Next Article in Journal
The Fascinating World of Low-Dimensional Quantum Spin Systems: Ab Initio Modeling
Next Article in Special Issue
Optimization of Two Eco-Friendly Extractions of Black Medick (Medicago lupulina L.) Phenols and Their Antioxidant, Cosmeceutical, α-Glucosidase and α-Amylase Inhibitory Properties
Previous Article in Journal
Profiling of In Vitro Bioaccessibility and Intestinal Uptake of Flavonoids after Consumption of Commonly Available Green Tea Types
Previous Article in Special Issue
Structure Revision of Isocereulide A, an Isoform of the Food Poisoning Emetic Bacillus cereus Toxin Cereulide
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Peppers: A “Hot” Natural Source for Antitumor Compounds

by
Micael Rodrigues Cunha
1,2,
Maurício Temotheo Tavares
2,3,
Thais Batista Fernandes
2 and
Roberto Parise-Filho
2,*
1
Center of Medicinal Chemistry, Dr. André Tosello Avenue, 550, Campinas, SP 13083-886, Brazil
2
Laboratory of Design and Synthesis of Bioactive Substances, Department of Pharmacy, University of São Paulo, Prof. Lineu Prestes Avenue 580, Bl.13, Butantã, SP 05508-900, Brazil
3
Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
*
Author to whom correspondence should be addressed.
Molecules 2021, 26(6), 1521; https://doi.org/10.3390/molecules26061521
Submission received: 18 February 2021 / Revised: 5 March 2021 / Accepted: 7 March 2021 / Published: 10 March 2021

Abstract

:
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.

1. Introduction

Antineoplastic chemotherapy remains a challenge nowadays since the current drugs affect both tumorigenic and healthy cells, causing undesirable adverse effects due to low selectivity and high toxicity [1]. Moreover, resistance against anticancer drugs may brutally impair the effectiveness of chemotherapy. These issues illustrate the need for new anticancer therapies and the development of more effective and safer antitumor agents [2].
Natural products play an important role in the discovery of new drugs and in addition, they are an important source of innovative molecular scaffolds for the treatment of various diseases, especially cancer. According to Newman and Cragg (2016) [3], among antitumor drugs approved worldwide between 1940 and 2014, 49% of the new molecular entities were natural products or directly derived compounds. Big pharmaceutical companies have retreated from their natural product-derived drug discovery projects, yet several authors have reported new methods and techniques that enhance exploration of the chemical diversity of natural products (e.g., mass spectrometry, genomics, proteomics, automated extract production, and phenotypic high-throughput screening) [3,4,5,6,7,8]. Of note is that these new techniques have allowed the identification of many active compounds in traditional medicines [9,10,11,12,13,14,15].
Primarily used as spices for foods due to the pungent flavor and aroma, peppers have an important position as excellent producers of secondary metabolites that have a wide range of pharmacological properties. For instance, the Piper, Capsicum, and Pimenta genera have been used by ancient civilizations (e.g., Chinese, Mayan, and Caribbean traditional medicines) in formulations for cancer treatment. However, their value as a natural source for cytotoxic compounds has only gained attention in the last decades [16,17,18,19]. Herein, we summarize the in vitro proapoptotic activity of secondary metabolites of peppers and discuss the current efforts to produce pepper-derived analogues with enhanced cytotoxic activity. We observed that most of the research in this field was done by academic institutions. Although many compounds have a potent proapoptotic profile, high selectivity for cancer cells, and easy synthetic accessibility, none of them have progressed to the clinics so far.

