Ion Mobility-Mass Spectrometry Profiling. J. Am. Soc. Mass Spectrom 2020, 31, 742–751. [Google Scholar] [CrossRef] [PubMed]
- FDA. US Food and Drug Administration—Bioanalytical Method Validation Guidance for Industry, May 2018 ed.; FDA: Silver Spring, MA, USA, 2018. [Google Scholar]
- EMA. European Medicines Agency—Guidelines on Bioanalytical Method Validation, July 2011 ed.; EMA: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Vay, M.; Sauter, M.; Mikus, G.; Burhenne, J. Quantification of microdosed oral yohimbine and its major metabolite in human plasma in the picogram range. Bioanalysis 2019, 11, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Lai, C.C.; Tseng, M.C.; Liu, Y.C.; Lin, S.Y.; Tsai, F.J. Simple fabrication of hydrophobic surface target for increased sensitivity and homogeneity in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of peptides, phosphopeptides, carbohydrates and proteins. Anal. Chim. Acta 2013, 783, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Schuerenberg, M.; Luebbert, C.; Eickhoff, H.; Kalkum, M.; Lehrach, H.; Nordhoff, E. Prestructured MALDI-MS sample supports. Anal. Chem 2000, 72, 3436–3442. [Google Scholar] [CrossRef] [PubMed]
- Chumbley, C.W.; Reyzer, M.L.; Allen, J.L.; Marriner, G.A.; Via, L.E.; Barry, C.E., 3rd; Caprioli, R.M. Absolute Quantitative MALDI Imaging Mass Spectrometry: A Case of Rifampicin in Liver Tissues. Anal. Chem. 2016, 88, 2392–2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaskolla, T.W.; Karas, M. Compelling evidence for Lucky Survivor and gas phase protonation: The unified MALDI analyte protonation mechanism. J. Am. Soc. Mass Spectrom. 2011, 22, 976–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barre, F.P.Y.; Paine, M.R.L.; Flinders, B.; Trevitt, A.J.; Kelly, P.D.; Ait-Belkacem, R.; Garcia, J.P.; Creemers, L.B.; Stauber, J.; Vreeken, R.J.; et al. Enhanced Sensitivity Using MALDI Imaging Coupled with Laser Postionization (MALDI-2) for Pharmaceutical Research. Anal. Chem. 2019, 91, 10840–10848. [Google Scholar] [CrossRef] [Green Version]
- Djambazova, K.V.; Klein, D.R.; Migas, L.G.; Neumann, E.K.; Rivera, E.S.; Van de Plas, R.; Caprioli, R.M.; Spraggins, J.M. Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry. Anal. Chem. 2020, 92, 13290–13297. [Google Scholar] [CrossRef]
MassI | MobA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Linear Regression 1/x Weighting | Linear Regression 1/x2 Weighting | Linear Regression 1/x Weighting | Linear Regression 1/x2 Weighting | ||||||||||
Batch 1 | Batch 2 | Batch 3 | Batch 1 | Batch 2 | Batch 3 | Batch 1 | Batch 2 | Batch 3 | Batch 1 | Batch 2 | Batch 3 | ||
Number of accepted calibration levels 1 | 5 | 5 | 5 | 7 | 6 | 7 | 7 | 6 | 7 | 7 | 8 | 8 | |
% of accepted CALs 1,2 | 59% | 63% | 63% | 75% | 66% | 78% | 84% | 75% | 81% | 84% | 97% | 88% | |
LLOQ accepted 1,2 | 🗶 | 🗶 | 🗶 | ✓ | ✓ | ✓ | 🗶 | 🗶 | 🗶 | ✓ | ✓ | ✓ | |
ULOQ accepted 1,2 | ✓ | ✓ | ✓ | ✓ | 🗶 | 🗶 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Determination coefficient r 2 | 0.9954 | 0.9980 | 0.9974 | 0.9894 | 0.9910 | 0.9907 | 0.9962 | 0.9993 | 0.9988 | 0.9915 | 0.9959 | 0.9971 | |
Within-batch accuracies (% bias) | LLOQ | 194 | 385.5 | 269.8 | −4.7 | 11.1 | −2.7 | 64.2 | 70.6 | 32.3 | 7.1 | 3.2 | 1.0 |
LQC | 49.8 | 128.8 | 73.0 | −14.9 | 25.8 | −8.2 | 14.8 | 15.5 | 5.1 | 2.7 | −1.4 | −2.8 | |
