Peppers: A “Hot” Natural Source for Antitumor Compounds
Abstract
:1. Introduction
2. Pepper Ethnopharmacology
3. The Apoptosis Pathways
4. Literature-Related Cytotoxic Compounds
4.1. Piper sp.
4.2. Capsicum sp.
4.3. Pimenta sp.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedersen, B.; Koktved, D.P.; Nielsen, L.L. Living with Side Effects from Cancer Treatment-A Challenge to Target Information. Scand. J. Caring Sci. 2013, 27, 715–723. [Google Scholar] [CrossRef]
- He, Q.; Shi, J. MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Adv. Mater. 2014, 26, 391–411. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Koehn, F.E.; Carter, G.T. The Evolving Role of Natural Products in Drug Discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, H.; Liu, J.; Xu, S.; Zhu, Z.; Xu, J. The Structural Modification of Natural Products for Novel Drug Discovery. Expert Opin. Drug Discov. 2017, 12, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Qiao, Y.; Ang, E.L.; Zhao, H. Using Natural Products for Drug Discovery: The Impact of the Genomics Era. Expert Opin. Drug Discov. 2017, 12, 475–487. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Mass Spectrometry-Driven Drug Discovery for Development of Herbal Medicine. Mass Spectrom. Rev. 2018, 37, 307–320. [Google Scholar] [CrossRef]
- Chaveerach, A.; Mokkamul, P.; Sudmoon, R.; Tanee, T. Ethnobotany of the Genus Piper (Piperaceae) in Thailand. Ethnobot. Res. Appl. 2006, 4, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Meghvansi, M.K.; Siddiqui, S.; Khan, M.H.; Gupta, V.K.; Vairale, M.G.; Gogoi, H.K.; Singh, L. Naga Chilli: A Potential Source of Capsaicinoids with Broad-Spectrum Ethnopharmacological Applications. J. Ethnopharmacol. 2010, 132, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.A.; Mahmood, T.; Ali, M.; Saeed, A.; Maalik, A. Pharmacological Importance of an Ethnobotanical Plant: Capsicum Annuum L. Nat. Prod. Res. 2014, 28, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Cichewicz, R.H.; Thorpe, P.A. The Antimicrobial Properties of Chile Peppers (Capsicum Species) and Their Uses in Mayan Medicine. J. Ethnopharmacol. 1996, 52, 61–70. [Google Scholar] [CrossRef]
- Corson, T.W.; Crews, C.M. Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials. Cell 2007, 130, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, C.; Sai Pavan Kumar, C.N.S.; China Raju, B.; Jayathirtha Rao, V.; Naidu, V.G.M.; Ramakrishna, S.; Diwan, P. V First Stereoselective Total Synthesis and Anticancer Activity of New Amide Alkaloids of Roots of Pepper. Bioorg. Med. Chem. Lett. 2009, 19, 5915–5918. [Google Scholar] [CrossRef] [PubMed]
- Shamaladevi, N.; Lyn, D.A.; Shaaban, K.A.; Zhang, L.; Villate, S.; Rohr, J.; Lokeshwar, B.L. Ericifolin: A Novel Antitumor Compound from Allspice That Silences Androgen Receptor in Prostate Cancer. Carcinogenesis 2013, 34, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Morris-Natschke, S.L.; Yang, J.; Niu, H.-M.; Long, C.-L.; Lee, K.-H. Anticancer Principles from Medicinal Piper ( Hú Jiāo) Plants. J. Tradit. Complement. Med. 2014, 4, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.B.; Ichikawa, H.; Garodia, P.; Weerasinghe, P.; Sethi, G.; Bhatt, I.D.; Pandey, M.K.; Shishodia, S.; Nair, M.G. From Traditional Ayurvedic Medicine to Modern Medicine: Identification of Therapeutic Targets for Suppression of Inflammation and Cancer. Expert Opin. Ther. Targets 2006, 10, 87–118. [Google Scholar] [CrossRef] [PubMed]
- Caamal-Fuentes, E.; Torres-Tapia, L.W.; Simá-Polanco, P.; Peraza-Sánchez, S.R.; Moo-Puc, R. Screening of Plants Used in Mayan Traditional Medicine to Treat Cancer-like Symptoms. J. Ethnopharmacol. 2011, 135, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lokeshwar, B.L. Medicinal Properties of the Jamaican Pepper Plant Pimenta Dioica and Allspice. Curr. Drug Targets 2012, 13, 1900–1906. [Google Scholar] [CrossRef]
- López, S.N.; Lopes, A.A.; Batista, J.M.; Flausino, O.; Bolzani, V.D.S.; Kato, M.J.; Furlan, M. Geranylation of Benzoic Acid Derivatives by Enzymatic Extracts from Piper Crassinervium (Piperaceae). Bioresour. Technol. 2010, 101, 4251–4260. [Google Scholar] [CrossRef]
- Nascimento, J.C.d.; Paula, d.V.F.; David, J.M.; David, J.P. Occurrence, Biological Activities and 13C NMR Data of Amides from Piper (Piperaceae). Química Nova 2012, 35, 2288–2311. [Google Scholar] [CrossRef] [Green Version]
- Quijano-Abril, A.; Callejas-Posada, R.; Miranda-Esquivel, D.R. Areas of Endemism and Distribution Patterns for Neotropical Piper Species (Piperaceae). J. Biogeogr. 2006, 33, 1266–1278. [Google Scholar] [CrossRef]
- Yarnell, E. Herbs for Rheumatoid Arthritis. Altern. Complement. Ther. 2017, 23, 149–156. [Google Scholar] [CrossRef]
- Srinivasan, K. Biological Activities of Red Pepper ( Capsicum Annuum ) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, Y.-C. Piperine Inhibits Eosinophil Infiltration and Airway Hyperresponsiveness by Suppressing T Cell Activity and Th2 Cytokine Production in the Ovalbumin-Induced Asthma Model. J. Pharm. Pharmacol. 2009, 61, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, M.H.; Gilani, A.H. Pharmacological Basis for the Medicinal Use of Black Pepper and Piperine in Gastrointestinal Disorders. J. Med. Food 2010, 13, 1086–1096. [Google Scholar] [CrossRef]
- López, K.S.E.; Marques, A.M.; Moreira, D.D.L.; Velozo, L.S.; Sudo, R.T.; Zapata-Sudo, G.; Guimarães, E.F.; Kaplan, M.A.C. Local Anesthetic Activity from Extracts, Fractions and Pure Compounds from the Roots of Ottonia Anisum Spreng. (Piperaceae). Ann. Braz. Acad. Sci. 2016, 88, 2229–2237. [Google Scholar] [CrossRef] [Green Version]
- Fusco, B.M.; Giacovazzo, M. Peppers and Pain. The Promise of Capsaicin. Drugs 1997, 53, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Parise-Filho, R.; Pastrello, M.; Pereira Camerlingo, C.E.; Silva, G.J.; Agostinho, L.A.; de Souza, T.; Motter Magri, F.M.; Ribeiro, R.R.; Brandt, C.A.; Polli, M.C. The Anti-Inflammatory Activity of Dillapiole and Some Semisynthetic Analogues. Pharm. Biol. 2011, 49, 1173–1179. [Google Scholar] [CrossRef]
- Park, B.S.; Son, D.J.; Park, Y.H.; Kim, T.W.; Lee, S.E. Antiplatelet Effects of Acidamides Isolated from the Fruits of Piper Longum L. Phytomedicine 2007, 14, 853–855. [Google Scholar] [CrossRef]
- Amarowicz, R. Antioxidant Activity of Peppers. Eur. J. Lipid Sci. Technol. 2014, 116, 237–239. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L. V Overview of the Therapeutic Potential of Piplartine (Piperlongumine). Eur. J. Pharm. Sci. 2013, 48, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Cícero Bezerra Felipe, F.; Trajano Sousa Filho, J.; de Oliveira Souza, L.E.; Alexandre Silveira, J.; Esdras de Andrade Uchoa, D.; Rocha Silveira, E.; Deusdênia Loiola Pessoa, O.; de Barros Viana, G.S. Piplartine, an Amide Alkaloid from Piper Tuberculatum, Presents Anxiolytic and Antidepressant Effects in Mice. Phytomedicine 2007, 14, 605–612. [Google Scholar] [CrossRef]
- Koul, I.; Kapil, A. Evaluation of the Liver Protective Potential of Piperine, an Active Principle of Black and Long Peppers. Planta Med. 1993, 59, 413–417. [Google Scholar] [CrossRef]
- Parise-Filho, R.; Pasqualoto, K.F.M.; Magri, F.M.M.; Ferreira, A.K.; da Silva, B.A.V.G.; Damião, M.C.F.C.B.; Tavares, M.T.; Azevedo, R.A.; Auada, A.V.V.; Polli, M.C.; et al. Dillapiole as Antileishmanial Agent: Discovery, Cytotoxic Activity and Preliminary SAR Studies of Dillapiole Analogues. Arch. Pharm. Pharm. Med. Chem. 2012, 345, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Pongkorpsakol, P.; Wongkrasant, P.; Kumpun, S.; Chatsudthipong, V.; Muanprasat, C. Inhibition of Intestinal Chloride Secretion by Piperine as a Cellular Basis for the Anti-Secretory Effect of Black Peppers. Pharmacol. Res. 2015, 100, 271–280. [Google Scholar] [CrossRef]