2. Pepper Ethnopharmacology

Piperaceae, a promising natural source for new drugs, is a pantropical family of plants comprising approximately 4000 species that contain biologically active natural products, including amides, lignans, neolignans, benzopyrene, pyrones, flavonoids, and terpenoids. These compounds led peppers to be broadly used in folk medicine worldwide, especially in Asia and Latin America [16,20,21]. The Piperaceae family has five genera: Macropiper, Zippelia, Peperomia, Manekia, and Piper, which is the largest genus of this family (nearly 2000 species) [22]. Many Piper species are popularly used for the treatment of several disorders, such as rheumatism [23], cardiac arrhythmias [24], asthma [25], upset stomach [26], and many kinds of infections [21]. Further biological properties have been reported for secondary metabolites of Piper, such as antinociceptive [27], anti-inflammatory [28,29], antiplatelet aggregation [30], antioxidant [31], antiophidic [32], anxiolytic/antidepressant [33], antidiabetic [32], hepatoprotective [34], leishmanicidal [35], anti-secretory [36], and cytotoxic effects [37].
The Solanaceae family comprises 98 genera and nearly 2700 species [38]. Interestingly, common dietary ingredients appear in Solanaceae subfamilies, such as tomatoes and potatoes (Solanum), bell and chili peppers (Capsicum), and tobacco (Nicotiana) [39]. The biological aspects of this family are primarily related to their alkaloid content (e.g., tropanes, nicotine, capsaicinoids, and glycoalkaloids) [40,41,42,43,44,45]. Chili peppers that are found in the Capsicum genus are believed to have been part of the human diet since immemorial time. It is well established that Central and South American Indians grew these peppers before Christopher Columbus’ arrival [46]. The Capsicum genus comprises ~27 species with a large number of varieties [47,48]. Among the related biological activities, chili peppers are believed to act as antioxidants [49,50] and hypoglycemic [51], antimicrobial [12], anti-inflammatory [52], thermoregulatory [53], and antitumor [54] agents.
According to several authors [55,56], the Myrtaceae family is composed of 5500 species that are clustered into 140 genera that are widely distributed in neotropical forests and savannas. This massive family is widely explored for the production of essential oils and spices (Myrtus sp. and Pimenta sp.) [57,58], in natura food [59], and wood-derived products (Eucalyptus sp.) [60]. The Pimenta genus comprises 16 species mainly found in the Caribbean region [55,61,62], and its essential oil and leaf extracts have several biological properties such as cytotoxicity [63], anti-nociceptive and anti-inflammatory [64,65], antioxidant [66,67], insecticidal [68], antimicrobial [69,70], and antifungal [71] effects.

3. The Apoptosis Pathways

Apoptosis, a programmed senescence process of cell death, naturally occurs (i) when cells lose their proliferative capacity after a certain number of cell divisions, (ii) in cellular defense events (e.g., immune reactions), and (iii) and after severe cellular damage (e.g., solar radiation) [72,73]. Nevertheless, apoptosis can be avoided due to deregulation of extrinsic and intrinsic key components that trigger its pathway, a very common characteristic in many cancers [74]. Advances in the understanding of these biochemical pathways have created opportunities to modulate defective processes through the proapoptotic activity induced by natural and synthetic compounds [75,76].
Most known proapoptotic effects act as upregulation of death receptors, leading to activation of caspases and cell death (via extrinsic pathway) [77,78]. On the other hand, the intrinsic pathway can be triggered by compounds that generally produce high levels of damaged DNA [79]. These compounds, natural or synthetic, can also stimulate proapoptotic regulators of the B-cell lymphoma 2 (BCL-2) family [80], promoting the collapse of internal mitochondrial membrane potential (Δψ) followed by an overflow of the mitochondrial content, such as cytochrome c (Cyt c), direct IAP binding protein with low pI), and HtrA2 (High temperature requirement protein A2 (DIABLO) [81,82]. In the cytosol, Cyt c forms the apoptosome, which promotes the activation of caspases, resulting in apoptosis [83,84].
Among the reviewed compounds, the secondary metabolites of peppers, some analogues, and their potency over cancer cell lines are described in Table 1 and Table S1. Moreover, as can be seen in the next items of this review, chemical constituents are described in detail and cell death mechanisms, when available, are also presented.

