Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants
Abstract
:1. Introduction
2. Results
2.1. Effects of LED Irradiation on Antioxidant Enzymes
2.2. Effects of LED Irradiation on In Vitro Organogenesis
Plant Species | Type of LED | Metabolites/Enzyme/Gene | Biological Activity | References |
---|---|---|---|---|
Lippia gracilis Schauer | Blue-LED | Total chlorophyll, total carotenoid, carvacrol, E-caryophyllene | Bioactive compound production | Lazzarini et al. [117] |
Brachypodium distachyon (L.) | Red:Blue:White LED | PAL, F5H Superoxide dismutase, Catalase | Gene expression, antioxidant enzyme expression | Mamedes-Rodrigues et al. [141] |
Hyptis marrubioides Epling | White and Blue-LED | Rutin | Bioactive compound production | Pedroso et al. [130] |
Cunninghamia lanceolata | Red:Blue:Purple:Green (8:1:1:1) LED | Peroxidase, catalase | Root growing, antioxidant enzyme expression | Xu et al. [34] |
Ocimum basilicum L. | Red, Blue, White LED | Total flavonoid, peonidin, cyaniding (Red LED), rosmarinic acid, eugenol (Blue LED), chicoric acid (White) | Bioactive compound production | Nadeem et al. [35] |
Lycopersicon esculentum cv. ‘House Momotaro’ & ‘Mini Carol’ | Blue LED | Ascorbic acid, dehydroascorbic acid | Antioxidation | Zushi et al. [136] |
Boehmeria nivea cv. ‘Zhongsizhu 1′ | Red and Orange LED | Total chlorophyll (Red), malondialdehyde (+), superoxide dismutase, peroxidase (Orange) | Bioactive compound production, antioxidant enzyme expression | Rehman et al. [118] |
Schisandra chinensis (Turcz.) | Blue LED | Chlorogenic acid, gallic acid, protocatechuic acid | Biomass increase, Bioactive compound production | Szopa and Ekiert [131] |
Bacopa monnieri L. | Red and Blue LED | Triterpenoid saponin glycosides | Bioactive compound production | Watcharatanon et al. [138] |
Scutellaria baicalensis Georgi | Blue LED | Total carotenoid, PSY, ZDS, CHXB, ZEP | Bioactive compound production, gene expression | Tuan et al. [120] |
Cnidium officinale Makino | Red and Blue (1:1) LED | Total phenol, total flavonoid, ascorbate peroxidase | Bioactive compound production, antioxidant enzyme exprssion | Adil et al. [46] |
Grapes | Blue LED | Chlorophyll | photosynthetic compound | Poudel et al. [110] |
Canavalia ensiformis | Red and Blue (1:3) LED | Total phenol, total chlorophyll, total carotenoid | Biomass increase, callus induction, bioactive compound production, antioxidation | Saldarriaga et al. [119] |
Rhodiola imbricata Edgew | Blue LED | Salidroside, total phenol, total flavonoid | Bioactive compound production | Kapoor et al. [135] |
Lepidium sativum L. | White, Blue, Green LED | Total phenol (White), p-coumaric acid (Blue), superoxide dismutase, peroxidase (Green) | Bioactive compound production, antioxidant enzyme exprssion | Ullah et al. [132] |
Solanum tuberosum cv. ‘Zhuanxinwu’ | Blue LED | Anthocyanin | Bioactive compound production | Xu et al. [142] |
Ajuga bracteosa | Blue LED | Total phenol, total flavonoid | Bioactive compound production | Rukh et al. [133] |
Vitis vinifera cv. “Manicure Finger” | Blue LED | Total chlorophyll, total carotenoid | Bioactive compound production | Li et al. [143] |
Lippia rotundifolia Cham | Blue LED | Myrcene, limonene | Bioactive compound production | De Hsie et al. [137] |
Pfaffia glomerata accessions (Ac22, Ac43) | Red and Blue (1:1) LED | Anthocyanin, 20-hydroxyecdysone, peroxidases, catalase | Bioactive compound production, antioxidant enzyme exprssion | Silva et al. [140] |
Lippia filifolia Mart. & Schauer | Red, Blue LED | Malondialdehyde (-) | Bioactive compound production | Chaves et al. [134] |
Drosera burmannii Vahl, Drosera indica L. | Blue LED | Plumbagin | Bioactive compound production | Boonsnongcheep et al. [144] |
Potato | Red and Blue LED | - | Shoot elongation | Edesi et al. [104] |
Lilium | Red and Blue LED | - | Bulbet organogenesis | Lian et al. [108] |
Vanilla | Red and Blue LED | - | Shoot organogenesis | Bello-Bello et al. [107] |
A. distichum | Red and Blue LED | - | Shoot regeneration | Lee et al. [109] |
R. glutinosa, | Red LED | - | Shoot elongation | Hahn et al. [22] |
Sugarcan | Blue and Red LED | - | Shoot elongation | Silva et al. [139] |
A. milletolium | Blue and Red LED | - | Enhanced biomass | Alvarenga et al. [115] |
Densribium | Blue and Red LED | - | Enhanced biomass | Lin et al. [1] |
Blue-berry | Blue and Red LED | - | Enhanced biomass | Hung et al. [114] |
Crysanthemum | Blue and Red LED | - | Enhanced biomass | Kim et al. [26] |
Sugarcan | Blue and Red LED | - | Enhanced biomass | Maluta et al. [116] |
Castanea crenata | Red-LED | - | Shoot elongation | Park and Kim et al. [145] |
Oncidium | Red-LED | - | Shoot elongation | Chung et al. [113] |
Blue berry | Red LED | - | Shoot elongation | Hung et al. [112,114] |
Banana | Red-LED | - | Chlorophyll | Do Nascimento Vieira et al. [24] |
C. orchioides | Red-LED, Blue-LED | APX, POX | Enzyme activity | Dutta G. and Sahoo [80] |
2.3. Effects of LED Irradiation on Tocopherol Biosynthesis in Crops
2.4. Effects of LED Irradiation on Carotenoid Biosynthesis in Crops
2.5. Effects of LED Irradiation on Flavonoid Biosynthesis in Crops
2.6. Effects of LED Irradiation on Anthocyanin Biosynthesis in Crops
2.7. Effects of LED Irradiation on Phenolic Acid Biosynthesis in Crops
3. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of light quality on growth and development of protocorm–like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ. Cult. 2011, 105, 329–335. [Google Scholar] [CrossRef]
- Azmi, N.S.; Ahmad, R.; Ibrahim, R. Fluorescent light (FL), red led and blue led spectrums effects on in vitro shoots multiplication. J. Teknol. 2016, 78, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Manivannan, A.; Soundararajan, P.; Park, Y.G.; Wei, H.; Kim, S.H.; Jeong, B.R. Blue and red light-emitting diodes improve the growth and physiology of in vitro grown carnations ‘Green Beauty’ and ‘Purple Beauty’. Hortic. Environ. Biotechnol. 2017, 58, 12–20. [Google Scholar] [CrossRef]