- Ferreira, A.K.; de-Sá-Júnior, P.L.; Pasqualoto, K.F.M.; de Azevedo, R.A.; Câmara, D.A.D.; Costa, A.S.; Figueiredo, C.R.; Matsuo, A.L.; Massaoka, M.H.; Auada, A.V.V.; et al. Cytotoxic Effects of Dillapiole on MDA-MB-231 Cells Involve the Induction of Apoptosis through the Mitochondrial Pathway by Inducing an Oxidative Stress While Altering the Cytoskeleton Network. Biochimie 2014, 99, 195–207. [Google Scholar] [CrossRef]
- Olmstead, R.G.; Bohs, L. A Summary of Molecular Systematic Research in Solanaceae: 1982-2006. Acta Hortic. 2007, 745, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S. Tobacco to Tomatoes: A Phylogenetic Perspective on Fruit Diversity in the Solanaceae. J. Exp. Bot. 2002, 53, 2001–2022. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Gupta, V.; Bansal, P.; Singh, R.; Kumar, D. Pharmacological Potential of Plant Used as Aphrodisiacs. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 104–113. [Google Scholar]
- Wannang, N.N.; Anuka, J.A.; Kwanashie, H.O.; Gyang, S.S.; Auta, A. Anti-Seizure Activity of the Aqueous Leaf Extract of Solanum Nigrum Linn (Solanaceae) in Experimental Animals. Afr. Health Sci. 2008, 8, 74–79. [Google Scholar]
- Ndebia, E.J.; Kamgang, R.; Nkeh-ChungagAnye, B.N. Analgesic and Anti-Inflammatory Properties of Aqueous Extract from Leaves of Solanum Torvum (Solanaceae). Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, F.S.; Silva, A.C.L.; Martins, I.R.R.; Correia, A.C.C.; Basílio, I.J.L.D.; Agra, M.F.; Bhattacharyya, J.; Silva, B.A. Vasorelaxant Action of the Total Alkaloid Fraction Obtained from Solanum Paludosum Moric. (Solanaceae) Involves NO/CGMP/PKG Pathway and Potassium Channels. J. Ethnopharmacol. 2012, 141, 895–900. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G.; Sasikumar, P. Antihyperglycemic Activity and Antidiabetic Effect of Methyl Caffeate Isolated from Solanum Torvum Swartz. Fruit in Streptozotocin Induced Diabetic Rats. Eur. J. Pharmacol. 2011, 670, 623–631. [Google Scholar] [CrossRef]
- Giorgetti, M.; Negri, G. Plants from Solanaceae Family with Possible Anxiolytic Effect Reported on 19thcentury’s Brazilian Medical Journal. Braz. J. Pharmacogn. 2011, 21, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, V.S. Capsicum-Production, Technology, Chemistry, and Quality Part 1: History, Botany, Cultivation, and Primary Processing. Crit. Rev. Food Sci. Nutr. 1985, 22, 109–176. [Google Scholar] [CrossRef] [PubMed]
- Canto-Flick, A.; Balam-Uc, E.; Bello-Bello, J.J.; Lecona-Guzmán, C.; Solís-Marroquín, D.; Avilés-Viñas, S.; Gómez-Uc, E.; López-Puc, G.; Santana-Buzzy, N.; Iglesias-Andreu, L.G. Capsaicinoids Content in Habanero Pepper (Capsicum Chinense Jacq.): Hottest Known Cultivars. HortScience 2008, 43, 1344–1349. [Google Scholar] [CrossRef] [Green Version]
- Gurnani, N.; Gupta, M.; Mehta, D.; Mehta, B.K. Chemical Composition, Total Phenolic and Flavonoid Contents, and in Vitro Antimicrobial and Antioxidant Activities of Crude Extracts from Red Chilli Seeds (Capsicum Frutescens L.)Gurnani, N.J. Taibah Univ. Sci. 2015, 10, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive Characteristics and Antioxidant Activities of Nine Peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Oboh, G.; Puntel, R.L.; Rocha, J.B.T. Hot Pepper (Capsicum Annuum, Tepin and Capsicum Chinese, Habanero) Prevents Fe2+-Induced Lipid Peroxidation in Brain-in Vitro. Food Chem. 2007, 102, 178–185. [Google Scholar] [CrossRef]
- Tundis, R.; Menichini, F.; Bonesi, M.; Conforti, F.; Statti, G.; Menichini, F.; Loizzo, M.R. Antioxidant and Hypoglycaemic Activities and Their Relationship to Phytochemicals in Capsicum Annuum Cultivars during Fruit Development. Lwt Food Sci. Technol. 2013, 53, 370–377. [Google Scholar] [CrossRef]
- Zimmer, A.R.; Leonardi, B.; Miron, D.; Schapoval, E.; Oliveira, J.R.D.; Gosmann, G. Antioxidant and Anti-Inflammatory Properties of Capsicum Baccatum: From Traditional Use to Scientific Approach. J. Ethnopharmacol. 2012, 139, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, V.S.; Sathyanarayana, M.N. Capsicum—Production, Technology, Chemistry, and Quality. Part v. Impact on Physiology, Pharmacology, Nutrition, and Metabolism; Structure, Pungency, Pain, and Desensitization Sequences. Crit. Rev. Food Sci. Nutr. 1991, 29, 435–474. [Google Scholar] [CrossRef] [PubMed]
- De Melo, J.G.; Santos, A.G.; De Amorim, E.L.C.; Nascimento, S.C.D.; De Albuquerque, U.P. Medicinal Plants Used as Antitumor Agents in Brazil: An Ethnobotanical Approach. Evid. Based Complement. Altern. Med. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasconcelos, T.N.C.; Lucas, E.J.; Brigido, P. One New Species, Two New Combinations and Taxonomic Notes on the All-Spice Genus Pimenta (Myrtaceae) from Hispaniola. Phytotaxa 2018, 348, 32–40. [Google Scholar] [CrossRef]
- Gomes, S.M.; Dalla Nora Somavilla, N.S.; Gomes-Bezerra, K.M.; de Miranda, S.C.; De-Carvalhoa, P.S.; Graciano-Ribeiro, D. Leaf Anatomy of Myrtaceae Species: Contributions to the Taxonomy and Phylogeny. Acta Bot. Bras. 2009, 23, 223–238. [Google Scholar]
- Akin, M.; Aktumsek, A.; Nostro, A. Antibacterial Activity and Composition of the Essential Oils of Eucalyptus Camaldulensis Dehn. and Myrtus Communis L. Growing in Northern Cyprus. Afr. J. Biotechnol. 2010, 9, 531–535. [Google Scholar] [CrossRef]
- Yokomizo, N.K.S.; Nakaoka-Sakita, M. Antimicrobial Activity and Essential Oils Yield of Pimenta Pseudocaryophyllus Var. Pseudocaryophyllus (Gomes) Landrum, Myrtaceae. Rev. Bras. Plantas Med. 2014, 16, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Weston, R.J. Bioactive Products from Fruit of the Feijoa (Feijoa Sellowiana, Myrtaceae): A Review. Food Chem. 2010, 121, 923–926. [Google Scholar] [CrossRef]
- Myburg, A.A.; Grattapaglia, D.; Tuskan, G.A.; Hellsten, U.; Hayes, R.D.; Grimwood, J.; Jenkins, J.; Lindquist, E.; Tice, H.; Bauer, D.; et al. The Genome of Eucalyptus Grandis. Nature 2014, 510, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.; Visozo, A.; Piloto, J.; García, A.; Rodríguez, C.A.; Rivero, R. Screening of Antimutagenicity via Antioxidant Activity in Cuban Medicinal Plants. J. Ethnopharmacol. 2003, 87, 241–246. [Google Scholar] [CrossRef]
- Paula, J.A.M.; Reis, J.B.; Ferreira, L.H.M.; Menezes, A.C.S.; Paula, J.R. Gênero Pimenta: Aspectos botânicos, composição química e potencial farmacológico. Rev. Bras. Plantas Med. 2010, 12, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, M.S.A.; Moharram, F.A.; Mohamed, M.A.; Gamal-Eldeen, A.M.; Aboutabl, E.A. Anticancer and Antioxidant Tannins from Pimenta Dioica Leaves. Z. Nat. C 2007, 62, 526–536. [Google Scholar] [CrossRef]
- Paula, J.A.M.D.; Silva, M.D.R.R.; Costa, M.P.; Diniz, D.G.A.; Sá, F.A.S.; Alves, S.F.; Costa, É.A.; Lino, R.C.; Paula, J.R. De Phytochemical Analysis and Antimicrobial, Antinociceptive, and Anti-Inflammatory Activities of Two Chemotypes of Pimenta Pseudocaryophyllus (Myrtaceae). Evid. Based Complement. Altern. Med. 2012. [Google Scholar] [CrossRef] [Green Version]
- García, M.D.; Fernández, M.A.; Alvarez, A.; Saenz, M.T. Antinociceptive and Anti-Inflammatory Effect of the Aqueous Extract from Leaves of Pimenta Racemosa Var. Ozua (Mirtaceae). J. Ethnopharmacol. 2004, 91, 69–73. [Google Scholar] [CrossRef]
