Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo–Fabrizio Derivative
Abstract
:1. Introduction
2. Structure of HIV Dynamics
3. Fractional Dynamics of HIV Infection
Fundamental Knowledge and Concept
4. Novel Numerical Scheme for Fractional Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Li, M.Y. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci. 2006, 200, 44–57. [Google Scholar] [CrossRef]
- Antar, A.A.; Jenike, K.M.; Jang, S.; Rigau, D.N.; Reeves, D.B.; Hoh, R.; Krone, M.R.; Keruly, J.C.; Moore, R.D.; Schiffer, J.T.; et al. Longitudinal study reveals HIV-1–infected CD4+ T cell dynamics during long-term antiretroviral therapy. J. Clin. Investig. 2020, 130. [Google Scholar] [CrossRef] [Green Version]
- Jan, R.; Xiao, Y. Effect of partial immunity on transmission dynamics of dengue disease with optimal control. Math. Method. Appl. Sci. 2019, 42, 1967–1983. [Google Scholar] [CrossRef]
- Tamilalagan, P.; Karthiga, S.; Manivannan, P. Dynamics of fractional order HIV infection model with antibody and cytotoxic T-lymphocyte immune responses. J. Comput. Appl. Math. 2021, 382, 113064. [Google Scholar] [CrossRef]
- Jan, R.; Xiao, Y. Effect of pulse vaccination on dynamics of dengue with periodic transmission functions. Adv. Differ. Equ. 2019, 2019, 368. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Ahmadian, A.; Rafiq, M.; Salahshour, S.; Naveed, M.; Ferrara, M.; Soori, A.H. Modeling the effect of delay strategy on transmission dynamics of HIV/AIDS disease. Adv. Differ. Equ. 2020, 2020, 663. [Google Scholar] [CrossRef] [PubMed]
- Perelson, A.S.; Kirschner, D.E.; De Boer, R. Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 1993, 114, 81–125. [Google Scholar] [CrossRef] [Green Version]
- Perelson, A.S.; Nelson, P.W. Mathematical analysis of HIV-1 dynamics in vivo. Siam. Rev. 1999, 41, 3–44. [Google Scholar] [CrossRef]
- Culshaw, R.V.; Ruan, S. A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 2000, 165, 27–39. [Google Scholar] [CrossRef]
- Bushnaq, S.A.M.I.A.; Khan, S.A.; Shah, K.; Zaman, G. Existence theory of HIV-1 infection model by using arbitrary order derivative of without singular kernel type. J. Math. Anal. 2018, 9, 16–28. [Google Scholar]
- Ghoreishi, M.; Ismail, A.M.; Alomari, A.K. Application of the homotopy analysis method for solving a model for HIV infection of CD4+ T-cells. Math. Comput. Model. 2011, 54, 3007–3015. [Google Scholar] [CrossRef]
- Ongun, M. The laplace adomian decomposition method for solving a model for HIV infection of CD4+ 220 T-cells. Math. Comput. Model. 2011, 53, 597–603. [Google Scholar] [CrossRef]
- Vazquez-Leal, H.; Hernandez-Martinez, L.; Khan, Y.; Jimenez-Fernandez, V.M.; Filobello-Nino, U.; Diaz-Sanchez, A.; Herrera-May, A.L.; Castaneda-Sheissa, R.; Marin-Hernandez, A.; Rabago-Bernal, F.; et al. Multistage HPM applied to path tracking damped oscillations of a model for HIV infection of CD4+ T cells. J. Adv. Math. Comput. Sci. 2014, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, A.H.; Khater, M.M.; Dutta, H.; Bouslimi, J.; Omri, M. Computational solutions of the HIV-1 infection of CD4+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy. Chaos. Soliton. Fract. 2020, 139, 110092. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.; Defterli, O.; Baleanu, D. A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model. Appl. Math. Comput. 2020, 374, 125061. [Google Scholar] [CrossRef]
- Jan, A.; Jan, R.; Khan, H.; Zobaer, M.S.; Shah, R. Fractional-order dynamics of Rift Valley fever in ruminant host with vaccination. Commun. Math. Biol. Neurosci. 2020, 2020, 79. [Google Scholar]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. Analysis of the model of HIV-1 infection of CD4+ CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 2020, 71. [Google Scholar] [CrossRef] [Green Version]
- Jan, R.; Khan, M.A.; Kumam, P.; Thounthong, P. Modeling the transmission of dengue infection through fractional derivatives. Chaos. Soliton. Fract. 2019, 127, 189–216. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Cambridge, MA, USA, 1998. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Yverdon-les-Bains, Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993; Volume 1. [Google Scholar]