4. Literature-Related Cytotoxic Compounds

4.1. Piper sp.

Piperolactams 1–3 (Figure 1) are present in several species of Piper, such as P. caninum, P. marginatum, and P. kadsura [98,138,139]. This class of compounds is metabolized in vitro and in vivo to a reactive cyclic N-acylnitrenium ion that forms DNA adducts with purine bases, leading to cancer cell death; however, genotoxic and carcinogenic effects in non-tumorigenic cells were observed, as well as shrimp and mice toxicity [140,141,142]. Compounds 1–2 demonstrated moderate (IC50 ~10.0 µM) cytotoxicity against A549 lung and SK-MEL-2 skin cancer cells [139,141], whereas 3 was weakly active against P-388 lymphoma and HT-29 adenocarcinoma cells [85]. Many analogues of 1–3, based on different substitutions at the aristolactam and aporphine moieties, were also achieved. In 2002, Couture et al. (2002) observed that changes in the hydroxyl and methoxyl substituents conferred potent compounds against L1210 leukemia cells in the low µM range (4–8, Table 1) [87]. Hedge and coworkers (2010) evaluated the activity of semi-synthetic aristolactams against CDK2, a kinase protein involved in cell cycle regulation. The most potent analogue found (9) displayed strong CDK2 inhibition (IC50 = 35 nM) and cytotoxicity against MCF-7 breast cancer cells (IC50 = 2.0 μM) [89].
Piplartine or piperlongumine 10 is the major bioactive alkaloid extracted from the dried fruits of the Piper genus [143,144], of which the species P. longum L., P. tuberculatum, and P. chaba are the most prominent [145]. The literature correlates the observed cytotoxicity of 10 against tumorigenic and normal cell lines (Table 1) to an accumulation of Reactive Oxygen Species (ROS) due to the interaction with antioxidant proteins, activation of p38, and c-Jun N-terminal kinases (JNKs), thus leading to cell damage and apoptosis [146,147]. Many compounds derived from 10 were synthesized and evaluated against cancer cell lines. Curiously, the insertion of aryl and alkyl groups to the cinnamyl moiety (11–23) afforded potent compounds against A549 lung and MCF-7 and MDA-MB-231 breast cancer cells. Replacement of the acidic proton from the di-hydropyridinone moiety by halogens (18–23) also generated cytotoxic compounds [88,93]. An interesting review regarding analogues of 10, as well as their anticancer properties and molecular bases for their activity, was written by Piska and coworkers [148].
Pipermethystine 24 is another important alkaloid with antitumor activity, which was isolated from leaves of P. methysticum [149] and, subsequently, Nerurkarand et al. (2004) observed that 24 inhibited 90% of cellular viability in HepG2 liver carcinoma cells at 100 μM. It is interesting to note that the inhibitory effect of 24 caused a mitochondrial disruption, reduction of adenosine triphosphate (ATP) concentrations, and activation of caspase-3, leading to apoptosis [73,78,95].
Piperlonguminine 25, found in P. divaricatum, P. longum, P. ovatum, and also in other Piper species, was recently patented due to its cytotoxic properties against cancer cells [150,151]. Compound 25 demonstrated potent proapoptotic activity against breast cancer cells by activation of caspases-3, -7, -8, the BAX protein, and the induction of cell cycle arrest at the G2/M phase with a reduction in topoisomerase II expression, leading to DNA damage [96,152].
Pellitorine 26 and sarmentine 27 are found in several Piper species, such as P. tuberculatum, P. nigrum, P. sintenense, P. sarmentosum, P. nigrum, and P. lolot [21,99,153]. Compound 26 was found to be cytotoxic towards MCF-7 breast cancer cells (IC50 = 8.0 µM) and HL60 human leukemia (IC50 = 58.0 µM), whereas 27 was only found to be active against P-388 leukemia cells (ED50 = 13 µM) [98].
Piperine 28 is the major alkaloid found in P. nigrum, the most common pepper species used as a spice in almost every culture worldwide [154]. The cytotoxic activity of 28 was evaluated against several cancer cells and caused the induction of cell cycle arrest at the G2/M phase, the activation of caspase-3 and -9, an increase in BAX, and a concomitant reduction in BCL-2 (mediated by p53). Additionally, 28 caused upregulation on the expression of TRPV1 receptors, MMP-2, and MMP-13 [102]. An interesting review about the structure–activity relationship regarding analogues of 28 was reported by Qu et al. [155].
Pipernonaline 29 and dehydropipernonaline 30 were isolated from fruit extracts of P. retrofractum [103,156] and P. longum L. [157,158]. Both 29 and 30 revealed promising cytotoxic activity against L5178Y mouse lymphoma and PC-3 human prostate cancer cells by inducing cell cycle arrest at the G0/G1 phase, caspase-3 activation, ROS production, and mitochondrial membrane disruption [103,159].
Aduncamide 31 was first isolated from the leaves of P. aduncum as part of a Swiss research program interested in the isolation of biologically active metabolites found in the traditional medicine of Papua New Guinea [104,105]. Even though 31 presented cytotoxicity against KB cells (HeLa-derived tumorigenic cells, ED50 = 18.0 µM), no further research was conducted with this compound. Although three natural analogues of 31 were found in P. taiwanense (32–34), no cytotoxicity has been observed for this set of compounds so far [106].