- Chung, I.M.; Paudel, N.; Kim, S.H.; Yu, C.Y.; Ghimire, B.K. The Influence of Light Wavelength on Growth and Antioxidant Capacity in Pachyrhizus erosus (L.) Urban. J. Plant Growth Regul. 2020, 39, 296–312. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Jankauskienė, J.; Viršilė, A.; Sirtautas, R.; Novičkovas, A.; Sakalauskienė, S.; Sakalauskaitė, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Sirtautas, R.; Viršilė, A.; Sakalauskaitė, J.; Sakalauskienė, S.; Duchovskis, P. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 2013, 93, 3286–3291. [Google Scholar] [CrossRef]
- Braidot, E.; Petrussa, E.; Peresson, C.; Patui, S.; Bertolini, A.; Tubaro, F.; Wählby, U.; Coan, M.; Vianello, A.; Zancani, M. Low-intensity light cycles improve the quality of lamb’s lettuce (Valerianella olitoria L. Pollich) during storage at low temperature. Postharvest Biol. Technol. 2014, 90, 15–23. [Google Scholar] [CrossRef]
- Chen, X.; Guo, W.; Xue, X.; Wang, L.; Qiao, X. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci. Hortic. 2014, 172, 168–175. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Sams, C.E.; Barickman, T.C.; Morrow, R.C. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. JASHS 2014, 139, 469–477. [Google Scholar] [CrossRef]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos Trans. R. Soc. Lond. Ser. B Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Kleinowski, A.M.; Klein, F.R.S.; Telles, R.T.; do Amarante, L.; Braga, E.J.B. Light quality on the in vitro growth and production of pigments in the genus Alternanthera. J. Crop. Sci. Biotechnol. 2015, 18, 349–357. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortic. 2016, 198, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant Productivity in Response to LED Lighting. Hortscience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Gupta, S.D.; Jatothu, B. Fundamentals and applications of light emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Bello-Bello, J.J.; Perez-Sato, J.A.; Cruz-Cruz, C.A.; Martinez-Estrada, E. Light-emitting diodes: Progress in plant micropropagation. InTech 2017, 6, 93–103. [Google Scholar]
- Morrow, R.C. LED lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, C.; Yuk, H.G.; Khoo, G.H.; Zhou, W. Application of Light-Emitting Diodes in Food Production, Postharvest Preservation, and Microbiological Food Safety. Compr. Rev. Food Sci. Food Saf. 2015, 14, 719–740. [Google Scholar] [CrossRef]
- Deng, M.; Qian, H.; Chen, L.; Sun, B.; Chang, J.; Miao, H.; Cai, C.; Wang, Q. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts. Food Chem. 2017, 222, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chory, J.; Fankhauser, C. Light signal transduction in higher plants. Annu. Rev. Genet. 2004, 38, 87–117. [Google Scholar] [CrossRef] [Green Version]
- Samuolienė, G.; Brazaitytė, A.; Urbonavičiūtė, A.; Šabajevienė, G.; Duchovskis, P. The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirb. Agric. 2010, 97, 99–104. [Google Scholar]
- Gupta, S.D.; Agarwal, A. Influence of LED lighting on in vitro plant regeneration and associated cellular redox balance. In Light Emitting Diodes for Agriculture; Springer: Singapore, 2017; pp. 273–303. [Google Scholar]
- Hahn, E.J.; Kozai, T.; Paek, K.Y. Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. J. Plant Biol. 2000, 43, 247–250. [Google Scholar] [CrossRef]
- Choi, H.G.; Moon, B.Y.; Kang, N.J. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci. Horticult. 2015, 189, 22–31. [Google Scholar] [CrossRef]
- Do Nascimento Vieira, L.; de Freitas Fraga, H.P.; dos Anjos, K.G.; Puttkammer, C.C.; Scherer, R.F.; da Silva, D.A.; Guerra, M.P. Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets. Theor. Exp. Plant Physiol. 2015, 27, 91–97. [Google Scholar] [CrossRef]
- Rocha, P.S.G.; Oliveira, R.P.; Scivittaro, W.B.; Santos, U.L. Diodos emissores de luz e concentrações de BAP na multiplicação in vitro de morangueiro. Ciênc. Rural 2010, 40, 1922–1928. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Hahn, E.J.; Heo, J.W.; Paek, K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of Chrysanthemum plantlets in vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Seabrook, J.E. Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: A review. Am. J. Potato Res. 2005, 82, 353–367. [Google Scholar] [CrossRef]
- Muneer, S.; Kim, E.J.; Park, J.S. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci. 2014, 15, 4657–4670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, K.A.; Whitelam, G.C. Light signals, phytochromes and cross-talk with other environmental cues. J. Exp. Biol. 2004, 55, 271–276. [Google Scholar] [CrossRef]
- Jao, R.C.; Lai, C.C.; Fang, W.; Chang, S.F. Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes. HortScience 2005, 40, 436–438. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.S.; Murthy, H.N.; Heo, J.W.; Hahn, E.J.; Paek, K.Y. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol. Plant 2008, 30, 339–343. [Google Scholar] [CrossRef]
- Li, H.M.; Xu, Z.G.; Tang, C.M. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Org. Cult. 2010, 103, 155–163. [Google Scholar] [CrossRef]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G.; Luna-Sánchez, I.J. Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. S. Afr. J. Bot. 2017, 109, 288–293. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Yang, M. Effects of Composite LED Light on Root Growth and Antioxidant Capacity of Cunninghamia lanceolata Tissue Culture Seedlings. Sci. Rep. 2019, 9, 9766. [Google Scholar] [CrossRef]
- Nadeem, M.; Abbasi, B.H.; Younas, M.; Ahmad, W.; Zahir, A.; Hano, C. LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. J. Photochem. Photobiol. B 2019, 190, 172–178. [Google Scholar] [CrossRef]
- Whitelam, G.; Halliday, K. Light and Plant Development; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar]
- Stagnari, F.; Di Mattia, C.; Galieni, A.; Santarelli, V.; D’Egidio, S.; Pagnani, G.; Pisante, M. Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Ind. Crop. Prod. 2018, 122, 277–289. [Google Scholar] [CrossRef]
