Profiling of In Vitro Bioaccessibility and Intestinal Uptake of Flavonoids after Consumption of Commonly Available Green Tea Types
Abstract
:1. Introduction
2. Results
2.1. Profiling of Epicatechins and Flavonols in Different Types of Green Tea Raw Materials
2.2. Profiling of Epicatechins and Flavonols in Different Types of Green Tea According to Drinking Usage
2.3. Bioaccessibility and Intestinal Uptake of Epicatechins and Flavonols in Different Types of Green Tea
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Preparations
4.3. Measurements of the Bioaccessibility of Green Tea Flavonoids by Using an In Vitro Digestion Model System
4.4. Measurements of Intestinal Uptake of Green Tea Flavonoids by Caco-2 Cell Culture
4.5. Simultaneous Analysis of Green Tea Flavonoids (Catechins and Flavonols) Using UPLC-PDA-ESI/MS
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sharpe, E.; Hua, F.; Schuckers, S.; Andreescu, S.; Bradley, R. Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties. Food Chem. 2016, 192, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med. 2010, 5, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Cody, R.B. Ambient Profiling of Phenolic Content in Tea Infusions by Matrix-Assisted Ionization in Vacuum. J. Am. Soc. Mass Spectrom. 2018, 29, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Bhushani, J.A.; Karthik, P.; Anandharamakrishnan, C. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocoll. 2016, 56, 372–382. [Google Scholar] [CrossRef]
- Cheong, W.-J.; Park, M.-H.; Kang, G.-W.; Ko, J.-H.; Seo, Y.-J. Determination of catechin compounds in Korean green tea infusions under various extraction conditions by high performance liquid chromatography. Bull. Korean Chem. Soc. 2005, 26, 747–754. [Google Scholar]
- Lee, M.-K.; Kim, H.-W.; Lee, S.-H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.-W.; Jung, H.-A.; Yoo, S.M.; Kim, J.-B. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2018, 245, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Van Der Burg-Koorevaar, M.C.D.; Miret, S.; Duchateau, G.S.M.J.E. Effect of Milk and Brewing Method on Black Tea Catechin Bioaccessibility. J. Agric. Food Chem. 2011, 59, 7752–7758. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.J.; Anderton, C.R. Determination of catechins in matcha green tea by micellar electrokinetic chromatography. J. Chromatogr. A 2003, 1011, 173–180. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Gimenez, R. Beneficial effects of green tea—A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef]
- Wang, H.; Wen, Y.; Du, Y.; Yan, X.; Guo, H.; Rycroft, J.A.; Boon, N.; Kovacs, E.M.; Mela, D.J. Effects of Catechin Enriched Green Tea on Body Composition. Obesity 2010, 18, 773–779. [Google Scholar] [CrossRef]
- Camargo, L.E.A.; Pedroso, L.S.; Vendrame, S.C.; Mainardes, R.M.; Khalil, N.M. Antioxidant and antifungal activities of Camellia sinensis (L.) Kuntze leaves obtained by different forms of production. Braz. J. Biol. 2016, 76, 428–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.-H.; Rha, C.-S.; Balusamy, S.R.; Kim, D.-O.; Shim, S.-M. Impact of Bioconversion of Gallated Catechins and Flavonol Glycosides on Bioaccessibility and Intestinal Cellular Uptake of Catechins. J. Agric. Food Chem. 2019, 67, 2331–2339. [Google Scholar] [CrossRef]