Piperarborenines 35–41 were isolated from P. arborescens [160] and demonstrated potent cytotoxic activity against human cancer cells, reaching submicromolar activity [85]. Notably, a remarkable potent activity was found for 39 against P-388 leukemia (IC50 = 0.02 µM), HT-29 colon, and A549 lung cells (IC50 = 0.20 µM for both cell lines). The chemical complexity of this class of compounds and its promising anticancer activity is highlighted by the number of publications focusing on the synthesis of 39–40 and related analogues [94,161,162,163,164].
Chabamides 42–48 have been isolated from P. chaba [165] and are naturally produced by the condensation of 28 with further secondary metabolites [166] via the Diels–Alder reaction [107]. Compound 42 presented proapoptotic effects in cancer cell lines, inducing cell cycle arrest at the G0/G1 phase, increased p21 and BAX, and decreased BCL-2 antiapoptotic proteins [108,167]. Compounds 43–48 were found to be less active than 42, in which remarkable proapoptotic activity was found towards COLO-205 colon cancer cells (IC50 = 36.9 nM) [107].
The cytotoxic compounds 49–53 were discovered on P. methysticum, a largely consumed spice in Pacific cultures [168,169]. Curiously, the cis-pyranone 49 was threefold more cytotoxic towards K652 leukemia cells than the trans isomer 50 (IC50 = 1.6 and 5.5 µM, respectively) [109]. The mechanism of apoptosis was studied in HepG2 liver cancer cells in which chromatin condensation and nuclear fragmentation were observed [170]. Further derivatives of 52 have been evaluated against tumorigenic cells. The most active compound of the series (54), however, presented twofold higher cytotoxicity for human normal keratinocytes than for melanoma cells, impairing further studies in vivo [110]. Moreover, compounds 49–53 were also reported to be potent cytochrome P450 inhibitors and hepatotoxic [171].
Chalcones 55–56 were found in P. methysticum, P. dilatatum, and P. rusbyi [109,172,173]. Even though these compounds were strongly associated with death receptor upregulation [115,116], further studies suggested that along with 57, they might modulate the BLC-2 family, inducing mitochondrial disruption and downregulation of X-linked inhibitor of apoptosis protein (XIAP) [119,174,175]. Western blot analysis also indicated the cleavage of Poly (ADP-ribose) polymerase (PARP) mediated by JNK [117], Akt/MAP-kinase inactivation, and a reduction in the levels of cyclin A and B1, Cdc2, and Cdc25C [176,177]. Curiously, 56 was highly cytotoxic against HCT116 colon carcinoma and PC-3 prostate cancer cells (IC50 = 7.5 and 6.2 µM, respectively), whereas 55 remained inactive [112,113,119,120,178]. Moreover, 56 presented in vivo antitumor activity against DU-145 human prostate cancer and KB cancer cells in tumor xenograft models [113,176]. Analogues 58–70 were evaluated against the liver, colon, breast, prostate, lung, and lymphoma cancer cell lines [112]. Interestingly, the most active compounds were found to be para-substituted by halogens (67–69) and nitro (70). This set of compounds induced cell cycle arrest at the G1/S and M phases, and apoptosis via the PI3K/AKT/mTOR pathway [119,178].
Tetrahydrofuran neolignans such as 71–73 have been isolated from P. solmsianum, but they also can be found in species of the Lauraceae, Myristicaceae, and Schisandraceae families [179,180]. Studies have demonstrated that compound 71 has cytotoxic and antitumor activities, suggesting its potential to be used as an anticancer agent [181,182]. Upon treatment with 71, cancer cells underwent cell cycle arrest at the G1 phase, chromatin condensation, phosphatidylserine externalization, DNA fragmentation, upregulation on caspase activity, and apoptosis [122,183]. The poor aqueous solubility of 71 was ameliorated through nanoencapsulation, which presented almost 16-fold higher cytotoxicity against Balb/c 3T3-A31 fibroblasts (IC50 = 5.0 nM) [184]. The natural analogue 72 and the demethylated metabolite 73 were also found to be cytotoxic against several cancer cell types [124].
Compounds 74–76 can be found in several species of Piper, such as P. regnellii, P. solmsianum, P. decurrens, P. abutiloides, P. kadsurai, and P. rivinoides [185,186,187,188,189,190]. Although 74 was a potent cytotoxic compound over a panel of cancer cells, 75 was slightly active only in MCF-7 breast cancer cells (IC50 = 169.1 µM) [125,191]. Moreover, cancer cells treated with neolignan 76 displayed a high apoptosis rate through phosphatidylserine externalization, caspase activation, a loss of cell membrane integrity, and an increase in ROS. Upon treatment with 76, MCF-7 revealed apoptosis-like alterations such as pyknosis, blebbing, and evagination of plasma membrane; on the other hand, 786-0 cells displayed cytoplasmic content release associated with the necrotic process [192]. Remarkably, in vivo experiments using an Ehrlich solid tumor mice model demonstrated that treatment with 76 reduced the tumor volume by 30% with no observation of adverse effects in mice [127].