- Padmakumari, K.P.; Sasidharan, I.; Sreekumar, M.M. Composition and Antioxidant Activity of Essential Oil of Pimento (Pimenta Dioica (L) Merr.) from Jamaica. Nat. Prod. Res. 2011, 25, 152–160. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Hara, S.; Kawai, Y.; Nakatani, N. Antioxidative Phenylpropanoids from Berries of Pimenta Dioica. Phytochemistry 1999, 52, 1307–1312. [Google Scholar] [CrossRef]
- Seo, S.M.; Kim, J.; Lee, S.G.; Shin, C.H.; Shin, S.C.; Park, I.K. Fumigant Antitermitic Activity of Plant Essential Oils and Components from Ajowan (Trachyspermum Ammi), Allspice (Pimenta Dioica), Caraway (Carům Carvi), Dill (Anethum Graveoiens), Geranium (Pelargonium Graveoiens), and Litsea (Litsea Cubeba) Oils Against. J. Agric. Food Chem. 2009, 57, 6596–6602. [Google Scholar] [CrossRef] [PubMed]
- Enoque, M.; Lima, L.; Cordeiro, I.; Cláudia, M.; Young, M.; Sobra, M.E.G.; Roberto, P.; Moreno, H. Antimicrobial Activity of the Essential Oil from Two Specimens of Pimenta Pseudocaryophyllus (Gomes) L. R. Landrum (Myrtaceae) Native from São Paulo State–Brazil. Pharmacologyonline 2006, 3, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Saenz, M.T.; Tornos, M.P.; Alvarez, A.; Fernandez, M.A.; García, M.D. Antibacterial Activity of Essential Oils of Pimenta Racemosa Var. Terebinthina and Pimenta Racemosa Var. Grisea. Fitoterapia 2004, 75, 599–602. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R.; Slezakova, L. Antifungal Effect of Pimenta Dioica Essential Oil against Dangerous Pathogenic and Toxinogenic Fungi. Ind. Crop. Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
- Wu, C.-C.C.; Bratton, S.B. Regulation of the Intrinsic Apoptosis Pathway by Reactive Oxygen Species. Antioxid. Redox Signal. 2012, 19, 121025083704002. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed Cell Death Pathways in Cancer: A Review of Apoptosis, Autophagy and Programmed Necrosis. Cell Prolif. 2012, 45, 487–498. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Xu, K.; Xu, Y.; Liu, J.; Qian, X. B1-Induced Caspase-Independent Apoptosis in MCF-7 Cells Is Mediated by down-Regulation of Bcl-2 via P53 Binding to P2 Promoter TATA Box. Toxicol. Appl. Pharmacol. 2011, 256, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Thoennissen, N.H.; O’Kelly, J.; Lu, D.; Iwanski, G.B.; La, D.T.; Abbassi, S.; Leiter, A.; Karlan, B.; Mehta, R.; Koeffler, H.P. Capsaicin Causes Cell-Cycle Arrest and Apoptosis in ER-Positive and -Negative Breast Cancer Cells by Modulating the EGFR/HER-2 Pathway. Oncogene 2010, 29, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- McStay, G.P.; Green, D.R. Measuring Apoptosis: Caspase Inhibitors and Activity Assays. Cold Spring Harb. Protoc. 2014, 2014, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Roos, W.P.; Thomas, A.D.; Kaina, B. DNA Damage and the Balance between Survival and Death in Cancer Biology. Nat. Rev. Cancer 2015, 16, 20–33. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From Basic Apoptosis Discoveries to Advanced Selective BCL-2 Family Inhibitors. Nat. Rev. Drug Discov. 2017, 16, 273–284. [Google Scholar] [CrossRef]
- Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C.; Wang, X. Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors. Cell 1998, 94, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and Cancer. Cell 2016, 166, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Man, S.M.; Kanneganti, T. Converging Roles of Caspases in Inflammasome Activation, Cell Death and Innate Immunity. Nat. Rev. Immunol. 2016, 16, 7–21. [Google Scholar] [CrossRef]
- Lopez, J.; Tait, S.W.G. Mitochondrial Apoptosis: Killing Cancer Using the Enemy Within. Br. J. Cancer 2015, 112, 957–962. [Google Scholar] [CrossRef] [Green Version]
- Tsai, I.-L.; Lee, F.-P.; Wu, C.-C.; Duh, C.-Y.; Ishikawa, T.; Chen, J.-J.; Chen, Y.-C.; Seki, H.; Chen, I.-S. New Cytotoxic Cyclobutanoid Amides, a New Furanoid Lignan and Anti-Platelet Aggregation Constituents from Piper Arborescens. Planta Med. 2005, 71, 535–542. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, H.K.; Choi, S.U.; Moon, E.; Kim, S.Y.; Lee, K.R. Bioactive Lignans from the Rhizomes of Acorus Gramineus. J. Nat. Prod. 2011, 74, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Couture, A.; Deniau, E.; Grandclaudon, P.; Rybalko-Rosen, H.; Léonce, S.; Pfeiffer, B.; Renard, P. Synthesis and Biological Evaluation of Aristolactams. Bioorg. Med. Chem. Lett. 2002, 12, 3557–3559. [Google Scholar] [CrossRef]
- Punganuru, S.R.; Madala, H.R.; Venugopal, S.N.; Samala, R.; Mikelis, C.; Srivenugopal, K.S. Design and Synthesis of a C7-Aryl Piperlongumine Derivative with Potent Antimicrotubule and Mutant P53-Reactivating Properties. Eur. J. Med. Chem. 2016, 107, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Hegde, V.R.; Borges, S.; Pu, H.; Patel, M.; Gullo, V.P.; Wu, B.; Kirschmeier, P.; Williams, M.J.; Madison, V.; Fischmann, T.; et al. Semi-Synthetic Aristolactams--Inhibitors of CDK2 Enzyme. Bioorg. Med. Chem. Lett. 2010, 20, 1384–1387. [Google Scholar] [CrossRef]
- Chang-Yih, D.; Yang-Chang, W.; Shang-Kwei, W. Cytotoxic Pyridone Alkaloids from Piper Aborescens. Phytochemistry 1990, 29, 2689–2691. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Pessoa, C.; Moraes, M.O.d.; Silveira, E.R.; Lima, M.A.S.; Martins Elmiro, F.J.; Costa-Lotufo, L.V. Antiproliferative Effects of Two Amides, Piperine and Piplartine, from Piper Species. Z. Nat. C 2005, 60, 539–543. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, D.P.; Militão, G.C.G.; de Castro, F.O.; Pessoa, C.; de Moraes, M.O.; Silveira, E.R.; Lima, M.A.S.; Elmiro, F.J.M.; Costa-Lotufo, L.V. Piplartine Induces Inhibition of Leukemia Cell Proliferation Triggering Both Apoptosis and Necrosis Pathways. Toxicol. Vitr. Int. J. Publ. Assoc. Bibra 2007, 21, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Min, X.; Zhuang, C.; Li, J.; Yu, Z.; Dong, G.; Yao, J.; Wang, S.; Liu, Y.; Wu, S.; et al. Design, Synthesis and Biological Activity of Piperlongumine Derivatives as Selective Anticancer Agents. Eur. J. Med. Chem. 2014, 82, 545–551. [Google Scholar] [CrossRef]
- Sommerwerk, S.; Kluge, R.; Ströhl, D.; Heller, L.; Kramell, A.E.; Ogiolda, S.; Liebing, P.; Csuk, R. Synthesis, Characterization and Cytotoxicity of New Piplartine Dimers. Tetrahedron 2016, 72, 1447–1454. [Google Scholar] [CrossRef]
- Nerurkar, P.V.; Dragull, K.; Tang, C.-S.S. In Vitro Toxicity of Kava Alkaloid, Pipermethystine, in HepG2 Cells Compared to Kavalactones. Toxicol. Sci. Off. J. Soc. Toxicol. 2004, 79, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriwiriyajan, S.; Sukpondma, Y.; Srisawat, T.; Madla, S.; Graidist, P. (−)-Kusunokinin and Piperloguminine from Piper Nigrum: An Alternative Option to Treat Breast Cancer. Biomed. Pharmacother. 2017, 92, 732–743. [Google Scholar] [CrossRef]
- Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a Potential Anti-Cancer Lead Compound against HL60 and MCT-7 Cell Lines and Microbial Transformation of Piperine from Piper Nigrum. Molecules 2010, 15, 2398–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, R.M.P.; Gonzalez, A.M.N.; Hoyo-Vadillo, C. Alkaloids from Piper: A Review of Its Phytochemistry and Pharmacology. Mini Rev. Med. Chem. 2013, 13, 163–193. [Google Scholar] [CrossRef]
- Chen, J.; Duh, C.; Huang, H.; Chen, I. Cytotoxic Constituents of Piper Sintenense. Helv. Chim. Acta 2003, 86, 2058–2064. [Google Scholar] [CrossRef]
- Rao, V.R.S.; Suresh, G.; Rao, R.R.; Babu, K.S.; Chashoo, G.; Saxena, A.K.; Rao, J.M.; Rama Subba Rao, V.; Suresh, G.; Ranga Rao, R.; et al. Synthesis of Piperine-Amino Acid Ester Conjugates and Study of Their Cytotoxic Activities against Human Cancer Cell Lines. Med. Chem. Res. 2012, 21, 38–46. [Google Scholar] [CrossRef]