- Taulavuori, K.; Hyöky, V.; Oksanen, J.; Taulavuori, E.; Julkunen-Tiitto, R. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ. Exp. Bot. 2016, 121, 145–150. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morela, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Samuolienė, G.; Sirtautas, R.; Brazaitytė, A.; Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012, 134, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Shohael, A.M.; Ali, M.B.; Yu, K.W.; Hahn, E.J.; Islam, R.; Paek, K.Y. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process. Biochem. 2006, 41, 1176–1185. [Google Scholar] [CrossRef]
- Zhao, J.; Thi, L.T.; Park, Y.G.; Jeong, B.R. Light quality affects growth and physiology of Carpesium triste Maxim. Cultured in vitro. Agriculture 2020, 10, 258. [Google Scholar] [CrossRef]
- Causin, H.F.; Jauregui, R.N.; Barneix, A.J. The effect of light spectral quality on leaf senescence and oxidative stress in wheat. Plant Sci. 2006, 171, 24–33. [Google Scholar] [CrossRef]
- Pastori, G.M.; del Río, L.A. Natural senescence of pea leaves (an activated oxygen-mediated function for peroxisomes). Plant Physiol. 1997, 113, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Li, F.; Li, Y.; Wang, Y.; Wang, C.; Yuan, D.; Jiang, Y. Exogenous procyanidin treatment delays senescence of harvested banana fruit by enhancing antioxidant responses and in vivo procyanidin content. Postharvest Biol. Tec. 2019, 158, 110999. [Google Scholar] [CrossRef]
- Adil, M.; Ren, X.; Jeong, B.R. Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cnidium officinale Makino. J. Photochem. Photobiol. B Biol. 2019, 196, 111509. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Grief, J.; Feierabend, J. Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen. Planta 2006, 223, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D. Role of free radicals and antioxidants in in vitro morphogenesis. In Reactive Oxygen Species and Antioxidants in Higher Plants; Dutta Gupta, S., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 229–247. [Google Scholar]
- Cuong, D.M.; Ha, T.W.; Park, C.H.; Kim, N.S.; Yeo, H.J.; Chun, S.W.; Kim, C.; Park, S.U. Effects of LED lights on expression of genes involved in phenylpropanoid biosynthesis and accumulation of phenylpropanoids in wheat sprout. Agronomy 2019, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Franck, T.; Kevers, C.; Gaspar, T. Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. L. raised in vitro. Plant Growth Regul. 1995, 16, 253–256. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Datta, S. Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol. Plant 2003, 47, 179–183. [Google Scholar] [CrossRef]
- Rajeswari, V.; Paliwal, K. Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L.f. (Benth). Acta Physiol. Plant 2008, 30, 825–832. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Viršile, A.; Jankauskienė, J.; Sakalauskienė, S.; Duchovskis, P. Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. PLoS ONE 2016, 11, e0163405. [Google Scholar] [CrossRef]
- Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes. Physiol. Plant. 2018, 164, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.K.L.; Oh, M. Physiological and biochemical responses of green and red perilla to LED-based light. J. Sci. Food Agric. 2021, 101, 240–252. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.N.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. Hortscience 2010, 45, 1809–1814. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, Y.; Hu, T.; Zhang, S.; Zhang, Y.; Zhao, T.; Yu, H.; Kang, Y. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J. Funct. Foods 2016, 25, 459–465. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Adnan, M.; Son, J.; Choi, D.H.; Park, C.H. Effect of Artificial LED on the Growth, Anthocyanin, Chlorophyll and Total Phenolic Content of Buckwheat Seedling. Biomed. J. Sci. Tech. Res. 2020, 13, 10274–10277. [Google Scholar]
- Wilawan, N.; Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Changes in enzyme activities and amino acids and their relations with phenolic compounds contents in okra treated by LED lights of different colors. Food Bioprocess. Technol. 2019, 12, 1945–1954. [Google Scholar] [CrossRef]
- Gam, D.T.; Khoi, P.H.; Ngoc, P.B.; Linh, L.K.; Hung, N.K.; Anh, P.T.L.; Thu, N.T.; Hien, N.T.T.; Khanh, T.D.; Ha, C.H. LED Lights promote growth and flavonoid accumulation of Anoectochilus roxburghii and are linked to the enhanced expression of several related genes. Plants 2020, 9, 1344. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Kim, J.K.; Park, S.U. Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica juncea Sprouts. Horticulturae 2020, 6, 77. [Google Scholar] [CrossRef]
- Zheng, C.; Ma, J.; Ma, C.; Shen, S.; Liu, Y.; Chen, L. Regulation of growth and flavonoid formation of tea plants (Camellia sinensis) by blue and green light. J. Agric. Food Chem. 2019, 67, 2408–2419. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, Y.; Nakashima, H.; Miyasaka, J.; Ohdoi, K.; Shimizu, H. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry 2017, 137, 57–65. [Google Scholar] [CrossRef]
- Ghaffari, Z.; Rahimmalek, M.; Sabzalian, M.R. Variation in the primary and secondary metabolites derived from the isoprenoid pathway in the Perovskia species in response to different wavelengths generated by light emitting diodes (LEDs). Ind. Crops Prod. 2019, 140, 111592. [Google Scholar] [CrossRef]
- Cuong, D.M.; Jeon, J.; Morgan, A.M.; Kim, C.; Kim, J.K.; Lee, S.Y.; Park, S.U. Accumulation of charantin and expression of triterpenoid biosynthesis genes in bitter melon (Momordica charantia). J. Agric. Food Chem. 2017, 65, 7240–7249. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Kim, N.S.; Park, J.S.; Lee, S.Y.; Lee, J.; Park, S.U. Effects of light-emitting diodes on the accumulation of glucosinolates and phenolic compounds in sprouting canola (Brassica napus L.). Foods 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, L.; Liu, W.; Yang, Q.; Zhang, Y.; Zhou, C.; Shao, M. Regulation of ascorbate accumulation and metabolism in lettuce by the red: Blue ratio of continuous light using LEDs. Front. Plant Sci. 2020, 11, 704. [Google Scholar] [CrossRef]