4.2. Capsicum sp.

Capsaicinoids are the most studied compounds related to red peppers of the Capsicum genus. Jalapeño pepper (C. annuum), habanero (C. chinense), and tabasco (C. frutescens) have a high capsaicinoid concentration, ranging from 0.2% to 4.2% [193,194,195,196], depending on environmental conditions and quantification methods [47]. Capsaicin 77 (Figure 2), is the main capsaicinoid metabolite found in red peppers and can be isolated mainly from fruits of the Capsicum species [197]. The analgesic, pungent, and pro-apoptotic effects of 77 are related to their interaction with Transient Receptor Potential Vanilloid (TRPV) receptors at the sensory neurons [198]. This family of transmembrane receptors (TRPV1 to TRPV6) is found in several tissues and mediates the influx of Ca2+ into the cytosol [199]. The TRPV receptors can be activated by many stimuli such as proton (H+), heat, and natural substances such as 28, 77, and resiferatoxin [200,201,202]. In sensory neuronal fibers, the activation of TRPV1 by 77 triggers a rapid increase in Ca2+ flux, causing neuronal depolarization and the characteristic burning sensation [203,204,205,206]. Compound 77 is also supposed to interact with other TRP receptors involved in cancer progression, such as TRPV6 [207] and TRPM8 [208]. Chow et al. (2007) [209] suggested that 77 induces apoptosis preferentially via TRPV6, with selectivity for tumor cells. Recently, however, the activity of 77 against TRPV6 was evaluated in a Ca2+ flux assay [134,210]. The authors observed that in this assay, the compound was not able to change the channel transport. Despite the mode of action of 77 still being inconclusive, further studies indicated that the modulation of TRP channels and enhancement on Ca2+ influx may trigger apoptosis by calpain activation and effector caspases as well [211]. This compound has been investigated against more than 40 types of tumors, attracting the attention of many researchers as a promising drug candidate for cancer treatment [128]. Upon treatment with 77, tumor cells undergo disruption of the mitochondrial membrane, increasing ROS generation and caspase-3 and -9 activity [212]. In vivo mice models revealed that administration of 77 significantly reduced tumor growth (>50%) in breast and leukemia cancers [76,213]. As the inherent pungency of 77 greatly limits its application in therapeutics, it has led several research groups to design analogues lacking pungency of 77 [129,131,132,133,210,214,215].
Compound 78 inhibited MCF-7 breast cancer cells at 32.0 µM, showing a better effect when compared to 77 (53.0 µM). Additionally, common changes typically associated with apoptosis were observed, such as cell shrinkage, pyknosis, mitochondrial depolarization, the formation of apoptotic vesicles, and DNA fragmentation [129]. Furthermore, it was observed that cells treated with 78 exhibited a reduced number of mitoses, disruption of mitotic spindles, and cell cycle arrest at the G2/M phase [129]. Compounds 79–82 presented proapoptotic activity against B16F10 murine melanoma and MDA-MB-231 and MCF-7 human breast cancer cells with no pungency in vivo. Moreover, these compounds induced cell cycle arrest and downregulation of BCL-2 expression [129,131]. Noteworthy, 79 significantly reduced tumor volume in a breast tumor model in vivo [129,131]. Further bioisosteric analogues 83–86 exhibited weaker activity over breast cancer cells [130,133,134].
Carotenoids such as 87 and 88 are abundant in red peppers such as C. annuum, C. baccatum, C. chinense, and C. pubescens [216]. Compound 87, in a concentration-independent way, partially reduced prostate cancer cell proliferation, inducing cell cycle arrest and apoptosis, but the effect was less pronounced in vivo using F344 rats [135,217]. On the other hand, compound 88 presented potent cytotoxicity against A549 lung cancer cells, with an IC50 < 20.0 µM [136].