- Umadevi, P.; Deepti, K.; Venugopal, D.V.R. Synthesis, Anticancer and Antibacterial Activities of Piperine Analogs. Med. Chem. Res. 2013, 22, 5466–5471. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, J.; Liao, H.; Li, L.; Pan, L. Piperine Induces Apoptosis of Lung Cancer A549 Cells via P53-Dependent Mitochondrial Signaling Pathway. Tumor Biol. 2014, 35, 3305–3310. [Google Scholar] [CrossRef]
- Muharini, R.; Liu, Z.; Lin, W.; Proksch, P. New Amides from the Fruits of Piper Retrofractum. Tetrahedron Lett. 2015, 56, 2521–2525. [Google Scholar] [CrossRef]
- Orjala, J.; Wright, A.; Rali, T.; Sticher, O. Aduncamide, a Cytotoxic and Antibacterial β-Phenylethylamine-Derived Amide from Piper Aduncum. Nat. Prod. Lett. 1993, 2, 231–236. [Google Scholar] [CrossRef]
- Rali, T.; Wossa, S.W.; Leach, D.N.; Waterman, P.G. Volatile Chemical Constituents of Piper Aduncum L and Piper Gibbilimbum C. DC (Piperaceae) from Papua New Guinea. Molecules 2007, 12, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.S.; Chen, Y.C.; Liao, C.H. Amides with Anti-Platelet Aggregation Activity from Piper Taiwanense. Fitoterapia 2007, 78, 414–419. [Google Scholar] [CrossRef]
- Rao, V.R.S.; Suresh, G.; Babu, K.S.; Raju, S.S.; Vishnu Vardhan, M.V.P.S.P.S.; Ramakrishna, S.; Rao, J.M. Novel Dimeric Amide Alkaloids from Piper Chaba Hunter: Isolation, Cytotoxic Activity, and Their Biomimetic Synthesis. Tetrahedron 2011, 67, 1885–1892. [Google Scholar] [CrossRef]
- Ren, J.; Xu, Y.; Huang, Q.; Yang, J.; Yang, M.; Hu, K.; Wei, K. Chabamide Induces Cell Cycle Arrest and Apoptosis by the Akt/MAPK Pathway and Inhibition of P-Glycoprotein in K562/ADR Cells. Anti Cancer Drugs 2015, 26, 498–507. [Google Scholar] [CrossRef]
- Tabudravu, J.N.; Jaspars, M. Anticancer Activities of Constituents of Kava (Piper Methysticum). South Pac. J. Nat. Appl. Sci. 2005, 23, 26–29. [Google Scholar] [CrossRef]
- Amaral, P.D.A.; Petrignet, J.; Gouault, N.; Agustini, T.; Lohézic-Ledévéhat, F.; Cariou, A.; Grée, R.; Eifler-Lima, V.L.; David, M. Synthesis of Novel Kavain-like Derivatives and Evaluation of Their Cytotoxic Activity. J. Braz. Chem. Soc. 2009, 20, 1687–1697. [Google Scholar] [CrossRef]
- Abu, N.; Akhtar, M.N.; Yeap, S.K.; Lim, K.L.; Ho, W.Y.; Zulfadli, A.J.; Omar, A.R.; Sulaiman, M.R.; Abdullah, M.P.; Alitheen, N.B. Flavokawain A Induces Apoptosis in MCF-7 and MDA-MB231 and Inhibits the Metastatic Process In Vitro. PLoS ONE 2014, 9, e105244. [Google Scholar] [CrossRef]
- Thieury, C.; Lebouvier, N.; Le Gu??vel, R.; Barguil, Y.; Herbette, G.; Antheaume, C.; Hnawia, E.; Asakawa, Y.; Nour, M.; Guillaudeux, T. Mechanisms of Action and Structure-Activity Relationships of Cytotoxic Flavokawain Derivatives. Bioorg. Med. Chem. 2017, 25, 1817–1829. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Liu, Z.; Simoneau, A.R.; Xie, J.; Zi, X. Flavokawain B, a Kava Chalcone, Induces Apoptosis via up-Regulation of Death-Receptor 5 and Bim Expression in Androgen Receptor Negative, Hormonal Refractory Prostate Cancer Cell Lines and Reduces Tumor Growth. Int. J. Cancer. 2010, 127, 1758–1768. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Chao, Y.-L.; Wan, Q.-B.; Chen, X.-M.; Su, P.; Sun, J.; Tang, Y. Flavokawain B Induces Apoptosis of Human Oral Adenoid Cystic Cancer ACC-2 Cells via up-Regulation of Bim and down-Regulation of Bcl-2 Expression. Can. J. Physiol. Pharmacol. 2011, 89, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Hseu, Y.-C.; Lee, M.-S.; Wu, C.-R.; Cho, H.-J.; Lin, K.-Y.; Lai, G.-H.; Wang, S.-Y.; Kuo, Y.-H.; Kumar, K.J.S.; Yang, H.-L.; et al. The Chalcone Flavokawain B Induces G2/M Cell-Cycle Arrest and Apoptosis in Human Oral Carcinoma HSC-3 Cells through the Intracellular ROS Generation and Downregulation of the Akt/P38 MAPK Signaling Pathway. J. Agric. Food Chem. 2012, 60, 2385–2397. [Google Scholar] [CrossRef]
- Eskander, R.N.; Randall, L.M.; Sakai, T.; Guo, Y.; Hoang, B.; Zi, X. Flavokawain B, a Novel, Naturally Occurring Chalcone, Exhibits Robust Apoptotic Effects and Induces G2/M Arrest of a Uterine Leiomyosarcoma Cell Linejog. J. Obstet. Gynaecol. Res. 2012, 38, 1086–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, J.; Gao, Y.; Wang, J.; Zhu, Q.; Ma, Y.; Wu, J.; Sun, J.; Tang, Y. Flavokawain B Induces Apoptosis of Non-Small Cell Lung Cancer H460 Cells via Bax-Initiated Mitochondrial and JNK Pathway. Biotechnol. Lett. 2012, 34, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
- Jandial, D.D.; Krill, L.S.; Chen, L.; Wu, C.; Ke, Y.; Xie, J.; Hoang, B.H.; Zi, X. Induction of G2M Arrest by Flavokawain a, a Kava Chalcone, Increases the Responsiveness of HER2-Overexpressing Breast Cancer Cells to Herceptin. Molecules 2017, 22, 462. [Google Scholar] [CrossRef]
- Zi, X.; Simoneau, A.R. Flavokawain A, a Novel Chalcone from Kava Extract, Induces Apoptosis in Bladder Cancer Cells by Involvement of Bax Protein-Dependent and Mitochondria-Dependent Apoptotic Pathway and Tumor Growth in Mice. Cancer Res. 2005, 65, 3479–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phang, C.-W.; Karsani, S.A.; Sethi, G.; Abd Malek, S.N. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells. PLoS ONE 2016, 11, e0148775. [Google Scholar] [CrossRef] [Green Version]
- Nurestri, S.; Malek, A.; Phang, C.W.; Ibrahim, H.; Wahab, N.A.; Sim, K.S. Phytochemical and Cytotoxic Investigations of Alpinia Mutica Rhizomes. Molecules 2011, 16, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Valadares, M.C.; de Carvalho, I.C.T.; de Oliveira Junior, L.; Vieira, M.D.S.; Benfica, P.L.; de Carvalho, F.S.; Andrade, L.V.S.; Lima, E.M.; Kato, M.J. Cytotoxicity and Antiangiogenic Activity of Grandisin. J. Pharm. Pharmacol. 2009, 61, 1709–1714. [Google Scholar] [CrossRef]
- Ferreira, I.R.S. Evaluation of Cytotoxicity of Phytochemicals in V79 Cells and Inhibition of Cell Growth in Human Leukemic Cells; Campinas State University: São Paulo, Brazil, 2014. [Google Scholar]
- Vieira, M.d.S.; de Oliveira, V.; Lima, E.M.; Kato, M.J.; Valadares, M.C. In Vitro Basal Cytotoxicity Assay Applied to Estimate Acute Oral Systemic Toxicity of Grandisin and Its Major Metabolite. Exp. Toxicol. Pathol. 2011, 63, 505–510. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Liu, Y.P.; Huang, Z.H.; Wang, T.T.; Feng, X.Y.; Yue, H.; Guo, W.; Fu, Y.H. Cytotoxic Dihydrobenzofuran Neolignans from Mappianthus Iodoies. Bioorg. Chem. 2017, 75, 260–264. [Google Scholar] [CrossRef]
- Sawasdee, K.; Chaowasku, T.; Lipipun, V.; Dufat, T.-H.; Michel, S.; Likhitwitayawuid, K. Neolignans from Leaves of Miliusa Mollis. Fitoterapia 2013, 85, 49–56. [Google Scholar] [CrossRef]
- Longato, G.B.; Rizzo, L.Y.; De Oliveira Sousa, I.M.; Tinti, S.V.; Possenti, A.; Figueira, G.M.; Ruiz, A.L.T.G.; Foglio, M.A.; De Carvalho, J.E. In Vitro and in Vivo Anticancer Activity of Extracts, Fractions, and Eupomatenoid-5 Obtained from Piper Regnellii Leaves. Planta Med. 2011, 77, 1482–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S. A Comprehensive Review of the Carcinogenic and Anticarcinogenic Potential of Capsaicin. Toxicol. Pathol. 2012, 40, 847–873. [Google Scholar] [CrossRef]
- De-Sá-Júnior, P.L.; Pasqualoto, K.F.M.; Ferreira, A.K.; Tavares, M.T.; Damião, M.C.F.C.B.; De Azevedo, R.A.; Câmara, D.A.D.; Pereira, A.; De Souza, D.M.; Parise Filho, R. RPF101, A New Capsaicin-like Analogue, Disrupts the Microtubule Network Accompanied by Arrest in the G2/M Phase, Inducing Apoptosis and Mitotic Catastrophe in the MCF-7 Breast Cancer Cells. Toxicol. Appl. Pharmacol. 2013, 266, 385–398. [Google Scholar] [CrossRef]