- Chung, J.-O.; Lee, S.-B.; Jeong, K.-H.; Song, J.-H.; Kim, S.-K.; Joo, K.-M.; Jeong, H.-W.; Choi, J.-K.; Kim, J.-K.; Kim, W.-G.; et al. Quercetin and fisetin enhanced the small intestine cellular uptake and plasma levels of epi-catechins in in vitro and in vivo models. Food Funct. 2017, 9, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S.S.R. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, S.; Magnusdottir, S. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food. Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Komes, D.; Horžić, D.; Belščak, A.; Ganić, K.K.; Vulić, I. Green tea preparation and its influence on the content of bioactive compounds. Food Res. Int. 2010, 43, 167–176. [Google Scholar] [CrossRef]
- Perva-Uzunalić, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Zaveri, N.T. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci. 2006, 78, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Sehgal, A. Antioxidant Activity of Different Forms of Green Tea: Loose Leaf, Bagged and Matcha. Curr. Res. Nutr. Food Sci. J. 2018, 6, 35–40. [Google Scholar] [CrossRef]
- Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules 2020, 26, 85. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-C.; Li, W.-C.; Shih, J.-W.; Hong, K.-F.; Pan, Y.-R.; Lin, J.-J. The tea polyphenols EGCG and EGC repress mRNA expression of human telomerase reverse transcriptase (hTERT) in carcinoma cells. Cancer Lett. 2006, 236, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Z.; Li, L.; Joshi, M.K.; Huang, N.; Niu, J.; Lu, Y. Catechins play key role in green tea extract–induced postprandial hypoglycemic potential in vitro. Eur. Food Res. Technol. 2013, 237, 89–99. [Google Scholar] [CrossRef]
- Zhan, C.; Chen, Y.; Tang, Y.; Wei, G. Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Abeta42 Protofibril. ACS Chem. Neurosci. 2020, 11, 1841–1851. [Google Scholar] [CrossRef] [PubMed]
- Labbe, D.; Tremblay, A.; Bazinet, L. Effect of brewing temperature and duration on green tea catechin solubilization: Basis for production of EGC and EGCG-enriched fractions. Sep. Purif. Technol. 2006, 49, 1–9. [Google Scholar] [CrossRef]
- Koch, W.; Kukula-Koch, W.; Głowniak, K. Catechin Composition and Antioxidant Activity of Black Teas in Relation to Brewing Time. J. AOAC Int. 2017, 100, 1694–1699. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, L.; Labbe, D.; Tremblay, A. Production of green tea EGC- and EGCG-enriched fractions by a two-step extraction procedure Sep. Purif. Technol. 2007, 56, 53–56. [Google Scholar] [CrossRef]
- Fujioka, K.; Iwamoto, T.; Shima, H.; Tomaru, K.; Saito, H.; Ohtsuka, M.; Yoshidome, A.; Kawamura, Y.; Manome, Y. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect. Molecules 2016, 21, 474. [Google Scholar] [CrossRef] [Green Version]
- Green, R.J.; Murphy, A.S.; Schulz, B.; Watkins, B.A.; Ferruzzi, M.G. Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol. Nutr. Food Res. 2007, 51, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. et Biophys. Acta (BBA) Lipids Lipid Metab. 1996, 1304, 210–222. [Google Scholar] [CrossRef]