4.3. Pimenta sp.

Amongst the other reviewed genus, Pimenta sp. is less explored and possesses fewer representatives (16 species). The cytotoxic compounds related to Pimenta sp. reported in the literature came from treatments with extracts of Pimenta dioica berries and leaves [19]. Curiously, breast cancer cells underwent autophagy, whereas prostate cancer cells underwent cycle arrest at the G1/S phase and also apoptosis. The proapoptotic activity of the extract was linked to the presence of glycopyranoside 89 (Figure 3), which induced apoptosis in LNCaP human prostate adenocarcinoma cells (IC50 < 5.0 µM) by reducing cyclin-D1, CDK4, and androgen receptor transcription [15,137]. However, the purified 89 has no activity against MCF-7 and MDA-MB-231 breast cancer cells [137]. Several cytotoxic polyphenols (90–93) isolated from P. dioica leaves were evaluated in further studies. These compounds were tested against MCF-7 breast, HepG2 liver, and HCT116 colon cancer cells (Table 1) [63]. Compound 91 was the most cytotoxic (IC50 = 18.4, 6.4, and 4.4 µM, respectively), presenting the most protective activity against ROS and nitric oxide (NO) release.

5. Conclusions

Peppers produced by the Piper, Capsicum, and Pimenta genera are consumed worldwide and represent a significant natural source of secondary metabolites with high chemical diversity. In the last two decades, natural pepper compounds have been inspiring academic and industry researchers due to their cytotoxic effects on many tumorigenic cell lines. This fact highlights the potential of peppers to be used as a natural source of new molecular entities with anticancer activity. However, despite all efforts, antitumor therapy still does not have pepper-derived representatives. We can observe from the literature that compounds such as piperolactams (1–3), grandisin (71), and capsaicin (77) present physical–chemical properties, PK-PD profiles, and/or adverse effects that may impair clinical trials to treat malignancies. Nevertheless, this review has shown several derivatives and analogues with enhanced biological data, with some of them still undergoing preclinical trials and translational research. Of note is that some pepper-derived compounds, for instance, piperarborenines (35–40), methysticin (53), conocarpan (74), and ericifolin (89), have an intriguing proapoptotic mechanism but there is still a lack of information on their detailed mechanisms of cell death. This fact shows a promising area of research in Piper, Capsicum, and Pimenta metabolites that can contribute to the design of new chemical entities based on natural scaffolds.

Supplementary Materials

The following are available online: Table S1: Description of cancer cell lines from Table 1.