- Nam, T.G.; Kim, D.; Eom, S.H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. Food Sci. Biotechnol. 2018, 27, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Sobhani Najafabadi, A.; Khanahmadi, M.; Ebrahimi, M.; Moradi, K.; Behroozi, P.; Noormohammadi, N. Effect of different quality of light on growth and production of secondary metabolites in adventitious root cultivation of Hypericum perforatum. Plant Signal. Behav. 2019, 14, 1640561. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.H.; Jung, S. Effects of light-emitting diode irradiation on growth characteristics and regulation of porphyrin biosynthesis in rice seedlings. Int. J. Mol. Sci. 2017, 18, 641. [Google Scholar] [CrossRef]
- Chiang, S.; Liang, Z.; Wang, Y.; Liang, C. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. J. Food Composit. Anal. 2017, 60, 51–56. [Google Scholar] [CrossRef]
- Park, W.T.; Yeo, S.K.; Sathasivam, R.; Park, J.S.; Kim, J.K.; Park, S.U. Influence of light-emitting diodes on phenylpropanoid biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugose. Appl. Biol. Chem. 2020, 63, 25. [Google Scholar] [CrossRef]
- Hosseini, A.; Zare Mehrjerdi, M.; Aliniaeifard, S. Alteration of bioactive compounds in two varieties of basil (Ocimum basilicum) grown under different light spectra. J. Essent. Oil Bearing Plants 2018, 21, 913–923. [Google Scholar] [CrossRef]
- Lopes, E.M.; Guimarães-Dias, F.; Gama, T.D.S.S.; Macedo, A.L.; Valverde, A.L.; de Moraes, M.C.; de Aguiar-Dias, A.C.A.; Bizzo, H.R.; Alves-Ferreira, M.; Tavares, E.S.; et al. Artemisia annua L. and photoresponse: From artemisinin accumulation, volatile profile and anatomical modifications to gene expression. Plant Cell Rep. 2020, 39, 101–117. [Google Scholar] [CrossRef]
- Lee, M.J.; Son, K.H.; Oh, M.M. Increase in biomass and bioactive compound in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.M.; Kim, H.M.; Lee, H.R.; Jeong, B.R.; Lee, H.; Kim, H.; Hwang, S.J. Growth and phytochemicals of ice plant (Mesembryanthemum crystallinum L.) as affected by various combined ratios of red and blue LEDs in a closed-type plant production system. J. Appl. Res. Med. Aromat. Plants 2020, 20, 100267. [Google Scholar] [CrossRef]
- Nakai, A.; Tanaka, A.; Yoshihara, H.; Murai, K.; Watanabe, T.; Miyawaki, K. Blue LED light promotes indican accumulation and flowering in indigo plant, Polygonum tinctorium. Ind. Crops Prod. 2020, 155, 112774. [Google Scholar] [CrossRef]
- Ha, S.Y.; ⋅ Jung, J.Y.; Yang, J.K. Effect of Light-Emitting Diodes on Cordycepin Production in Submerged Culture of Paecilomyces japonica. J. Korean Wood Sci. Technol. 2020, 48, 548–561. [Google Scholar]
- Tian, M.; Gu, Q.; Zhu, M. The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci. 2003, 165, 701–707. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Sahoo, T.K. Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides Gaertn. Acta Physiol. Plant 2015, 37, 233. [Google Scholar] [CrossRef]
- Koga, R.; Meng, T.; Nakamura, E.; Miura, C.; Irino, N.; Devkota, H.P.; Yahara, S.; Kondo, R. The effect of photo-irradiation on the growth and ingredient composition of young green barley (Hordeum vulgare). Agric. Sci. 2013, 4, 185–194. [Google Scholar]
- Kokaji, D.; Hribar, J.; Cigić, B.; Zlatić, E.; Demšar, L.; Sinkovič, L.; Šircelj, H.; Bizjak, G.; Vidrih, R. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit. Food Technol. Biotechnol. 2016, 54, 228–235. [Google Scholar]
- Samuolienė, G.; Viršile, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaite, V.; Novicˇkovas, A.; Viškeliene, A.; Sasnauskas, A.; Duchovskis, P. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, Y.T.; Wang, C.Y.; Chen, H.H.; Chang, H.M. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, L.; Kato, M.; Yamawaki, K.; Kiriiwa, Y.; Yahata, M.; Ikoma, Y.; Matsumoto, H. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. Postharvest Biol. Technol. 2015, 99, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Guo, S.R.; Chang, T.T.; Xu, Z.G.; Takafumi, T. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 2012, 11, 6169–6177. [Google Scholar]
- Tuan, P.A.; Thwe, A.A.; Kim, J.K.; Kim, Y.B.; Lee, S.; Park, S.U. Molecular characterization and the light—dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.). Food Chem. 2013, 141, 3803–3812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, G.; Yamawaki, K.; Ikoma, Y.; Matsumoto, H.; Yoshioka, T.; Ohta, S.; Kato, M. Effect of blue LED light intensity on carotenoid accumulation in citrus juice sacs. J. Plant Physiol. 2015, 188, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Kopsell, D.A.; Sams, C.E. Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Am. Soc. Hortic. Sci. 2013, 138, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Rodyoung, A.; Masuda, Y.; Tomiyama, H.; Saito, T.; Okawa, K.; Ohara, H.; Kondo, S. Effects of light emitting diode irradiation at night on abscisic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. Plant Growth Regul. 2016, 79, 39–46. [Google Scholar] [CrossRef]
- Thwe, A.A.; Kim, Y.B.; Li, X.; Seo, J.M.; Kim, S.J.; Suzuki, T.; Chung, S.O.; Park, S.U. Effects of light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts. J. Agric. Food Chem. 2014, 62, 4839–4845. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Env. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Stutte, G.W.; Edney, S.; Skerritt, T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 2009, 44, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Brazaitytė, A.; Sakalauskienė, S.; Viršilė, A.; Jankauskienė, J.; Samuolienė, G.; Sirtautas, R.; Vaštakaitė, V.; Miliaukienė, J.; Duchovskis, P.; Novičkovas, A.; et al. The effect of short-term red lighting on Brassicaceae microgreens grown indoors. Acta Hortic. 2016, 1123, 177–183. [Google Scholar] [CrossRef]
- Qian, H.; Liu, T.; Deng, M.; Miao, H.; Cai, C.; Shen, W.; Wang, Q. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem. 2016, 196, 1232–1238. [Google Scholar] [CrossRef]
- Lekkham, P.; Srilaong, V.; Pongprasert, N.; Kondo, S. Anthocyanin concentration and antioxidant activity in light-emitting diode (LED)-treated apples in a greenhouse environmental control system. Fruits 2016, 71, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, C.; Xu, Z.; Liu, X. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J. Agric. Sci. 2012, 4, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Lee, J.G.; Cho, H.S.; Seong, E.S.; Kim, H.Y.; Yu, C.Y.; Kim, J.K. Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (Panax ginseng C. A. Mayer). Plant Omics 2013, 6, 224–230. [Google Scholar]