- Damião, M.C.F.C.B.; Pasqualoto, K.F.M.; Ferreira, A.K.; Teixeira, S.F.; Azevedo, R.A.; Barbuto, J.A.M.; Palace-Berl, F.; Franchi-Junior, G.C.; Nowill, A.E.; Tavares, M.T.; et al. Novel Capsaicin Analogues as Potential Anticancer Agents: Synthesis, Biological Evaluation, and In Silico Approach. Arch. Der Pharm. 2014, 347, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.K.; Tavares, M.T.; Pasqualoto, K.F.M.; de Azevedo, R.A.; Teixeira, S.F.; Ferreira-Junior, W.A.; Bertin, A.M.; de-Sá-Junior, P.L.; Barbuto, J.A.M.; Figueiredo, C.R.; et al. RPF151, a Novel Capsaicin-like Analogue: In Vitro Studies and in Vivo Preclinical Antitumor Evaluation in a Breast Cancer Model. Tumor Biol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Tavares, M.T. Novel Anticancer Candidates: Synthesis and Antitumor Activity of Capsaicin-like Sulfonate and Sulfonamide Analogues; University of Sao Paulo: São Paulo, Brazil, 2014. [Google Scholar]
- Batista Fernandes, T.; Alexandre de Azevedo, R.; Yang, R.; Fernandes Teixeira, S.; Henrique Goulart Trossini, G.; Alexandre Marzagao Barbuto, J.; Kleber Ferreira, A.; Parise Filho, R. Arylsulfonylhydrazone Induced Apoptosis in MDA-MB-231 Breast Cancer Cells. Lett. Drug Des. Discov. 2018, 15. [Google Scholar] [CrossRef]
- Pereira, G.J.V.; Tavares, M.T.; Azevedo, R.A.; Martins, B.B.; Cunha, M.R.; Bhardwaj, R.; Cury, Y.; Zambelli, V.O.; Barbosa, E.G.; Hediger, M.A.; et al. Capsaicin-like Analogue Induced Selective Apoptosis in A2058 Melanoma Cells: Design, Synthesis and Molecular Modeling. Bioorg. Med. Chem. 2019, 27, 2893–2904. [Google Scholar] [CrossRef]
- Kotake-Nara, E.; Kushiro, M.; Zhang, H.; Sugawara, T.; Miyashita, K.; Nagao, A. Carotenoids Affect Proliferation of Human Prostate Cancer Cells. J. Nutr. 2001, 131, 3303–3306. [Google Scholar] [CrossRef]
- Molnár, J.; Serly, J.; Pusztai, R.; Vincze, I.; Molnár, P.; Horváth, G.; Deli, J.; Maoka, T.; Zalatnai, A.; Tokuda, H.; et al. Putative Supramolecular Complexes Formed by Carotenoids and Xanthophylls with Ascorbic Acid to Reverse Multidrug Resistance in Cancer Cells. Anticancer Res. 2012, 32, 507–517. [Google Scholar]
- Zhang, L.; Shamaladevi, N.; Jayaprakasha, G.K.; Patil, B.S.; Lokeshwar, B.L. Polyphenol-Rich Extract of Pimenta Dioica Berries (Allspice) Kills Breast Cancer Cells by Autophagy and Delays Growth of Triple Negative Breast Cancer in Athymic Mice. Oncotarget 2015, 6, 16379–16395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Chaves, M.C.; de Oliveira, A.H.; de Oliveira Santos, B.V. Aristolactams from Piper Marginatum Jacq (Piperaceae). Biochem. Syst. Ecol. 2006, 34, 75–77. [Google Scholar] [CrossRef]
- Kim, K.H.; Choi, J.W.; Choi, S.U.; Ha, S.K.; Kim, S.Y.; Park, H.-J.; Lee, K.R. The Chemical Constituents of Piper Kadsura and Their Cytotoxic and Anti-Neuroinflammtaory Activities. J. Enzym. Inhib. Med. Chem. 2011, 26, 254–260. [Google Scholar] [CrossRef]
- Shibutani, S.; Dong, H.; Suzuki, N.; Ueda, S.; Miller, F.; Grollman, A.P. Selective Toxicity of Aristolochic Acids I and II. Drug Metab. Dispos. 2007, 35, 1217–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michl, J.; Ingrouille, M.J.; Simmonds, M.S.J.; Heinrich, M. Naturally Occurring Aristolochic Acid Analogues and Their Toxicities. Nat. Prod. Rep. 2014, 31, 676. [Google Scholar] [CrossRef]
- Asha, K.N.; Chowdhury, R.; Hasan, C.M.; Rashid, M.A. Antibacterial Activity and Cytotoxicity of Extractives from Uvaria Hamiltonii Stem Bark. Fitoterapia 2003, 74, 159–163. [Google Scholar] [CrossRef]
- De Moraes, J.; Nascimento, C.; Yamaguchi, L.F.; Kato, M.J.; Nakano, E. Schistosoma Mansoni: In Vitro Schistosomicidal Activity and Tegumental Alterations Induced by Piplartine on Schistosomula. Exp. Parasitol. 2012, 132, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.U.; Shankaraiah, G.; Kumar, R.S.C.; Pitke, V.V.; Rao, T.; Poornima, B.; Babu, K.S.; Sreedhar, A.S. Synthesis, Anticancer, and Antibacterial Activities of Piplartine Derivatives on Cell Cycle Regulation and Growth Inhibition. J. Asian Nat. Prod. Res. 2013, 15, 658–669. [Google Scholar] [CrossRef]
- Da Nóbrega, F.; Ozdemir, O.; Nascimento Sousa, S.; Barboza, J.; Turkez, H.; de Sousa, D. Piplartine Analogues and Cytotoxic Evaluation against Glioblastoma. Molecules 2018, 23, 1382. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.M.; Pan, F.; Li, L.; Liu, Q.R.; Chen, Y.; Xiong, X.X.; Cheng, K.; Yu, S.B.; Shi, Z.; Yu, A.C.-H.; et al. Piperlongumine Selectively Kills Glioblastoma Multiforme Cells via Reactive Oxygen Species Accumulation Dependent JNK and P38 Activation. Biochem. Biophys. Res. Commun. 2013, 437, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Xu, X.; Shen, Y.; Yao, Y.; Qiao, J.; Zhu, F.; Zeng, L.; Liu, X.; Xu, K. Piperlongumine Is a Novel Nuclear Export Inhibitor with Potent Anticancer Activity. Chem. Biol. Interact. 2015, 237, 66–72. [Google Scholar] [CrossRef]
- Piska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (Piplartine) as a Lead Compound for Anticancer Agents–Synthesis and Properties of Analogues: A Mini-Review. Eur. J. Med. Chem. 2018, 156, 13–20. [Google Scholar] [CrossRef]
- Smith, R.M. Pipermethystine, a Novel Pyridone Alkaloid from Piper Methysticum. Tetrahedron 1979, 35, 437–439. [Google Scholar] [CrossRef]
- Dunstan, W.R.; Garnett, H. XII.—The Constituents of Piper Ovatum. J. Chem. Soc. Trans. 1895, 67, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Ovadje, P.U. Long Pepper Extract an Effective Anticancer Treatment. U.S. Patent 17/942,438, 2014. [Google Scholar]
- Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; de Alencar, N.M.N.; Mesquita, R.O.; Lima, M.W.; Alves, A.P.N.N.; Pessoa, O.D.L.; Chaves, J.H.; Silveira, E.R.; et al. In Vivo Growth Inhibition of Sarcoma 180 by Piperlonguminine, an Alkaloid Amide from the Piper Species. J. Appl. Toxicol. 2008, 28, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.E.; Navickiene, H.M.D.; Nogueira-Couto, R.H.; De Bortoli, S.A.; Kato, M.J.; Bolzani, V.D.S.; Furlan, M. Susceptibility of Apis Mellifera (Hymenoptera: Apidae) to Pellitorine, an Amide Isolated from Piper Tuberculatum (Piperaceae). Apidologie 2003, 34, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Damanhouri, Z.A.; Ahmad, A. A Review on Therapeutic Potential of Piper Nigrum L. (Black Pepper): The King of Spices. Med. Aromat. Plants 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Lv, M.; Xu, H. Piperine: Bioactivities and Structural Modifications. Mini Rev. Med. Chem. 2015, 15, 145–156. [Google Scholar] [CrossRef]
- Jong-Woong, A.; Mi-Ja, A.; Ok-Pyo, Z.; Eun-Joo, K.; Sueg-Geun, L.; Hyung, J.K.; Kubo, I. Piperidine Alkaloids from Piper Retrofractum Fruits. Phytochemistry 1992, 31, 3609–3612. [Google Scholar] [CrossRef]
- Shoji, N.; Umeyama, A.; Saito, N.; Takemoto, T.; Kajiwara, A.; Ohizumi, Y. Dehydropipernonaline, an Amide Possessing Coronary Vasodilating Activity, Isolated from Piper Iongum L. J. Pharm. Sci. 1986, 75, 1188–1189. [Google Scholar] [CrossRef] [PubMed]
- Tabuneng, W.; Bando, H.; Amiya, T. Studies on the Constituents of the Crude Drug “Piperis Longi Fructus.” On the Alkaloids of Fruits of Piper Longum L. Chem. Pharm. Bull. 1983, 31, 3562–3565. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kim, K.-Y.; Yu, S.-N.; Kim, S.-H.; Chun, S.-S.; Ji, J.-H.; Yu, H.-S.; Ahn, S.-C. Pipernonaline from Piper Longum Linn. Induces ROS-Mediated Apoptosis in Human Prostate Cancer PC-3 Cells. Biochem. Biophys. Res. Commun. 2013, 430, 406–412. [Google Scholar] [CrossRef]
- Lee, F.-P.; Chen, Y.-C.; Chen, J.-J.; Tsai, I.-L.; Chen, I.-S. Cyclobutanoid Amides from Piper Arborescens. Helv. Chim. Acta 2004, 87, 463–468. [Google Scholar] [CrossRef]
