The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Formalism of Adsorption Modeling
2.2. Monte Carlo Simulations of N2 Adsorption Isotherms inside CNTs
2.3. Experimental Data
2.4. Fitting of Adsorption Isotherms
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, S.; Pasquini, D.; Leu, S.-Y.; Gopakumar, D.A. (Eds.) Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kaneko, K.; Rodríguez-Reinoso, F. (Eds.) Nanoporous Materials for Gas. Storage; Springer: Singapore, 2019. [Google Scholar]
- Li, F.; Bashir, S.; Liu, J.L. (Eds.) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Fuel Cells; Springer: Berlin, Germany, 2018. [Google Scholar]
- Bar-Cohen, Y. (Ed.) Advances in Manufacturing and Processing of Materials and Structures; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Grumezescu, A.M. (Ed.) Nanomaterials for Drug Delivery and Therapy; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Wang, S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009, 117, 1–9. [Google Scholar] [CrossRef]
- Panczyk, T.; Warzocha, T.P. Monte Carlo study of the properties of a carbon nanotube functionalized by magnetic nanoparticles. J. Phys. Chem. C 2009, 113, 19155–19160. [Google Scholar] [CrossRef]
- Xiao, F.-S.; Wang, L. (Eds.) Nanoporous Catalysts for Biomass Conversion; Wiley: New York, NY, USA, 2017. [Google Scholar]
- Bhushan, N. (Ed.) Springer Handbook of Nanotechnology; Springer: Berlin, Germany, 2010. [Google Scholar]
- Vajtai, R. (Ed.) Springer Handbook of Nanomaterials; Springer: Berlin, Germmany, 2013. [Google Scholar]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Harris, P.J.F. Carbon Nanotube Science: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Sakintuna, B.; Yürüm, Y. Templated porous carbons: a review article. Ind. Eng. Chem. Res. 2005, 44, 2893–2902. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Bennett, J.M.; Cohen, J.P.; Flanigen, E.M.; Pluth, J.J.; Smith, J.V. Crystal-structure of tetrapropylammonium hydroxide-aluminum phosphate number-5. ACS Symp. Ser. 1983, 218, 109–118. [Google Scholar]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Losic, D.; Santos, A. (Eds.) Nanoporous Alumina. Fabrication, Structure, Properties and Applications; Springer: Heidenberg, Germany, 2015. [Google Scholar]
- Guldi, D.M.; Martín, N. (Eds.) Carbon Nanotubes and Related Structures. Synthesis, Characterization, Functionalization, and Applications; Wiley: Weinheim, Germany, 2010. [Google Scholar]
- Zhao, D.; Wan, Y.; Zhou, W. Ordered Mesoporous Materials; Wiley: Weinheim, Germany, 2013. [Google Scholar]
- Bhattacharyya, S.; Lelong, G.; Saboungi, M.-L. Recent progress in the synthesis and selected applications of MCM-41: A short review. J. Exp. Nanosci. 2006, 1, 375–395. [Google Scholar] [CrossRef]
- Kalbasi, R.J.; Izadi, E. Hydrothermal synthesis of pure AlPO4-5 without fluoride medium: Synthesis, characterization and application as a support. J. Porous Mater. 2013, 20, 547–556. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Setiabudi, H.D.; Nanda, S.; Vo, D.-V.N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Appl. Catal. A 2018, 559, 57–74. [Google Scholar] [CrossRef]
- Srinivasan, N.R.; Bandyopadhyaya, R. Highly accessible SnO2 nanoparticle embedded SBA-15 mesoporous silica as a superior photocatalyst. Microporous Mesoporous Mater. 2012, 149, 166–171. [Google Scholar] [CrossRef]
- Karnjanakom, S.; Guan, G.; Asep, B.; Hao, X.; Kongparakul, S.; Samart, C.; Abudula, A. Catalytic upgrading of bio-oil over Cu/MCM-41 and Cu/KIT-6 prepared by β-cyclodextrin-assisted coimpregnation method. J. Phys. Chem. C 2016, 120, 3396–3407. [Google Scholar] [CrossRef]
- Nagpure, S.; Browning, J.F.; Rankin, S.E. Incorporating poly(3-hexyl thiophene) into orthogonally aligned cylindrical nanopores of titania for optoelectronics. Microporous Mesoporous Mater. 2017, 240, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Ma, T. Recent progress of counter electrode catalysts in dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16727–16742. [Google Scholar] [CrossRef]