- Liu, Y.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus. J. Photochem. Photobiol. B 2018, 79, 66–73. [Google Scholar] [CrossRef]
- Ranwala, N.K.D.; Decoteau, D.R.; Ranwala, A.P.; Miller, W.B. Changes in soluble carbohydrates during phytochrome-regulated petiole elongation in watermelon seedlings. Plant Growth Reg. 2002, 38, 157–163. [Google Scholar] [CrossRef]
- Kowallik, W. Blue light effect on carbohydrate and protein metabolism. In Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms; Senger, H., Ed.; CRC Press: Boca Raton, FL, USA, 1987; Volume II, pp. 7–16. [Google Scholar]
- Lefsrud, M.G.; Kopsell, D.A.; Sams, C.E. Irradiance from distinct wave-length light-emitting diodes affect secondary metabolites in kale. HortScience 2008, 43, 2243–2244. [Google Scholar] [CrossRef] [Green Version]
- Edesi, J.; Kotkas, K.; Pirttilä, A.M.; Häggman, H. Does light spectral quality affect survival and regeneration of potato (Solanum tuberosum L.) shoot tips after cryopreservation? Plant Cell Tissue Organ. Cult. 2014, 119, 599–607. [Google Scholar] [CrossRef]
- Hung, C.D.; Hong, C.H.; Jung, H.B.; Kim, S.K.; Van Ket, N.; Nam, M.W.; Choi, D.H.; Lee, H.I. Growth and morphogenesis of encapsulated strawberry shoot tips under mixed LEDs. Sci. Hortic. 2015, 194, 194–200. [Google Scholar] [CrossRef]
- Al-Mayabi, A.M.W. Effect of red and blue light emitting diodes “CRB-LED” on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr. World J. Microbiol. Biotechnol. 2016, 32, 160. [Google Scholar] [CrossRef] [PubMed]
- Bello-Bello, J.J.; Martínez-Estrada, E.; Caamal-Velázquez, J.H.; Morales-Ramos, V. Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). Afr. J. Biotechnol. 2016, 15, 272–277. [Google Scholar]
- Lian, M.L.; Murthy, H.N.; Paek, K.Y. Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Sci. Hortic. 2002, 94, 365–370. [Google Scholar] [CrossRef]
- Lee, N.N.; Choi, Y.E.; Moon, H.K. Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai. J. Plant Biotechnol. 2014, 41, 94–99. [Google Scholar] [CrossRef]
- Poudel, P.R.; Kataoka, I.; Mochioka, R. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ. Cult. 2008, 92, 147–153. [Google Scholar] [CrossRef]
- Wu, H.C.; Lin, C.C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. HortScience 2012, 47, 1490–1494. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.D.; Hong, C.H.; Kim, S.K.; Lee, K.H.; Park, J.Y.; Dung, C.D.; Nam, M.W.; Choi, D.H.; Lee, H.I. In vitro proliferation and ex vitro rooting of microshoots of commercially important rabbiteye blueberry (Vaccinium ashei Reade) using spectral lights. Sci. Hortic. 2016, 211, 248–254. [Google Scholar] [CrossRef]
- Chung, J.P.; Huang, C.Y.; Dai, T.E. Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci. Hortic. 2010, 124, 511–516. [Google Scholar] [CrossRef]
- Hung, C.D.; Hong, C.H.; Kim, S.K.; Lee, K.H.; Park, J.Y.; Nam, M.W.; Choi, D.H.; Lee, H.I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant 2016, 38, 152. [Google Scholar] [CrossRef]
- Alvarenga, I.C.A.; Pacheco, F.V.; Silva, S.T.; Bertolucci, S.K.V.; Pinto, J.E.B.P. In vitro culture of Achillea millefolium L.: Quality and intensity of light on growth and production of volatiles. Plant Cell Tissue Organ Cult. 2015, 122, 299–308. [Google Scholar] [CrossRef]
- Maluta, F.A.; Bordignon, S.R.; Rossi, M.L.; Ambrosano, G.M.B.; Rodrigues, P.H.V. In vitro culture of sugarcane exposed to different light sources. Pesqui Agropecu Bras. 2013, 48, 1303–1307. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, L.E.S.; Bertolucci, S.K.V.; Pacheco, F.V.; dos Santos, J.; Silva, S.T.; de Carvalho, A.A.; Pinto, J.E.B.P. Quality and intensity of light affect lippia gracilis schauer plant growth and volatile compounds in vitro. Plant Cell Tissue Organ Cult. 2018, 135, 367–379. [Google Scholar] [CrossRef]
- Rehman, M.; Fahad, S.; Saleem, M.; Hafeez, M.; Rahman, M.; Liu, F.; Deng, G. Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica 2020, 58, 922–931. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; Cruz, Y.; López, J.E. Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis. BMC Biotechnol. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Tuan, P.A.; Park, C.H.; Park, W.T.; Kim, Y.B.; Kim, Y.J.; Chung, S.O.; Kim, J.K.; Park, S.U. Expression levels of carotenoid biosynthetic genes and carotenoid production in the callus of Scutellaria baicalensis exposed to white, blue, and red light-emitting diodes. Appl. Biol. Chem. 2017, 60, 591–596. [Google Scholar] [CrossRef]
- Miranda, N.A.; Xavier, A.; Otoni, W.C.; Gallo, R.; Gatti, K.C.; de Moura, L.C.; Souza, D.M.S.C.; Maggioni, J.H.; Santos, S.S.D.O. Quality and intensity of light in the in vitro development of microstumps of Eucalyptus urophylla in a photoautotrophic System. For. Sci. 2020, 66, 754–760. [Google Scholar] [CrossRef]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ. Cult. 2003, 73, 43–52. [Google Scholar] [CrossRef]
- Kurilčik, A.; Miklušytė-Čanova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol. 2008, 3, 161–167. [Google Scholar] [CrossRef]
- Park, S.Y.; Yeung, E.C.; Paek, K.Y. Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes during somatic embryogenesis. Plant Biotechnol. Rep. 2010, 4, 303–309. [Google Scholar] [CrossRef]
- Chen, C.C.; Agrawal, D.C.; Lee, M.R.; Lee, R.J.; Kuo, C.L.; Wu, C.R.; Tsay, H.S.; Chang, H.C. Influence of LED light spectra on in vitro somatic embryogenesis and LC–MS analysis of chlorogenic acid and rutin in Peucedanum japonicum Thunb.: A medicinal herb. Bot. Stud. 2016, 57, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mai, N.T.; Binh, P.T.; Gam, D.T.; Khoi, P.H.; Hung, N.K.; Ngoc, P.B.; Ha, C.H.; Thanh Binh, H.T. Effects of light emitting diodes—LED on regeneration ability of Coffea canephora mediated via somatic embryogenesis. Tap. Chi. Sinh. Hoc. 2016, 38, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.W.; Moon, H.K. Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine (Pinus densiflora). Plant Biotechnol. Rep. 2014, 8, 259–266. [Google Scholar] [CrossRef]