- Lambert, J.D.; Sang, S.; Yang, C.S. Possible Controversy over Dietary Polyphenols: Benefits vs Risks. Chem. Res. Toxicol. 2007, 20, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Niu, Y.; Lee, N.H.; Thames, G.D.; Minutti, R.R.; Wang, H.; Go, V.L.W.; Heber, D. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am. J. Clin. Nutr. 2004, 80, 1558–1564. [Google Scholar] [CrossRef]
- Lambert, J.D.; Hong, J.; Kim, D.H.; Mishin, V.M.; Yang, C.S. Piperine Enhances the Bioavailability of the Tea Polyphenol (−)-Epigallocatechin-3-gallate in Mice. J. Nutr. 2004, 134, 1948–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.-O.; Yoo, S.-H.; Lee, Y.-E.; Shin, K.-S.; Yoo, S.-J.; Park, S.-H.; Park, T.-S.; Shim, S.-M. Hypoglycemic potential of whole green tea: Water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch. Food Funct. 2019, 10, 746–753. [Google Scholar] [CrossRef]
- Yadav, G.; Farakte, R.; Patwardhan, A.; Singh, G. Effect of brewing temperature, tea types and particle size on infusion of tea components. Int. Food Res. J. 2018, 25, 1228–1238. [Google Scholar]
- Kim, A. A Panoramic Overview of Mitochondria and Mitochondrial Redox Biology. Toxicol. Res. 2014, 30, 221–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, S.-M.; Yoo, S.-H.; Ra, C.-S.; Kim, Y.-K.; Chung, J.-O.; Lee, S.-J. Digestive stability and absorption of green tea polyphenols: Influence of acid and xylitol addition. Food Res. Int. 2012, 45, 204–210. [Google Scholar] [CrossRef]
Types of Green Tea | Sample Preparation | EGC | EC | EGCG | ECG | Total Epicatechins | Myricetin | Quercetin | Kaempferol | Total Flavonols |
---|---|---|---|---|---|---|---|---|---|---|
Powdered tea | Raw material (in 20% DMSO with 50% MeOH) | 27.24 ± 1.34 b | 6.35 ± 0.73 c | 64.07 ± 2.28 b | 13.4 ± 0.68 b | 111.06 ± 2.72 b | < LOD * | < LOD | < LOD | < LOD |
Loose leaf tea | Raw material (in 20% DMSO with 50% MeOH) | 37.25 ± 1.49 b | 9.49 ± 0.64 c | 74.87 ± 0.32 b | 14.23 ± 1.49 b | 135.85 ± 3.42 b | < LOD | < LOD | < LOD | < LOD |
GTE | Raw material (in 20% DMSO with 50% MeOH) | 98.46 ± 8.27 a | 27.29 ± 0.99 b | 154.54 ± 3.15 a | 37.87 ± 1.55 a | 318.15 ± 12.95 a | 4.49 ± 0.37 b | < LOD | < LOD | 4.49 ± 0.37 b |
CATEPLUS™ | Raw material (in 20% DMSO with 50% MeOH) | 115.49 ± 14.00 a | 38.05 ± 7.11 a | 182.27 ± 29.18 a | 45.68 ± 8.85 a | 381.49 ± 58.00 a | 5.23 ± 0.23 a | 2.94 ± 0.05 | 1.97 ± 0.22 | 10.14 ± 0.47 a |
Types of Green Tea | Drinking Usage | EGC | EC | EGCG | ECG | Total Epicatechins | Myricetin | Quercetin | Kaempferol | Total Flavonols |
---|---|---|---|---|---|---|---|---|---|---|
Powdered tea | 0.15 g/100 mL H2O @1 °C | 24.08 ± 1.03 b | 5.95 ± 0.54 c | 60.52 ± 0.83 b | 10.78 ± 0.52 b | 101.33 ± 1.98 b | < LOD * | < LOD | < LOD | < LOD |
0.15 g/100 mL H2O @20 °C | 23.78 ± 1.50 b | 5.45 ± 0.15 c | 56.77 ± 4.69 b | 9.23 ± 1.69 b | 95.23 ± 7.99 b | < LOD | < LOD | < LOD | < LOD | |
0.15 g/100 mL H2O @70 °C | 25.77 ± 0.88 b | 7.01 ± 0.95 c | 62.49 ± 1.20 b | 10.43 ± 0.56 b | 105.69 ± 2.26 b | < LOD | < LOD | < LOD | < LOD | |
Loose leaf tea | 1.5 g/300 mL H2O@70 °C, 1.5 min | 8.81 ± 0.67 c | 2.31 ± 0.20 d | 9.49 ± 0.14 c | 1.96 ± 0.15 c | 22.56 ± 0.76 c | < LOD | < LOD | < LOD | < LOD |