- De Souza, L.V.; Tkachenko, O.; Cardoso, B.N.; Pizzolato, T.M.; Dias, S.L.P.; Vasconcellos, M.A.Z.; Arenas, L.T.; Costa, T.M.H.; Moro, C.C.; Benvenutti, E.V. Strategy to control the amount of titania dispersed on SBA-15 surface preserving its porosity, aiming to develop a sensor for electrochemical evaluation of antibiotics. Microporous Mesoporous Mater. 2019, 287, 203–210. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pieroti, R.A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquérol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Rouquérol, J.; Rouquérol, F.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications; Academic Press: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Bandosz, T.J.; Biggs, M.J.; Gubbins, K.E.; Hattori, Y.; Iiyama, T.; Kaneko, K.; Pikunic, J.; Thomson, K.T. Molecular Models of Porous Carbons. In Chemistry and Physics of Carbon; Radovic, L.R., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2003; Volume 28, pp. 41–228. [Google Scholar]
- Furmaniak, S.; Terzyk, A.P.; Gauden, P.A.; Rychlicki, G. Simple model of adsorption in nanotubes. J. Colloid Interface Sci. 2006, 295, 310–317. [Google Scholar] [CrossRef]
- Gu, C.; Gao, G.-H.; Yu, Y.-X. Density functional study of hydrogen adsorption at low temperatures. J. Chem. Phys. 2003, 119, 448–495. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-J.; Ning, Z.-F.; Cheng, Z.-L.; Wang, Q.; Qi, R.-R.; Huang, L.; Zhang, W.-T. Simplified local density model for gas adsorption in cylindrical carbon pores. Appl. Surf. Sci. 2019, 491, 335–349. [Google Scholar] [CrossRef]
- Furmaniak, S. Influence of activated carbon porosity and surface oxygen functionalities’ presence on adsorption of acetonitrile as a simple polar volatile organic compound. Environ. Technol. 2015, 36, 1984–1999. [Google Scholar] [CrossRef]
- Hagymassy, J., Jr.; Brunauer, S.; Mikhail, R.S. Pore structure analysis by water vapor adsorption: I. t-curves for water vapour. J. Colloid Interface Sci. 1969, 29, 485–491. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Poulopoulos, S.G.; Kazemian, H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater. 2018, 272, 166–176. [Google Scholar] [CrossRef]
- Izotova, T.I.; Dubinin, M.M. Microporous structure of activated carbons. Zhurnal Fizicheskoi Khimii 1965, 39, 2769–2803. [Google Scholar]
- Rutherford, S.W. Modeling Water Adsorption in Carbon Micropores: Study of Water in Carbon Molecular Sieves. Langmuir 2006, 22, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Guggenheim, E.A. Application of Statistical Mechanics; Clarendon Press: Oxford, UK, 1966. [Google Scholar]
- Anderson, R.B. Modification of the Brunauer, Emmett and Teller equations. J. Am. Chem. Soc. 1946, 68, 686–691. [Google Scholar] [CrossRef]
- De Boer, J.M. The Dynamic Character of Adsorption; Clarendon Press: Oxford, UK, 1953. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.P.; Gauden, P.A.; Harris, P.J.F.; Wiśniewski, M.; Kowalczyk, P. Simple model of adsorption on external surface of carbon nanotubes—A new analytical approach basing on molecular simulation data. Adsorption 2010, 16, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Furmaniak, S.; Terzyk, A.P.; Rychlicki, G.; Wiśniewski, M.; Gauden, P.A.; Kowalczyk, P.; Werengowska, K.M.; Dulska, K. The system: Carbon tetrachloride—closed carbon nanotubes analysed by a combination of molecular simulations, analytical modelling and adsorption calorimetry. J. Colloid Interface Sci. 2010, 349, 321–330. [Google Scholar] [CrossRef]
- Fowler, R.H.; Guggenheim, E.A. Statistical Thermodynamics. The Theory of the Properties of Matter in Equilibrium; Cambridge University Press: Cambridge, UK, 1965. [Google Scholar]
- Yan, Q.; de Pablo, J.J. Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 1999, 111, 9509–9516. [Google Scholar] [CrossRef] [Green Version]
- Potoff, J.J.; Siepmann, L.I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001, 47, 1676–1682. [Google Scholar] [CrossRef]
- Steele, W.A. The Interaction of Gases with Solid Surfaces; Pergamon: New York, NY, USA, 1974. [Google Scholar]
- Ohba, T.; Murata, K.; Kaneko, K.; Steele, W.A.; Kokai, F.; Takahashi, K.; Kasuya, D.; Yudasaka, M.; Iijima, S. N2 adsorption in an internal nanopore space of single-walled carbon nanohorn: GCMC simulation and experiment. Nano Lett. 2001, 1, 371–373. [Google Scholar] [CrossRef]