- Merkle, S.A.; Montello, P.M.; Xia, X.; Upchurch, B.L.; Smith, D.R. Light quality treatments enhance somatic seedling production in three southern pine species. Tree Physiol. 2005, 26, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, E.S.; Leea, S.; Limb, S.H.; Hac, S.H.; Liud, K.H.; Leea, C.H. Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Sci. 2013, 210, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, R.C.N.; Branquinho, N.A.A.; Hara, A.C.; Costa, A.C.; Silva, F.G.; Pimenta, L.P.; Silva, M.L.A.; Cunha, W.R.; Pauletti, P.M.; Januario, A.H. Impact of light quality on flavonoid production and growth of Hyptis marrubioides seedlings cultivated in vitro. Rev. Bras. Farmacogn. 2017, 27, 466–470. [Google Scholar] [CrossRef]
- Szopa, A.; Ekiert, H. The importance of applied light quality on the production of lignans and phenolic acids in Schisandra chinensis (turcz.) baill. cultures in vitro. Plant Cell Tissue Organ Cult. 2016, 127, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Ullah, M.A.; Tungmunnithum, D.; Garros, L.; Hano, C.; Abbasi, B.H. Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L. J. Photochem. Photobiol. B Biol. 2019, 196, 111505. [Google Scholar] [CrossRef] [PubMed]
- Rukh, G.; Ahmad, N.; Rab, A.; Ahmad, N.; Fazal, H.; Akbar, F.; Ullah, I.; Mukhtar, S.; Samad, N. Photo-dependent somatic embryogenesis from non-embryogenic calli and its polyphenolics content in high-valued medicinal plant of Ajuga bracteosa. J. Photochem. Photobiol. B Biol. 2019, 190, 59–65. [Google Scholar] [CrossRef]
- Chaves, I.; Byrdin, M.; Hoang, N.; van der Horst, T.J.; Batschauer, A.; Ahmad, M. The cryptochromes: Blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 2011, 62, 335–364. [Google Scholar] [CrossRef]
- Kapoor, S.; Raghuvanshi, R.; Bhardwaj, P.; Sood, H.; Saxena, S.; Chaurasia, O.P. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata edgew. J. Photochem. Photobiol. B Biol. 2018, 183, 258–265. [Google Scholar] [CrossRef]
- Zushi, K.; Suehara, C.; Shirai, M. Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. Sci. Horticult. 2020, 274, 109673. [Google Scholar] [CrossRef]
- De Hsie, B.S.; Bueno, A.I.S.; Bertolucci, S.K.V.; de Carvalho, A.A.; da Cunha, S.H.B.; Martins, E.R.; Pinto, J.E.B.P. Study of the influence of wavelengths and intensities of LEDs on the growth, photosynthetic pigment, and volatile compounds production of Lippia rotundifolia cham in vitro. J. Photochem. Photobiol. B Biol. 2019, 198, 111577. [Google Scholar] [CrossRef]
- Watcharatanon, K.; Ingkaninan, K.; Putalun, W. Improved triterpenoid saponin glycosides accumulation in in vitro culture of Bacopa monnieri (L.) wettst with precursor feeding and LED light exposure. Industrial Crops Prod. 2019, 134, 303–308. [Google Scholar] [CrossRef]
- Silva, M.M.A.; de Oliveira, A.L.B.; Oliveira-Filho, R.A.; Camara, T.; Willadino, L.; Gouveia-Neto, A. The effect of spectral light quality on in vitro culture of sugarcane. Acta Sci. Biol. Sci. 2016, 38, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.D.; Batista, D.S.; Fortini, E.A.; de Castro, K.M.; Felipe, S.H.S.; Fernandes, A.M.; de Jesus Sousa, R.M.; Chagas, K.; da Silva, J.V.; de Freitas Correia, L.N.; et al. Blue and red light affects morphogenesis and 20-hydroxyecdisone content of in vitro Pfaffia glomerata accessions. J. Photochem. Photobiol. B Biol. 2020, 203, 111761. [Google Scholar] [CrossRef] [PubMed]
- Mamedes-Rodrigues, T.; Batista, D.; Napoleão, T.; Cruz, A.; Fortini, E.; Nogueira, F.; Romanel, E.; Otoni, W. Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in Brachypodium distachyon. Plant Cell Tissue Organ Cult. 2020, 33, 1–14. [Google Scholar] [CrossRef]
- Xu, Z.; Rothstei, S.J. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal. Behav. 2018, 13, e1451708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Xu, Z.; Dong, R.; Chang, S.; Wang, L.; Khalil-Ur-Rehman, M.; Tao, J. An RNA-seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red LED light, and white fluorescent light. Front. Plant Sci. 2017, 8, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonsnongcheep, P.; Sae-foo, W.; Banpakoat, K.; Channarong, S.; Chitsaithan, S.; Uafua, P.; Putha, W.; Kerdsiri, K.; Putalun, W. Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica. J. Photochem. Photob. B Biol. 2019, 199, 111628. [Google Scholar] [CrossRef]
- Park, S.Y.; Man-Jo Kim, M.J. Development of Zygotic Embryos and Seedlings is Affected by Radiation Spectral Compositions from Light Emitting Diode (LED) System in Chestnut (Castanea crenata S. et Z.). J. Korean For. Soc. 2010, 99, 750–754. [Google Scholar]
- DellaPenna, D.; Pogson, B.J. Vitamin synthesis in plants: Tocopherols and carotenoids. Annu. Rev. Plant Biol. 2006, 57, 711–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenthaler, H.K. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 2007, 92, 163–179. [Google Scholar] [CrossRef]
- Stange, C.; Flores, C. Carotenoids and photosynthesis—Regulation of carotenoid biosynthesis by photoreceptors. In Advances in Photosynthesis—Fundamental Aspects; Najafpour, M.M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 77–96. [Google Scholar]
- Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 2012, 1817, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Telfer, A. What is β-carotene doing in the photosystem II reaction centre? Phil. Trans. R. Soc. Lond. B 2002, 357, 1431–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Guðmundsson, Ó.; Paglia, G.; Herjólfsson, G.; Andrésson, Ó.S.; Palsson, B.Ø.; Brynjólfsson, S. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 2013, 97, 2395–2403. [Google Scholar] [CrossRef] [Green Version]
- Rafia, M.M.; Kanakasabaib, S.; Reyesa, M.D.; Brightb, J.J. Lycopene modulates growth and survival associated genes in prostate cancer. J. Nutr. Biochem. 2013, 24, 1724–1734. [Google Scholar] [CrossRef]