GTE | 1 g/115 mL H2O @20 °C | 89.24 ± 6.21 a | 25.54 ± 0.26 b | 156.14 ± 2.41 a | 34.36 ± 0.78 a | 305.26 ± 0.78 a | 1.63 ± 0.08b | < LOD | < LOD | 1.63 ± 0.08 b |
CATEPLUS™ | 1.2 g/115 mL H2O @20 °C | 90.39 ± 6.82 a | 27.60 ± 0.30 a | 163.05 ± 377 a | 34.64 ± 0.59 a | 315.68 ± 6.96 a | 2.02 ± 0.06 a | 1.18 ± 0.13 | 0.58 ± 0.02 | 3.77 ± 0.12 a |
Types of Green Tea | Drinking Usage | EGC | EC | EGCG | ECG | Total Epicatechins | Myricetin | Quercetin | Kaempferol | Total Flavonols |
---|---|---|---|---|---|---|---|---|---|---|
Powdered tea | 0.15 g/100 mL H2O @70 °C | 0.37 ± 0.12 b | 0.75 ± 0.04 c | 0.64 ± 0.07 b | 0.67 ± 0.08 b | 2.43 ± 0.09 b | < LOD * | < LOD | < LOD | < LOD |
Loose leaf tea | 1.5 g/300 mL H2O @70 °C, 1.5 min | 0.07 ± 0.01 b | 0.09 ± 0.01 c | 0.07 ± 0.00 b | 0.05 ± 0.01 b | 0.29 ± 0.02 b | < LOD | < LOD | < LOD | < LOD |
GTE | 1 g/115 mL, H2O @20 °C | 16.32 ± 1.47 a | 19.96 ± 1.02 b | 12.82 ± 1.04 a | 18.21± 0.72 a | 67.31 ± 2.91 a | 1.4 ± 0.06 a | < LOD | < LOD | 1.4 ± 0.06 b |
CATEPLUS™ | 1.2 g/115 mL, H2O @20 °C | 14.07 ± 2.17 a | 21.81 ± 0.49 a | 8.24 ± 2.02 a | 14.91 ± 1.06 a | 59.03 ± 5.31 a | 1.25 ± 0.01 a | 0.72 ± 0.04 | 0.55 ± 0.03 | 2.52 ± 0.07 a |
Types of Green Tea | Drinking Usage | EGC | EC | EGCG | ECG | Total Epicatechins | Myricetin | Quercetin | Kaempferol | Total Flavonols |
---|---|---|---|---|---|---|---|---|---|---|
Powdered tea | 0.15 g/100 mL H2O @70 °C | 2.44 ± 0.68 c | N/D | N/D | N/D | 3.60 ± 0.67 c | N/D | N/D | N/D | N/D |
Loose leaf tea | 1.5 g/300 mL H2O @70 °C, 1.5 min | 1.88 ± 1.30 c | 0.38 ± 0.3 b | 0.69 ± 0.03 c | N/D | 2.94 ± 1.03 c | N/D | N/D | N/D | N/D |
GTE | 1 g/115 mL H2O @20 °C | 43.85 ± 4.35 b | 6.24 ± 4.15 ab | 3.84 ± 1.00 b | 3.45 ± 1.25 | 57.38 ± 9.31 b | N/D | N/D | N/D | N/D |
CATEPLUS™ | 1.2 g/115 mL H2O @20 °C | 151.90 ± 4.70 a | 9.09 ± 1.79 a | 7.42 ± 1.20 a | 2.98 ± 2.20 | 171.39 ± 5.39 a | N/D | 32.11 ± 1.89 | 34.16 ± 0.55 | 66.27 ± 1.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.-H.; Lee, C.-Y.; Lee, Y.-E.; Yoo, S.-H.; Chung, J.-O.; Rha, C.-S.; Park, M.-Y.; Hong, Y.-D.; Shim, S.-M. Profiling of In Vitro Bioaccessibility and Intestinal Uptake of Flavonoids after Consumption of Commonly Available Green Tea Types. Molecules 2021, 26, 1518. https://doi.org/10.3390/molecules26061518
Oh J-H, Lee C-Y, Lee Y-E, Yoo S-H, Chung J-O, Rha C-S, Park M-Y, Hong Y-D, Shim S-M. Profiling of In Vitro Bioaccessibility and Intestinal Uptake of Flavonoids after Consumption of Commonly Available Green Tea Types. Molecules. 2021; 26(6):1518. https://doi.org/10.3390/molecules26061518
Chicago/Turabian StyleOh, Jeong-Ho, Chan-Yang Lee, Yeong-Eun Lee, So-Hee Yoo, Jin-Oh Chung, Chan-Su Rha, Mi-Young Park, Yong-Deog Hong, and Soon-Mi Shim. 2021. "Profiling of In Vitro Bioaccessibility and Intestinal Uptake of Flavonoids after Consumption of Commonly Available Green Tea Types" Molecules 26, no. 6: 1518. https://doi.org/10.3390/molecules26061518
APA StyleOh, J. -H., Lee, C. -Y., Lee, Y. -E., Yoo, S. -H., Chung, J. -O., Rha, C. -S., Park, M. -Y., Hong, Y. -D., & Shim, S. -M. (2021). Profiling of In Vitro Bioaccessibility and Intestinal Uptake of Flavonoids after Consumption of Commonly Available Green Tea Types. Molecules, 26(6), 1518. https://doi.org/10.3390/molecules26061518