- Baleanu, D.; Aydogn, S.M.; Mohammadi, H.; Rezapour, S. On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. 2020, 59, 3029–3039. [Google Scholar] [CrossRef]
- Sene, N. SIR epidemic model with Mittag-Leffler fractional derivative. Chaos. Soliton. Fract. 2020, 137, 109833. [Google Scholar] [CrossRef]
- Bushnaq, S.; Khan, S.A.; Shah, K.; Zaman, G. Mathematical analysis of HIV/AIDS infection model with Caputo-Fabrizio fractional derivative. Cogent. Math. Stat. 2018, 5, 1432521. [Google Scholar] [CrossRef]
- Brandibur, O.; Kaslik, E.; Mozyrska, D.; Wyrwas, M. Stability Results for Two-Dimensional Systems of Fractional-Order Difference Equations. Mathematics 2020, 8, 1751. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saad, K.M. A comparative study of the fractional-order clock chemical model. Mathematics 2020, 8, 1436. [Google Scholar] [CrossRef]
- Abdulhameed, M.; Vieru, D.; Roslan, R. Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes. Comput. Math. Appl. 2017, 74, 2503–2519. [Google Scholar] [CrossRef]
- Fatmawati, F.; Jan, R.; Khan, M.A.; Khan, Y.; Ullah, S. A new model of dengue fever in terms of fractional derivative. Math. Biosci. Eng. 2020, 17, 5267–5287. [Google Scholar] [CrossRef]
- Kumar, S.; Ahmadian, A.; Kumar, R.; Kumar, D.; Singh, J.; Baleanu, D.; Salimi, M. An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 2020, 8, 558. [Google Scholar] [CrossRef] [Green Version]
- Muresan, C.I.; Birs, I.R.; Dulf, E.H. Event-Based Implementation of Fractional Order IMC Controllers for Simple FOPDT Processes. Mathematics 2020, 8, 1378. [Google Scholar] [CrossRef]
- Goufo, E.D. A biomathematical view on the fractional dynamics of cellulose degradation. Fract. Calc. Appl. Anal. 2015, 18, 554–564. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 1–13. [Google Scholar]
- Haase, A.T.; Henry, K.; Zupancic, M.; Sedgewick, G.; Faust, R.A.; Melroe, H.; Cavert, W.; Gebhard, K.; Staskus, K.; Zhang, Z.Q.; et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 1996, 274, 985–989. [Google Scholar] [CrossRef] [Green Version]
- Perelson, A.S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D.D. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 1997, 387, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Liu, Y.; Fan, E.; Yin, B.; Li, H. Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative. Aims. Math. 2020, 5, 1729–1744. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, A.; Li, X. A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative. Int. J. Comput. Math. 2018, 95, 396–411. [Google Scholar] [CrossRef]
- Atangana, A.; Owolabi, K.M. New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 2018, 13, 3. [Google Scholar] [CrossRef] [Green Version]
Symbols | Interpretation of Parameters and State Variables | Values |
---|---|---|
k | Rate constant for healthy T-cells which become infected by free virus | |
Population of healthy T-cells | Assumed | |
Population of infected T-cells | Assumed | |
s | The supply rate of healthy T-cells from precursors | |
r | Growth rate of the healthy T-cells population | |
Death rate of healthy T-cells | ||
Death rate of latently infected T-cells | ||
Death rate of free virus of HIV infection | ||
N | Number of virus produced by infected T-cells | Assumed |
Maximum population level of healthy T-cells | ||
Population of free HIV virus | Assumed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, Z.; Jan, R.; Kumam, P.; Deebani, W.; Shutaywi, M. Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo–Fabrizio Derivative. Molecules 2021, 26, 1806. https://doi.org/10.3390/molecules26061806
Shah Z, Jan R, Kumam P, Deebani W, Shutaywi M. Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo–Fabrizio Derivative. Molecules. 2021; 26(6):1806. https://doi.org/10.3390/molecules26061806
Chicago/Turabian StyleShah, Zahir, Rashid Jan, Poom Kumam, Wejdan Deebani, and Meshal Shutaywi. 2021. "Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo–Fabrizio Derivative" Molecules 26, no. 6: 1806. https://doi.org/10.3390/molecules26061806
APA StyleShah, Z., Jan, R., Kumam, P., Deebani, W., & Shutaywi, M. (2021). Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo–Fabrizio Derivative. Molecules, 26(6), 1806. https://doi.org/10.3390/molecules26061806