MQC | −15.0 | 11.4 | −7.0 | −11.5 | 37.5 | 6.8 | −1.9 | −4.6 | −3.0 | 2.4 | −0.7 | 0.6 | |
HQC | −6.5 | 4.3 | −1.0 | −0.9 | 30.3 | 16.0 | −1.1 | −3.8 | −1.4 | 3.5 | 0.6 | 2.5 | |
Within-batch precisions (% CV) | LLOQ | 5.4 | 5.9 | 3.4 | 13.6 | 18.3 | 15.3 | 15.7 | 9.8 | 10.1 | 17.8 | 17.1 | 13.8 |
LQC | 5.2 | 5.9 | 4.7 | 9.8 | 12.2 | 10.5 | 4.5 | 5.8 | 7.3 | 5.3 | 9.4 | 8.2 | |
MQC | 4.3 | 4.7 | 2.1 | 4.4 | 5.0 | 2.2 | 3.2 | 3.2 | 1.6 | 3.2 | 3.2 | 1.6 | |
HQC | 5.4 | 5.9 | 3.8 | 5.5 | 5.7 | 3.9 | 4.5 | 5.0 | 1.5 | 4.5 | 5.0 | 1.5 | |
Inter-batch accuracies (% bias) | LLOQ | 283.1 | 0.8 | 54.3 | 2.3 | ||||||||
LQC | 81.9 | −1.4 | 11.3 | −0.6 | |||||||||
MQC | −3.5 | 8.5 | −3.2 | 0.8 | |||||||||
HQC | −1-1 | 13.8 | −2.1 | 2.2 | |||||||||
Inter-batch precisions (% CV) | LLOQ | 21.6 | 16.7 | 16.5 | 15.0 | ||||||||
LQC | 10.0 | 20.5 | 7.2 | 7.8 | |||||||||
MQC | 12.3 | 18.7 | 2.9 | 3.0 | |||||||||
HQC | 6.7 | 12.2 | 4.0 | 4.0 | |||||||||
Overall percentage of QCS within the acceptance criteria 2 | 44% | 64% | 66% | 89% | |||||||||
Batch accepted 1 | 🗶 | 🗶 | 🗶 | ✓ | 🗶 | 🗶 | 🗶 | 🗶 | 🗶 | ✓ | ✓ | ✓ | |
Method validated | 🗶 | 🗶 | 🗶 | ✓ |
Manual Motion | Automatic Motion | |||
---|---|---|---|---|
Calibration Levels | Number of Accepted Values (x/4) 1 | Calibration Level Accepted 2 | Number of Accepted Values (x/4) 1 | Calibration Level Accepted 2 |
CAL 5 | 3/4 | ✓ (LLOQ) | 0/4 | 🗶 |
CAL 20 | 2/4 | ✓ | 0/4 | 🗶 |
CAL 50 | 2/4 | ✓ | 3/4 | ✓ (LLOQ) |
CAL 100 | 3/4 | ✓ | 2/4 | ✓ |
CAL 500 | 4/4 | ✓ | 4/4 | ✓ |
CAL 1000 | 4/4 | ✓ | 2/4 | ✓ |
CAL 2500 | 2/4 | ✓ | 1/4 | 🗶 |
CAL 5000 | 3/4 | ✓ | 2/4 | ✓ |
Calibration Levels | Number of Accepted Values (x/4) 1 | Calibration Level Accepted 2 |
---|---|---|
CAL 5 | 1/4 | 🗶 |
CAL 20 | 2/4 | ✓ (LLOQ) |
CAL 50 | 1/4 | 🗶 |
CAL 100 | 3/4 | ✓ |
CAL 500 | 2/4 | ✓ |
CAL 1000 | 2/4 | ✓ |
CAL 2500 | 3/4 | ✓ |
CAL 5000 | 1/4 | 🗶 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fresnais, M.; Yildirim, E.; Karabulut, S.; Jäger, D.; Zörnig, I.; Benzel, J.; Pajtler, K.W.; Pfister, S.M.; Burhenne, J.; Haefeli, W.E.; et al. Rapid MALDI-MS Assays for Drug Quantification in Biological Matrices: Lessons Learned, New Developments, and Future Perspectives. Molecules 2021, 26, 1281. https://doi.org/10.3390/molecules26051281
Fresnais M, Yildirim E, Karabulut S, Jäger D, Zörnig I, Benzel J, Pajtler KW, Pfister SM, Burhenne J, Haefeli WE, et al. Rapid MALDI-MS Assays for Drug Quantification in Biological Matrices: Lessons Learned, New Developments, and Future Perspectives. Molecules. 2021; 26(5):1281. https://doi.org/10.3390/molecules26051281
Chicago/Turabian StyleFresnais, Margaux, Esra Yildirim, Seda Karabulut, Dirk Jäger, Inka Zörnig, Julia Benzel, Kristian W. Pajtler, Stefan M. Pfister, Jürgen Burhenne, Walter E. Haefeli, and et al. 2021. "Rapid MALDI-MS Assays for Drug Quantification in Biological Matrices: Lessons Learned, New Developments, and Future Perspectives" Molecules 26, no. 5: 1281. https://doi.org/10.3390/molecules26051281
APA StyleFresnais, M., Yildirim, E., Karabulut, S., Jäger, D., Zörnig, I., Benzel, J., Pajtler, K. W., Pfister, S. M., Burhenne, J., Haefeli, W. E., & Longuespée, R. (2021). Rapid MALDI-MS Assays for Drug Quantification in Biological Matrices: Lessons Learned, New Developments, and Future Perspectives. Molecules, 26(5), 1281. https://doi.org/10.3390/molecules26051281