- Rozwadowski, M.; Leżańska, M.; Erdmann, K. Mesoporous molecular sieves modified with carbonaceous deposits. Adsorption 2005, 11, 363–377. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Kim, J.M.; Ryoo, R. Characterization of highly ordered MCM-41 silicas using X-ray diffraction and nitrogen adsorption. Langmuir 1999, 15, 5279–5284. [Google Scholar] [CrossRef]
- Ajima, K.; Yudasaka, M.; Murakami, T.; Maigné, A.; Shiba, K.; Iijima, S. Carbon nanohorns as anticancer drug carriers. Molec. Pharm. 2005, 2, 475–480. [Google Scholar] [CrossRef]
- Tanaka, H.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. J. Am. Chem. Soc. 2005, 127, 7511–7516. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.P.; Kaneko, K.; Gauden, P.A.; Kowalczyk, P.; Itoh, T. The first atomistic modelling-aided reproduction of morphologically defective single walled carbon nanohorns. Phys. Chem. Chem. Phys. 2013, 15, 1232–1240. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.T.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, O.; Sheppard, E.; McCullen, S.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Salmas, C.E.; Androutsopoulos, G.P. Rigid sphere molecular model enables an assessment of the pore curvature effect upon realistic evaluations of surface areas of mesoporous and microporous materials. Langmuir 2005, 21, 11146–11160. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.P.; Gauden, P.A.; Wesołowski, R.P.; Kowalczyk, P. Ar, CCl4, and C6H6 adsorption outside and inside of the bundles of multi-walled carbon nanotubes—Simulation study. Phys. Chem. Chem. Phys. 2009, 11, 4982–4995. [Google Scholar] [CrossRef] [PubMed]
- Gauden, P.A.; Furmaniak, S.; Włoch, J.; Terzyk, A.P.; Zieliński, W.; Kowalczyk, P.; Kurzawa, J. The influence of geometric heterogeneity of closed carbon nanotube bundles on benzene adsorption from the gaseous phase—Monte Carlo simulations. Adsorption 2016, 22, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Horio, K.; Horikawa, T.; Nakai, K.; Do, D.D.; Nicholson, D. On the evolution of the heat spike in the isosteric heat versus loading for argon adsorption on graphite—A new molecular model for graphite & reconciliation between experiment and computer simulation. Carbon 2017, 122, 622–634. [Google Scholar]
- Xu, H.; Zeng, Y.; Do, D.D.; Nicholson, D. On the nonwetting/wetting behavior of carbon dioxide on graphite. J. Phys. Chem. C 2019, 123, 9112–9120. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Hołyst, R.; Tanaka, H.; Kaneko, K. Distribution of carbon nanotube sizes from adsorption measurements and computer simulation. J. Phys. Chem. B 2005, 109, 14659–14666. [Google Scholar] [CrossRef]
Sample | Deff [nm] | Method 1 | References | |
---|---|---|---|---|
The Models (Current Work) | Literature Data | |||
CNHs | 2.83 | 2.9 3.38 ± 0.48 2.96 | GCMC IDBdB NT-PFG | [50] [63] [32] |
Al-MCM-41(60) | 3.22 | 3.10 | BJH | [51] |
Al-MCM-41(30) | 3.56 | 3.54 | BJH | [51] |
Al-MCM-41(15) | 3.74 | 3.56 | BJH | [51] |
MCM-41-12 | 3.37 | 3.07 3.08 | BJH GM | [52] |
MCM-41-16A | 4.02 | 3.85 3.88 | BJH GM | [52] |
MCM-41-16B | 4.47 | 4.66 4.55 | BJH GM | [52] |
MCM-41-16C | 5.07 | 5.12 5.11 | BJH GM | [52] |
MCM-41-18 | 4.36 | 4.16 4.22 | BJH GM | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furmaniak, S.; Gauden, P.A.; Leżańska, M.; Miśkiewicz, R.; Błajet-Kosicka, A.; Kowalczyk, P. The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores. Molecules 2021, 26, 1509. https://doi.org/10.3390/molecules26061509
Furmaniak S, Gauden PA, Leżańska M, Miśkiewicz R, Błajet-Kosicka A, Kowalczyk P. The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores. Molecules. 2021; 26(6):1509. https://doi.org/10.3390/molecules26061509
Chicago/Turabian StyleFurmaniak, Sylwester, Piotr A. Gauden, Maria Leżańska, Radosław Miśkiewicz, Anna Błajet-Kosicka, and Piotr Kowalczyk. 2021. "The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores" Molecules 26, no. 6: 1509. https://doi.org/10.3390/molecules26061509
APA StyleFurmaniak, S., Gauden, P. A., Leżańska, M., Miśkiewicz, R., Błajet-Kosicka, A., & Kowalczyk, P. (2021). The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores. Molecules, 26(6), 1509. https://doi.org/10.3390/molecules26061509