- Tong, C.; Peng, C.; Wang, L.; Zhang, L.; Yang, X.; Xu, P.; Li, J.; Delplancke, T.; Zhang, H.; Qi, H. Intravenous administration of lycopene, a tomato extract, protects against Myocardial Ischemia-Reperfusion Injury. Nutrients 2016, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Liu, K.; Gao, Y.; Zhao, L.; Fang, H.; Li, Y.; Pei, L.; Xu, Y. Lycopene and risk of cardiovascular diseases: A meta-analysis of observational studies. Mol. Nutr. Food Res. 2017, 61, 1–25. [Google Scholar] [CrossRef]
- Walk, A.M.; Khan, N.A.; Barnett, S.M.; Raine, L.B.; Kramer, A.F.; Cohen, N.J.; Moulton, C.J.; Renzi-Hammond, L.M.; Hammond, B.R.; Hillman, C.H. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int. J. Psychophysiol. 2017, 118, 1–8. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, L.C.; Kato, M.; Yamawaki, K.; Asai, T.; Nishikawa, F.; Ikoma, Y.; Mat-sumoto, H.; Yamauchi, T.; Kamisako, T. Effect of electrostatic atomization on ascorbate metabolism in postharvest broccoli. Postharvest Biol. Technol. 2012, 74, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Liu, H.; Song, S.; Sun, G.; Chen, R. Effects of light quality on the quality formation of tomato fruits. Adv. Biol. Sci. Res. 2016, 3, 11–15. [Google Scholar]
- Mol, J.; Grotewold, E.; Koes, R. How genes paint flowers and seeds. Trends Plant Sci. 1998, 3, 212–217. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002, 5, 218–223. [Google Scholar] [CrossRef]
- Bradshaw, H.D.; Schemske, D.W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 2003, 426, 176–178. [Google Scholar] [CrossRef]
- Feild, T.S.; Lee, D.W.; Holbrook, N.M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dog wood. Plant Physiol. 2001, 127, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Stafford, H.A. Flavonoid evolution: An enzymic approach. Plant Physiol. 1991, 96, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Pollastri, S.; Tattini, M. Flavonols:old compounds for old roles. Ann. Bot. 2011, 108, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Huché-Thélier, L.; Crespel, J.; Le Gourrierec, P.; Morel, S.; Soulaiman Sakr, L.; Leduc, N. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Manhita, A.C.; Teixeira, D.M.; Costa, C.T. Application of sample disruption methods in the extraction of anthocyanins from solid or semi-solid vegetable samples. J. Chromatogr. A 2006, 1129, 14–20. [Google Scholar] [CrossRef]
- Gould, K.S. Nature’s swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalker-Scott, L. Environmental significance of anthocyanins in plant stress response. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Mizuno, T.; Amaki, W.; Watanabe, H. Effects of Monochromatic Light Irradiation by LED on the Growth and Anthocyanin Contents in Leaves of Cabbage Seedlings. Acta Horticult. 2011, 907, 179–184. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Jankauskienė, J.; Novičkovas, A. The effects of supplementary short-term red LEDs lighting on nutritional quality of Perilla frutescens L. microgreens. Rural Dev. 2013, 6, 54–58. [Google Scholar]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Li, X.X.; Chu, Y.N.; Zhang, M.X.; Wen, Y.Q.; Duan, C.Q.; Pan, Q.H. Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. Plant Physiol. Biochem. 2012, 57, 74–83. [Google Scholar] [CrossRef]
- Samuolienė, G.; Urbonavičiūtė, A.; Brazaitytė, A.; Šabajevienė, G.; Sakalauskaitė, J.; Duchovskis, P. The impact of LED illumination on antioxidant properties of sprouted seeds. Centr. Eur. J. Biol. 2011, 6, 68–74. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Zou, H.; Zhang, L.; Li, S.; Wang, Y. The combination of blue and red LED light improves growth and phenolic acid contents in Salvia miltiorrhiza bunge. Ind. Crops Prod. 2020, 158, 12959. [Google Scholar] [CrossRef]
- Son, K.H.; Oh, M.M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Horticience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Q.; Song, W.; Wang, L.; Guo, W.; Xue, X. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci. Horticult. 2017, 223, 44–52. [Google Scholar] [CrossRef]
- Ha, S.; Jung, J.; Park, J.; Lee, D.; Choi, J.; Yang, J. Effect of light-emitting diodes on cordycepin production in submerged Cordyceps militaris cultures. J. Mushroom 2020, 18, 10–19. [Google Scholar]
- Nguyen, D.T.; Kitayama, M.; Lu, N.; Takagaki, M. Improving secondary metabolite accumulation, mineral content, and growth of coriander (Coriandrum sativum L.) by regulating light quality in a plant factory. J. Horticult. Sci. Biotechnol. 2020, 95, 356–363. [Google Scholar] [CrossRef]
- Pola, W.; Sugaya, S.; Photchanachai, S. Color development and phytochemical changes in mature green chili (Capsicum annuum L.) exposed to red and blue light-emitting diodes. J. Agric. Food Chem. 2020, 68, 59–66. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Type of LED | Secondary Metabolites/ Enzyme/Gene | Biological Activity | References |
---|---|---|---|---|
Lactuca sativa var. crispa “Green Oak Leaf” | Blue LED | Carotenoid and chlorophylls | Bioactive compound production | Chen et al. [8] |
Lactuca sativa L. cv. Butterhead | Red, Blue and Green (4:1:1) LED | LHCb, PsbA | Gene expression | Bian et al. [54] |
Perilla frutescens var. crispa | Red LED | Rosmarinic acid, caffeic acid | Bioactive compound production, biomass increase | Nguyen and Oh [55] |
Lactuca sativa L. cv. Banchu Red Fire | BlueLED | Polyphenol and carotenoid | Bioactive compound production, | Johkan et al. [56] |
Pisum sativum L. | Blue LED | Chlorogenic acid | Antioxidation | Liu et al. [57] |
Lactuca sativa L. var Lollo rosso | Red and Blue(1:5) LED | Chlorogenic acid | Bioactive compound production | Azad et al. [58] |
Abelmoschus esculentus L. | Blue LED | PAL | Gene expression | Wilawan et al. [59] |
Brassica alboglabra Bailey. cv. Lvbao | Red and Blue (2:1) LED | Amino acids | Bioactive compound production | Zhang et al. [56] |
Pachyrhizus erosus L. | Blue LED | l-phenylalanine | Antioxidation | Chung et al. [4] |
Anoectochilus roxburghii | Red and Blue(8:2) LED | PAL, CHS, CHI, and FLS, | Gene expression | Gam et al. [60] |
Brassica juncea | Blue LED | 4-hydroxybenzoic acid | Bioactive compound production | Park et al. [61] |
Camellia sinensis (L.) O. Kuntze ‘Zhonghuang 3′ | Blue LED | Anthocyanins, catechins, CRY2/3, SPA, HY5 | Bioactive compound production, Gene expression | Zheng et al. [62] |