- Gutekunst, W.R.; Baran, P.S. Total Synthesis and Structural Revision of the Piperarborenines via Sequential Cyclobutane C–H Arylation. J. Am. Chem. Soc. 2011, 133, 19076–19079. [Google Scholar] [CrossRef] [Green Version]
- Frébault, F.; Maulide, N. Total Synthesis and Structural Revision of the Piperarborenines: When Photochemistry Meets C—H Activation. Angew. Chem. Int. Ed. 2012, 51, 2815–2817. [Google Scholar] [CrossRef]
- Panish, R.A.; Chintala, S.R.; Fox, J.M. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B. Angew. Chem. Int. Ed. 2016, 55, 4983–4987. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-L.; Feng, L.-W.; Wang, L.; Xie, Z.; Tang, Y.; Li, X. Enantioselective Construction of Cyclobutanes: A New and Concise Approach to the Total Synthesis of (+)-Piperarborenine B. J. Am. Chem. Soc. 2016, 138, 13151–13154. [Google Scholar] [CrossRef]
- Rao, V.R.S.; Suresh Kumar, G.; Sarma, V.U.M.; Satyanarayana Raju, S.; Hari Babu, K.; Suresh Babu, K.; Hari Babu, T.; Rekha, K.; Rao, J.M. Chabamides F and G, Two Novel Dimeric Alkaloids from the Roots of Piper Chaba Hunter. Tetrahedron Lett. 2009, 50, 2774–2777. [Google Scholar] [CrossRef]
- Da Silva, R.V.; Debonsi Navickiene, H.M.; Kato, M.J.; Bolzani, V.D.S.; Méda, C.I.; Young, M.C.M.; Furlan, M. Antifungal Amides from Piper Arboreum and Piper Tuberculatum. Phytochemistry 2002, 59, 521–527. [Google Scholar] [CrossRef]
- Hu, K.; Yang, M.; Xu, Y.; Wei, K.; Ren, J. Cell Cycle Arrest, Apoptosis, and Autophagy Induced by Chabamide in Human Leukemia Cells. Chin. Herb. Med. 2015, 8, 30–38. [Google Scholar] [CrossRef]
- Steiner, G.G. The Correlation between Cancer Incidence and Kava Consumption. Hawaii Med. J. 2000, 59, 420–422. [Google Scholar]
- Li, X.; Liu, Z.; Xu, X.; Blair, C.A.; Sun, Z.; Xie, J.; Lilly, M.B.; Zi, X. Kava Components Down-Regulate Expression of AR and AR Splice Variants and Reduce Growth in Patient-Derived Prostate Cancer Xenografts in Mice. PLoS ONE 2012, 7, e31213. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Dunlop, R.A.; Rowe, A.; Rodgers, K.J.; Ramzan, I. Kavalactones Yangonin and Methysticin Induce Apoptosis in Human Hepatocytes (HepG2) In Vitro. Phytother. Res. 2010, 25, 417–423. [Google Scholar] [CrossRef]
- Zou, L.; Henderson, G.L.; Harkey, M.R.; Sakai, Y.; Li, A. Effects of Kava (Kava-Kava, ’Awa, Yaqona, Piper Methysticum) on c-DNA-Expressed Cytochrome P450 Enzymes and Human Cryopreserved Hepatocytes. Phytomed. Int. J. Phytother. Phytopharm. 2004, 11, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Flores, N.; Cabrera, G.; Jiménez, I.; Piñero, J.; Giménez, A.; Bourdy, G.; Cortés-Selva, F.; Bazzocchi, I. Leishmanicidal Constituents from the Leaves of Piper Rusbyi. Planta Med. 2007, 73, 206–211. [Google Scholar] [CrossRef]
- Dos Santos, R.A.; Ramos, C.S.; Young, M.C.M.; Pinheiro, T.G.; Amorim, A.M.; Kato, M.J.; Batista, R. Antifungal Constituents from the Roots of Piper Dilatatum Rich. J. Chem. 2013, 2013, 160165. [Google Scholar] [CrossRef]
- Sakai, T.; Eskander, R.N.; Guo, Y.; Kim, K.J.; Mefford, J.; Hopkins, J.; Bhatia, N.N.; Zi, X.; Hoang, B.H. Flavokawain B, a Kava Chalcone, Induces Apoptosis in Synovial Sarcoma Cell Lines. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2012, 30, 1045–1050. [Google Scholar] [CrossRef]
- Phang, C.-W.; Karsani, S.; Abd Malek, S. Induction of Apoptosis and Cell Cycle Arrest by Flavokawain C on HT-29 Human Colon Adenocarcinoma via Enhancement of Reactive Oxygen Species Generation, Upregulation of P21, P27, and Gadd153, and Inactivation of Inhibitor of Apoptosis Proteins. Pharmacogn. Mag. 2017, 13, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Lina, E.; Lin, W.-H.; Wang, S.-Y.; Chen, C.-S.; Liao, J.-W.; Chang, H.-W.; Chen, S.-C.; Lin, K.-Y.; Wang, L.; Yangh, H.-L.; et al. Flavokawain B Inhibits Growth of Human Squamous Carcinoma Cells: Involvement of Apoptosis and Cell Cycle Dysregulation in Vitro and in Vivo. J. Nutr. Biochem. 2012, 23, 368–378. [Google Scholar] [CrossRef]
- Ji, T.; Lin, C.; Krill, L.S.; Eskander, R.; Guo, Y.; Zi, X.; Hoang, B.H. Flavokawain B, a Kava Chalcone, Inhibits Growth of Human Osteosarcoma Cells through G2/M Cell Cycle Arrest and Apoptosis. Mol. Cancer 2013, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu, N.; Akhtar, M.N.; Yeap, S.K.; Lim, K.L.; Ho, W.Y.; Abdullah, M.P.; Ho, C.L.; Omar, A.R.; Ismail, J.; Alitheen, N.B. Flavokawain B Induced Cytotoxicity in Two Breast Cancer Cell Lines, MCF-7 and MDA-MB231 and Inhibited the Metastatic Potential of MDA-MB231 via the Regulation of Several Tyrosine Kinases In Vitro. BMC Complement. Altern. Med. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, R.C.C.; Latorre, L.R.; Sartorelli, P.; Kato, M.J. Phenylpropanoids and Tetrahydrofuran Lignans from Piper Solmsianum. Phytochemistry 2000, 55, 843–846. [Google Scholar] [CrossRef]
- Ramos, C.S.; Linnert, H.V.; de Moraes, M.M.; do Amaral, J.H.; Yamaguchi, L.F.; Kato, M.J. Configuration and Stability of Naturally Occurring All-Cis-Tetrahydrofuran Lignans from Piper Solmsianum. RSC Adv. 2017, 7, 46932–46937. [Google Scholar] [CrossRef] [Green Version]
- Barth, T.; Habenschus, M.D.; Lima Moreira, F.; Ferreira, L.D.S.; Lopes, N.P.; Moraes de Oliveira, A.R. In Vitro Metabolism of the Lignan (−)-Grandisin, an Anticancer Drug Candidate, by Human Liver Microsomes. Drug Test. Anal. 2015, 7, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Messiano, G.B.; Santos, R.A.D.S.; Ferreira, L.D.S.; Simões, R.A.; Jabor, V.A.P.; Kato, M.J.; Lopes, N.P.; Pupo, M.T.; de Oliveira, A.R.M. In Vitro Metabolism Study of the Promising Anticancer Agent the Lignan (-)-Grandisin. J. Pharm. Biomed. Anal. 2013, 72, 240–244. [Google Scholar] [CrossRef]
- Cortez, A.P.; Menezes, E.G.P.; Benfica, P.L.; Santos, A.P.d.; Cleres, L.M.; Ribeiro, H.D.O.; Lima, E.M.; Kato, M.J.; Valadares, M.C. Grandisin Induces Apoptosis in Leukemic K562 Cells. Braz. J. Pharm. Sci. 2017, 53, e15210. [Google Scholar] [CrossRef] [Green Version]
- Stecanella, L.A.; Taveira, S.F.; Marreto, R.N.; Valadares, M.C.; Vieira, M.d.S.; Kato, M.J.; Lima, E.M. Development and Characterization of PLGA Nanocapsules of Grandisin Isolated from Virola Surinamensis: In Vitro Release and Cytotoxicity Studies. Braz. J. Pharmacogn. 2013, 23, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Han, G.Q.; Wang, Y.Y. PAF Antagonistic Benzofuran Neolignans from Piper Kadsura. Acta Pharm. Sin. 1993, 28, 370–373. [Google Scholar]
- Chauret, D.C.; Bernard, C.B.; Arnason, J.T.; Durst, T.; Krishnamurty, H.G.; Sanchez-Vindas, P.; Moreno, N.; San Roman, L.; Poveda, L. Insecticidal Neolignans from Piper Decurrens. J. Nat. Prod. 1996, 59, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Yu, W.; Xu, M.; Che, C. First Synthesis of Naturally Occurring (±)-\textlessi\textgreaterepi\textless/I\textgreater-Conocarpan. Tethrahedron Lett. 2003, 44, 1445–1447. [Google Scholar] [CrossRef]
- Campos, M.P.; Cechinel Filho, V.; Silva, R.Z.; Yunes, R.A.; Monache, F.D.; Cruz, A.B. Antibacterial Activity of Extract, Fractions and Four Compounds Extracted from Piper Solmsianum C. DC. Var. Solmsianum (Piperaceae). Z. Fur Nat. Sect. C J. Biosci. 2007, 62, 173–178. [Google Scholar] [CrossRef]
- Johann, S.; Cota, B.B.; Souza-Fagundes, E.M.; Pizzolatti, M.G.; Resende, M.A.; Zani, C.L. Antifungal Activities of Compounds Isolated from Piper Abutiloides Kunth. Mycoses 2009, 52, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.D.L.; de Paiva, R.A.; Marques, A.M.; Borges, R.M.; Barreto, A.L.S.; Curvelo, J.A.D.R.; Cavalcanti, J.F.; Romanos, M.T.V.; Romanos, M.T.V.; Soares, R.M.D.A.; et al. Bioactive Neolignans from the Leaves of Piper Rivinoides Kunth (Piperaceae). Rec. Nat. Prod. 2016, 10, 472–484. [Google Scholar]