Coriandrum sativum L. | Red, Blue and Far red (81.5:12.5:6) LED | Ascorbic acid | Biomass increase, Bioactive compound production | Nguyen et al. [55] |
Stevia rebaudiana | Red:Far red: Blue (5:6.1), LED | UGT85C2 | Gene expression | Yoneda et al. [63] |
Perovskia atriplicifolia | Blue LED | δ-3-Carene | Bioactive compound production | Ghaffari et al. [64] |
Momordica charantia | Red LED | Charantin, AACT, MVD, IDI, FPS1, FPS2, CAS2 | Bioactive compound production, gene expression | Cuong et al. [65] |
Brassica napus sprouts | Blue LED | Caffeic acid | Bioactive compound production | Park et al. [66] |
Lactuca sativa L. | Red and Blue (1:3) LED | Ascorbate, GMP, GME, GGP, GGP, GLDH | Bioactive compound production, gene expression | Zha et al. [67] |
Fagopyrum esculentum | Blue LED | Rutin, orientin | Antioxidation | Nam et al. [68] |
Hypericum perforatum | Red LED | Hypericin | Bioactive compound production | Sobhani Najafabadi et al. [69] |
Oryza sativa cv. Dongjin | Red LED | PPO1 | Gene expression | Tran and Jung [70] |
Cordyceps militaris | Red and Blue (1:1) LED | Cordycepin | Bioactive compound production | Chiang et al. [71] |
Agastache rugosa | White LED | Rosmarinic acid, C4H, TAT, CHI | Bioactive compound production, gene expression | Park et al. [72] |
Ocimum basilicum purple varieties ‘Ardestan’ | Red LED | α-pinene | Bioactive compound production | Hosseini et al. [73] |
Artemisia annua L. | Blue LED | ADS, artemisinin | Bioactive compound production, gene expression | Lopes et al. [74] |
Lactuca sativa ‘Sunmang’ | Red, Blue and Far red (2:8:1.4) LED | Chlorogenic acid | Antioxidation | Lee et al. [75] |
Mesembryanthemum crystallinum L. | Red and Blue (1:9) LED | Myo-inositiol, pinitol | Bioactive compound production | Kim et al. [76] |
Polygonum tinctorium cv. senbon | Blue LED | IGS, BGL | Gene expression | Nakai et al. [77] |
Paecilomyces japonica | Red:Blue (3:7) LED | Cordycepin | Bioactive compound production | Ha et al. [78] |
Carpesium triste Maxim | Red and Blue (1:1) LED | CAT, POD, SOD and APX | Enzyme activity | Zhao et al. [42] |
Cnidium officinale | Blue and White LED | CAT | Enzyme activity | Adila et al. [46] |
Wheat | Blue-light | CAT | Enzyme activity | Causin et al. [43] |
Rye | Blue-light | CAT | Enzyme activity | Schmidt et al. [47] |
Prunus avium, Strawberry | Blue-LED | SOD | Enzyme activity | Franck et al. [50], Tian et al. [79] |
Gladiolus hybridus | Blue LED | SOD and CAT | Enzyme activity | Gupta Dutta and Datta [80] |
Albizia adorratissima | Blue LED | SOD and CAT | Enzyme activity | Rajeswari and Paliwal [52] |
Barley | Red-LED | ɣ-tocopherol | Bioactive compound production | Koga et al. [81] |
Apple | Yellow-LED | Tocopherol | Bioactive compound production | Kokaji et al. [82] |
Basil | Red-LED | α-tocopherol | Bioactive compound production | Samuoliene et al. [53] |
Beet and parsley | Blue-LED | Tocopherol | Bioactive compound production | Samuoliene et al. [83] |
Pea | Red-LED | b-caretene | Bioactive compound production | Wu et al. [84] |
Citrus fruit | Red-LED | b-cryptoxanthin | Bioactive compound production | Ma et al. [85] |
Tomato | Red-LED | Lycopene | Bioactive compound production | Liu et al. [86] |
Buckwheat | White-LED | Carotenoid | Bioactive compound production | Tuan et al. [87] |
Citrus | Blue-LED | CitPSY, CitZDS, CitPDS, CitLCY, | Gene expression | Zhang et al. [88] |
Broccoli | Short duration of Blue-LED | BC and VIO | Bioactive compound production | Kopsell and Sams [89] |
Grape | Blue-LED | Anthocyanin | Bioactive compound production | Rodyoung et al. [90] |
Buckwheat | Blue-LED | Anthocyanin | Bioactive compound production | Thwe et al. [91] |
Wheat sprout | Blue-LED | p-coumaric acid, epicatechin | Bioactive compound production | Cuong et al. [49], |
Lettuce | Red-LED | Anthocyanin | Bioactive compound production | Li and Kubota [92]; Stutte et al. [93] |
Mustard | Red-LED | Anthocyanin | Bioactive compound production | Brazaityte et al. [94] |
Cabbage | Red-LED | Anthocyanin | Bioactive compound production | Qian et al. [95] |
Apples | Red-LED | Anthocyanin | Bioactive compound production | Lekkham et al. [96] |
Grape | Blue LED and Red LED | MYB transcription factor genes | Gene expression | Koes et al. [97] |
Grape | Blue-LED | V1MYBA1-2, VIMYBA2 and VvUFGT increased | Gene expression | Rodyoung et al. [90] |
Basil | RED-LED | TPC | Bioactive compound production | Samueliene et al. [53] |
Chinese kale sprouts | Blue-LED | TPC | Bioactive compound production | Qian et al. [95] |
Chinese cabbage and lettuce | Blue-LED and Red LED | TPC | Bioactive compound production | Li et al. [98] |
Pachyrhizus erosus | RED-LED | Malonyldaidzin, malonyl genistin, salicylic acid, p-hydrobenzoic acid and gentisic acid | Bioactive compound production | Chung et al. [4] |
Wheat sprout | Blue-LED | p-coumaric acid, gallic acid, ferulic acid, hydroxybenzoic acid | Bioactive compound production | Park et al. [99] |
Wheat sprout | Blue-LED | TaPA1,2, TaC4H, TaHCI, 1, TaCHS and TaF3H genes | Gene expression | Cuong et al. [49] |
Cyclocarya paliurus | Blue-LED. | (kaempferol, isoquercitrin and quercetin Phenylalanine ammonia lyase, PAL; 4-coumaroyl CoA-ligase, 4CL; and chalcone synthase, CHS | Bioactive compound production gene expression | Liu et al. [100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, W.-S.; Chung, I.-M.; Hwang, M.H.; Kim, S.-H.; Yu, C.Y.; Ghimire, B.K. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021, 26, 1477. https://doi.org/10.3390/molecules26051477
Jung W-S, Chung I-M, Hwang MH, Kim S-H, Yu CY, Ghimire BK. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules. 2021; 26(5):1477. https://doi.org/10.3390/molecules26051477
Chicago/Turabian StyleJung, Woo-Suk, Ill-Min Chung, Myeong Ha Hwang, Seung-Hyun Kim, Chang Yeon Yu, and Bimal Kumar Ghimire. 2021. "Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants" Molecules 26, no. 5: 1477. https://doi.org/10.3390/molecules26051477
APA StyleJung, W. -S., Chung, I. -M., Hwang, M. H., Kim, S. -H., Yu, C. Y., & Ghimire, B. K. (2021). Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules, 26(5), 1477. https://doi.org/10.3390/molecules26051477