- Rimando, A.M.; Pezzuto, J.M.; Farnsworth, N.R.; Santisuk, T.; Reutrakul, V. Revision of the NMR Assignments of Pterostlbene and of Dihydrodehydrodiconiferyl Alcohol: Cytotoxic Constituents from Anogeissus Acuminata. Nat. Prod. Lett. 1994, 4, 267–272. [Google Scholar] [CrossRef]
- Longato, G.B.; Fiorito, G.F.; Vendramini-Costa, D.B.; Sousa, I.M.D.O.; Tinti, S.V.; Ruiz, A.L.T.G.; de Almeida, S.M.V.; Padilha, R.J.R.; Foglio, M.A.; de Carvalho, J.E. Different Cell Death Responses Induced by Eupomatenoid-5 in MCF-7 and 786-0 Tumor Cell Lines. Toxicol. Vitr. 2015, 29, 1026–1033. [Google Scholar] [CrossRef]
- Gibbs, H.A.A.; O’Garro, L.W. Capsaicin Content of West Indies Hot Pepper Cultivars Using Colorimetric and Chromatographic Techniques. HortScience 2004, 39, 132–135. [Google Scholar] [CrossRef] [Green Version]
- Sanatombi, K.; Sharma, G.J. Capsaicin Content and Pungency of Different Capsicum Spp. Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2008, 36, 89–90. [Google Scholar] [CrossRef]
- Thapa, B.; Skalko-Basnet, N.; Takano, A.; Masuda, K.; Basnet, P. High-Performance Liquid Chromatography Analysis of Capsaicin Content in 16 Capsicum Fruits from Nepal. J. Med. Food 2009, 12, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Yaldiz, G.; Ozguven, M.; Sekeroglu, N. Variation in Capsaicin Contents of Different Capsicum Species and Lines by Varying Drying Parameters. Ind. Crop. Prod. 2010, 32, 434–438. [Google Scholar] [CrossRef]
- Hayman, M.; Kam, P.C.A. Capsaicin: A Review of Its Pharmacology and Clinical Applications. Curr. Anaesth. Crit. Care 2008, 19, 338–343. [Google Scholar] [CrossRef]
- Luo, X.-J.J.; Peng, J.; Li, Y.-J.J. Recent Advances in the Study on Capsaicinoids and Capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef]
- Sánchez, A.M.; Sánchez, M.G.; Malagarie-Cazenave, S.; Olea, N.; Díaz-Laviada, I. Induction of Apoptosis in Prostate Tumor PC-3 Cells and Inhibition of Xenograft Prostate Tumor Growth by the Vanilloid Capsaicin. Apoptosis 2006, 11, 89–99. [Google Scholar] [CrossRef] [PubMed]
- De Lourdes Reyes-Escogido, M.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and Pharmacological Aspects of Capsaicin. Molecules 2011, 16, 1253–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, H.C.; Seo, S.; Kim, M.S.; Kim, M.Y.; Kim, H.O.; Ann, J.; Tran, P.T.; Hoang, V.H.; Byun, J.; Cui, M.; et al. 2-Aryl Substituted Pyridine C-Region Analogues of 2-(3-Fluoro-4-Methylsulfonylaminophenyl)Propanamides as Highly Potent TRPV1 Antagonists. Bioorg. Med. Chem. Lett. 2014, 24, 4044–4047. [Google Scholar] [CrossRef]
- Darré, L.; Domene, C. Binding of Capsaicin to the TRPV1 Ion Channel. Mol. Pharm. 2015, 12, 4454–4465. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, J. Understand Spiciness: Mechanism of TRPV1 Channel Activation by Capsaicin. Protein Cell 2017, 8, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Xiao, X.; Cheng, W.; Yang, W.; Yu, P.; Song, Z.; Yarov-Yarovoy, V.; Zheng, J. Structural Mechanism Underlying Capsaicin Binding and Activation of the TRPV1 Ion Channel. Nat. Chem. Biol. 2015, 11, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lee, Y.; Ryu, H.; Kang, D.W.; Lee, J.; Lazar, J.; Pearce, L.V.; Pavlyukovets, V.A.; Blumberg, P.M.; Choi, S. Structural Insights into Transient Receptor Potential Vanilloid Type 1 (TRPV1) from Homology Modeling, Flexible Docking, and Mutational Studies. J. Comput. Aided Mol. Des. 2011, 25, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 Structures in Nanodiscs Reveal Mechanisms of Ligand and Lipid Action. Nature 2016, 534, 347–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Bian, J.S.; Kagan, A.; McDonald, T.V. CaT1 Contributes to the Stores-Operated Calcium Current in Jurkat T-Lymphocytes. J. Biol. Chem. 2002, 277, 47175–47183. [Google Scholar] [CrossRef] [Green Version]
- Pérez De Vega, M.J.; Gómez-Monterrey, I.; Ferrer-Montiel, A.; González-Muñiz, R. Transient Receptor Potential Melastatin 8 Channel (TRPM8) Modulation: Cool Entryway for Treating Pain and Cancer. J. Med. Chem. 2016, 59, 10006–10029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, J.; Norng, M.; Zhang, J.; Chai, J. TRPV6 Mediates Capsaicin-Induced Apoptosis in Gastric Cancer Cells—Mechanisms behind a Possible New “Hot” Cancer Treatment. Biochim. Et Biophys. Acta (Bba) Mol. Cell Res. 2007, 1773, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, M.R.; Bhardwaj, R.; Carrel, A.L.; Lindinger, S.; Romanin, C.; Parise-Filho, R.; Hediger, M.A.; Reymond, J.-L. Natural Product Inspired Optimization of a Selective TRPV6 Calcium Channel Inhibitor. Rsc Med. Chem. 2020, 11, 1032–1040. [Google Scholar] [CrossRef]
- Lau, J.K.; Brown, K.C.; Dom, A.M.; Witte, T.R.; Thornhill, B.A.; Crabtree, C.M.; Perry, H.E.; Brown, J.M.; Ball, J.G.; Creel, R.G.; et al. Capsaicin Induces Apoptosis in Human Small Cell Lung Cancer via the TRPV6 Receptor and the Calpain Pathway. Apoptosis 2014, 19, 1190–1201. [Google Scholar] [CrossRef]
- Ip, S.W.; Lan, S.H.; Huang, A.C.; Yang, J.S.; Chen, Y.Y.; Huang, H.Y.; Lin, Z.P.; Hsu, Y.M.; Yang, M.D.; Chiu, C.F.; et al. Capsaicin Induces Apoptosis in SCC-4 Human Tongue Cancer Cells through Mitochondria-Dependent and -Independent Pathways. Environ. Toxicol. 2012, 27, 332–341. [Google Scholar] [CrossRef]
- Ito, K.; Nakazato, T.; Yamato, K.; Miyakawa, Y.; Yamada, T.; Hozumi, N.; Segawa, K.; Ikeda, Y.; Kizaki, M. Induction of Apoptosis in Leukemic Cells by Homovanillic Acid Derivative, Capsaicin, through Oxidative Stress: Implication of Phosphorylation of P53 at Ser-15 Residue by Reactive Oxygen Species. Cancer Res. 2004, 64, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Tavares, M.T.; Pasqualoto, K.F.M.; van de Streek, J.; Ferreira, A.K.; Azevedo, R.A.; Damião, M.C.F.C.B.; Rodrigues, C.P.; de-Sá-Júnior, P.L.; Barbuto, J.A.M.; Parise-Filho, R.; et al. Synthesis, Characterization, in Silico Approach and in Vitro Antiproliferative Activity of RPF151, a Benzodioxole Sulfonamide Analogue Designed from Capsaicin Scaffold. J. Mol. Struct. 2015, 1088, 138–146. [Google Scholar] [CrossRef]
- Cunha, M.R.; Tavares, M.T.; Carvalho, C.F.; Silva, N.A.T.; Souza, A.D.F.; Pereira, G.J.V.; Ferreira, F.F.; Parise-Filho, R. Environmentally Safe Condition for the Synthesis of Aryl and Alkyl Sulfonyl Hydrazones via One-Pot Reaction. Acs Sustain. Chem. Eng. Sustain. Chem. Eng. 2016, 4, 1899–1905. [Google Scholar] [CrossRef]
- Ha, S.-H.; Kim, J.-B.; Park, J.-S.; Lee, S.-W.; Cho, K.-J. A Comparison of the Carotenoid Accumulation in Capsicum Varieties That Show Different Ripening Colours: Deletion of the Capsanthin-Capsorubin Synthase Gene Is Not a Prerequisite for the Formation of a Yellow Pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narisawa, T.; Fukaura, Y.; Hasebe, M.; Nomura, S.; Oshima, S.; Inakuma, T. Prevention of N-Methylnitrosourea-Induced Colon Carcinogenesis in Rats by Oxygenated Carotenoid Capsanthin and Capsanthin-Rich Paprika Juice. Proc. Soc. Exp. Biol. Med. 2000, 224, 116–122. [Google Scholar] [CrossRef] [PubMed]
Compound | Cell Line and IC50 (µM) | References |
---|---|---|
Piperolactam A (1) | A549 (10.1); HCT15 (27.8); SK-MEL-2 (18.3); SK-OV-3 (18.3) | [85,86] |
Piperolactam B (2) | A549 (21.7); HCT15 (21.3); SK-MEL-2 (11.6); SK-OV-3 (14.4); P-388 (46.1) | [85,86] |
Piperolactam C (3) | A549 (>162.0); P-388 (78.0); HT-29 (69.0) | [85] |
4 | L1210 (1.6) | [87,88] |
5 | L1210 (2.6) | [87,88] |
6 | L1210 (2.3) | [87,88] |
7 | L1210 (1.6) | [87,88] |
8 | L1210 (1.8) | [87,88] |
9 | MCF-7 (2.0) | [89] |
Piplartine or Piperlongumine (10) | 518A2 (2.6); A2780 (0.5); A549 (1.9); CEM (4.4); GBM10 (3.8); HCT116 (6.0); HCT8 (2.2); HL60 (5.3); HT1080 (3.4); HT-29 (1.4); JURKAT (5.3); K-562 (5.7); KB (5.6); MCF-7 (5.0); MOLT-4 (1.7); MRC-5 (35.0); SF188 (3.9); SKBR3 (4.0); T98G (4.9); WI38 (26.8); ZR-75-30 (5.9) | [88,90,91,92,93,94] |
11 | A549 (4.1); MCF-7 (4.2) | [88] |
12 | A549 (4.7); MCF-7 (4.9) | [88] |
13 | A549 (1.8); MCF-7 (1.6) | [88] |
14 | A549 (2.0); MCF-7 (1.8) | [88] |
15 | A549 (3.8); MCF-7 (5.0) | [88] |
16 | A549 (24.0); MDA-MB-231 (11.7) | [93] |
17 | A549 (18.0); MDA-MB-231 (23.7) | [93] |
18 | A549 (19.8); MDA-MB-231 (6.7) | [93] |
19 | A549 (3.9); MDA-MB-231 (6.1) | [93] |
20 | A549 (4.1); MDA-MB-231 (7.3) | [93] |
21 | A549 (4.8); MDA-MB-231 (2.7) | [93] |
22 | A549 (2.7); MDA-MB-231 (2.5) | [93] |
23 | A549 (2.2); MDA-MB-231 (2.1) | [93] |
Pipermethystine 24 | HepG2 (not reported) | [95] |
Piperlonguminine 25 | MCF-7 (6.0); MCF-12A (50.8); MDA-MB-231 (261.7); MDA-MB-468 (8.0); SW-620 (16.9) | [96] |
Pellitorine 26 | HL60 (58.0); MCF-7 (8.0) | [97,98] |
Sarmetine 27 | P-388 (ED50 = 13.0) | [99] |
Piperine 28 | A549 (427.5); COLO-205 (46.0); HeLa (95.0); Hep-G2 (70.0); IMR-32 (89.0); MCF-7 (99.0) | [100,101,102] |
Piperninaline 29 | L5178Y (17.0) | [103] |
Dehydropiperninaline 30 | L5178Y (8.9) | [103] |
Aduncamide 31 | KB (ED50 = 18.0) | [104,105] |
32 | Not active | [106] |
33 | Not active | [106] |
34 | Not active | [106] |
Piperarborenine A 35 | A549 (4.23); HT-29 (6.21); P-388 (0.21) | [85] |
Piperarborenine B 36 | A549 (1.39); HT-29 (2.41); P-388 (0.13) | [85] |
Piperarborenine C 37 | A549 (0.23); HT-29 (0.26); P-388 (0.18) | [85] |
Piperarborenine D 38 | A549 (0.28); HT-29 (0.35); P-388 (0.20) | [85] |
Piperarborenine E 39 | A549 (0.19); HT-29 (0.22); P-388 (0.02) | [85] |
Piperarboresine 40 | A549 (5.01); HT-29 (5.69); P-388 (4.87) | [85] |
Piplartine-dimer A 41 | P-388 (8.48) | [85] |
Chabamide 42 | A549 (67.3); CNE (67.0); COLO-205 (5.4); DU-145 (16.0); HeLa (24.0; 189.8); HepG2 (60.8); K-562 (10.8); MCF-7 (39.1); SGC-7901 (12.0) | [107,108] |
Chabamide F 43 | COLO-205 (181.7); HeLa (119.4); HepG2 (44.6); HT-29 (259.7); MCF-7 (49.9) | [107] |
Chabamide G 44 | COLO-205 (0.0369); HeLa (85.3); HepG2 (108.0); MCF-7 (51.4) | [107] |
Chabamide H 45 | COLO-205 (69.5); HepG2 (253.5); MCF-7 (319.4) | [107] |
Chabamide I 46 | COLO-205 (80.5); HeLa (263.4) | [107] |
Chabamide J 47 | HT-29 (450.4) | [107] |
Chabamide K 48 | COLO-205 (379.4); Hela (191.0); HepG2 (437.2); HT-29 (397.8) | [107] |
cis-Yangonin 49 | A2780 (2.9); K652 (1.6) | [109] |
trans-Yangonin 50 | A2780 (9.3); K652 (5.5) | [109] |
Demethoxyyangonin 51 | A2780 (16.6); K652 (12.6) | [109] |
Kavain 52 | A2780 (11.0); K652 (23.2) | [109] |
Methysticin 53 | A375 (65.0); HaCaT (29.0) | [110] |
54 | A375 (65.0); HaCaT (29.0) | [110] |
Flavokavain A 55 | MCF-7 (25.0); MDA-MB-231 (17.5) | [111,112] |
Flavokavain B 56 | A2058 (18.3); ACC-2 (4.7); CaCo-2 (9.9); Cal-27 (26.7); DU-145 (3.9); H460 (18.2); HaCaT (13.6); HCT116 (7.5); HuH7 (15.9); HSC-3 (17.2); LAPC4 (32.0); LNCaP (48.3); MCF-7 (38.4); MCF-7/HER2 (13.6); MDA-MB-231 (12.3/45.0); NCI-H727 (11.3); PC-3 (6.2); RL (8.2); SKBR3/HER2 (10.0); SK-LMS-1 (4.4) | [112,113,114,115,116,117,118] |
Flavokavain C 57 | A549 (40.3); CaSKi (39.9); CCD-18Co (160.9); EJ (8.3); HCT116 (12.7); HepG2 (60.0); HT-29 (39.0); L-02 (57.0); MCF-7 (47.6); RT-4 (1.5) | [119,120] |
58 | CaCo-2 (10.0); HaCaT (10.9); HCT116 (9.2); MCF-7 (10.5); NCI-H727 (11.0); PC-3 (9.6); RL (10.1) | [112] |
59 | CaCo-2 (11.2); HaCaT (10.4); HCT116 (7.7); HuH7 (15.0); MCF-7 (10.3); MDA-MB-231 (13.2); NCI-H727 (14.8); PC-3 (7.3); RL (9.0) | [112] |
60 | CaCo-2 (9.6); HaCaT (10.5); HCT116 (10.0); HuH7 (16.6); MCF-7 (15.9); NCI-H727 (9.9); PC-3 (8.7); RL (8.9) | [112] |
61 | CaCo-2 (9.2); HCT116 (12.4); MCF-7 (8.8); PC-3 (13.2); RL (5.4) | [112] |
62 | HCT116 (54.1); MCF-7 (7.3); | [121] |
63 | CaCo-2 (5.8); HaCaT (7.2); HCT116 (6.9); HuH7 (15.5); MCF-7 (9.4); MDA-MB-231 (12.9); NCI-H727 (11.4); PC-3 (5.1); RL (6.9) | [112] |
64 | CaCo-2 (3.9); HaCaT (5.3); HCT116 (4.3); HuH7 (8.9); MCF-7 (9.4); MDA-MB-231 (8.7); NCI-H727 (8.2); PC-3 (3.1); RL (5.9) | [112] |
65 | CaCo-2 (4.5); HaCaT (8.7); HCT116 (4.2); HuH7 (9.8); MCF-7 (8.9); MDA-MB-231 (13.0); NCI-H727 (4.0); PC-3 (8.1); RL (9.0) | [112] |
66 | CaCo-2 (8.8); HaCaT (7.7); HCT116 (6.8); HuH7 (14.1); MCF-7 (9.3); MDA-MB-231 (9.9); NCI-H727 (8.7); PC-3 (7.6); RL (8.3) | [112] |
67 | CaCo-2 (5.5); HaCaT (7.6); HCT116 (6.2); HuH7 (14.6); MCF-7 (7.7); MDA-MB-231 (10.7); NCI-H727 (5.5); PC-3 (5.5); RL (6.4) | [112] |
68 | CaCo-2 (5.7); HaCaT (7.6); HCT116 (5.4); HuH7 (12.7); MCF-7 (7.5); MDA-MB-231 (8.2); NCI-H727 (6.0); PC-3 (5.8); RL (6.5) | [112] |
69 | CaCo-2 (6.8); HaCaT (9.0); HCT116 (6.2); HuH7 (13.9); MCF-7 (9.5); MDA-MB-231 (11.1); NCI-H727 (11.3); PC-3 (7.1); RL (8.3) | [112] |
70 | CaCo-2 (2.6); HaCaT (2.8); HCT116 (2.7); HuH7 (4.9); MCF-7 (5.0); MDA-MB-231 (3.3); NCI-H727 (4.1); PC-3 (2.5); RL (3.4) | [112] |
Grandisin 71 | EAT (0.2); HL60 (60.0); U937 (30.0); V79 (174.0) | [122,123] |
72 | A549 (6.90); SK-MEL-2 (4.50); SK-OV-3 (9.40) | [86] |
73 | 3T3-A31 (0.043) | [124] |
Conocarpan 74 | A549 (11.2); HL60 (5.8); MCF-7 (7.8); SMMC-7721 (8.9); SW-480 (2.1) | [125] |
Decurrenal 75 | MCF-7 (169.1) | [126] |
Eupomatenoid-5 76 | 786-0 (TGI = 6.6); HT-29 (TGI = 48.5); K-562 (TGI = 338.5); MCF-7 (TGI = 21.2); NCI-H460 (TGI = 34.8); OVCAR-3 (TGI = 18.7); PC-3 (TGI = 21.0); UACC-62 (TGI = 27.9) | [127] |
Capsaicin 77 | 3T3 (83.0); A375 (6.0); A2058 (200.0); AsPC1 (150.0); B16F10 (117.0); BxPC3 (150.0); HepG2 (50.0); MCF-7 (53.0); MCF-10A H-ras (56.0); MDA-MB-231 (21.7); PC-3 (20.0); RT-4 (80.0) | [128,129,130] |
78 | B16F10 (87.0); MCF-7 (32.0) | [128,129,130] |
79 | B16F10 (38.0); MCF-7 (28.0); MDA-MB-231 (87.0) | [131] |
80 | B16F10 (75.0); MDA-MB-231 (109.0) | [132] |
81 | B16F10 (50.0); MCF-7 (32.0); MDA-MB-231 (14.2) | [129] |
82 | B16F10 (120.0); MDA-MB-231 (75.0) | [132] |
83 | MCF-7 (142.4); MDA-MB-231 (104.6) | [133] |
84 | MCF-7 (144.6); MDA-MB-231 (173.2) | [133] |
85 | B16F10 (130.0); SK-MEL-28 (85.0) | [130] |
86 | A2058 (55.2); SK-MEL-25 (67.2); U-87 (86.9) | [134] |
Capsanthin 87 | DU-145 (ND); PC-3 (ND) | [135,136] |
Capsorubin 88 | A549 (< 20.0) | [135,136] |
Ericifolin 89 | LNCaP (< 5.0) | [137] |
Nilocitin 90 | HCT116 (19.4); HepG2 (22.8); MCF-7 (40.8) | [63] |
Pedunculagin 91 | HCT116 (4.4); HepG2 (6.4); MCF-7 (18.4) | [63] |
Castalagin 92 | HCT116 (7.4); HepG2 (9.8); MCF-7 (26.2) | [63] |
Grandinin 93 | HCT116 (13.8); HepG2 (18.4); MCF-7 (22.1) | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, M.R.; Tavares, M.T.; Fernandes, T.B.; Parise-Filho, R. Peppers: A “Hot” Natural Source for Antitumor Compounds. Molecules 2021, 26, 1521. https://doi.org/10.3390/molecules26061521
Cunha MR, Tavares MT, Fernandes TB, Parise-Filho R. Peppers: A “Hot” Natural Source for Antitumor Compounds. Molecules. 2021; 26(6):1521. https://doi.org/10.3390/molecules26061521
Chicago/Turabian StyleCunha, Micael Rodrigues, Maurício Temotheo Tavares, Thais Batista Fernandes, and Roberto Parise-Filho. 2021. "Peppers: A “Hot” Natural Source for Antitumor Compounds" Molecules 26, no. 6: 1521. https://doi.org/10.3390/molecules26061521
APA StyleCunha, M. R., Tavares, M. T., Fernandes, T. B., & Parise-Filho, R. (2021). Peppers: A “Hot” Natural Source for Antitumor Compounds. Molecules, 26(6), 1521. https://doi.org/10.3390/molecules26061521