Author Contributions

Conceptualization, M.R.C. and R.P.-F.; literature revision, M.R.C., M.T.T., and T.B.F.; writing—original draft preparation, M.R.C.; writing—review and editing, M.R.C., M.TT., and T.B.F.; supervision, R.P.-F. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES/Brazil (Finance Code 001). The authors are also grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP/Brazil (grant no. 2013/18160-4 and 2017/00689-0).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data analyzed in this study are included in this article.

Acknowledgments

The authors acknowledge Nuno Albuquerque Tavares Ferreira da Silva and Gustavo José Vasco Pereira for their valuable discussions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Pedersen, B.; Koktved, D.P.; Nielsen, L.L. Living with Side Effects from Cancer Treatment-A Challenge to Target Information. Scand. J. Caring Sci. 2013, 27, 715–723. [Google Scholar] [CrossRef]
  2. He, Q.; Shi, J. MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Adv. Mater. 2014, 26, 391–411. [Google Scholar] [CrossRef]
  3. Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
  4. Koehn, F.E.; Carter, G.T. The Evolving Role of Natural Products in Drug Discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef]
  5. Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Yao, H.; Liu, J.; Xu, S.; Zhu, Z.; Xu, J. The Structural Modification of Natural Products for Novel Drug Discovery. Expert Opin. Drug Discov. 2017, 12, 121–140. [Google Scholar] [CrossRef] [PubMed]
  7. Zhang, M.M.; Qiao, Y.; Ang, E.L.; Zhao, H. Using Natural Products for Drug Discovery: The Impact of the Genomics Era. Expert Opin. Drug Discov. 2017, 12, 475–487. [Google Scholar] [CrossRef]
  8. Zhang, A.; Sun, H.; Wang, X. Mass Spectrometry-Driven Drug Discovery for Development of Herbal Medicine. Mass Spectrom. Rev. 2018, 37, 307–320. [Google Scholar] [CrossRef]
  9. Chaveerach, A.; Mokkamul, P.; Sudmoon, R.; Tanee, T. Ethnobotany of the Genus Piper (Piperaceae) in Thailand. Ethnobot. Res. Appl. 2006, 4, 223–231. [Google Scholar] [CrossRef] [Green Version]
  10. Meghvansi, M.K.; Siddiqui, S.; Khan, M.H.; Gupta, V.K.; Vairale, M.G.; Gogoi, H.K.; Singh, L. Naga Chilli: A Potential Source of Capsaicinoids with Broad-Spectrum Ethnopharmacological Applications. J. Ethnopharmacol. 2010, 132, 1–14. [Google Scholar] [CrossRef] [PubMed]
  11. Khan, F.A.; Mahmood, T.; Ali, M.; Saeed, A.; Maalik, A. Pharmacological Importance of an Ethnobotanical Plant: Capsicum Annuum L. Nat. Prod. Res. 2014, 28, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
  12. Cichewicz, R.H.; Thorpe, P.A. The Antimicrobial Properties of Chile Peppers (Capsicum Species) and Their Uses in Mayan Medicine. J. Ethnopharmacol. 1996, 52, 61–70. [Google Scholar] [CrossRef]
  13. Corson, T.W.; Crews, C.M. Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials. Cell 2007, 130, 769–774. [Google Scholar] [CrossRef] [Green Version]
  14. Srinivas, C.; Sai Pavan Kumar, C.N.S.; China Raju, B.; Jayathirtha Rao, V.; Naidu, V.G.M.; Ramakrishna, S.; Diwan, P. V First Stereoselective Total Synthesis and Anticancer Activity of New Amide Alkaloids of Roots of Pepper. Bioorg. Med. Chem. Lett. 2009, 19, 5915–5918. [Google Scholar] [CrossRef] [PubMed]
  15. Shamaladevi, N.; Lyn, D.A.; Shaaban, K.A.; Zhang, L.; Villate, S.; Rohr, J.; Lokeshwar, B.L. Ericifolin: A Novel Antitumor Compound from Allspice That Silences Androgen Receptor in Prostate Cancer. Carcinogenesis 2013, 34, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
  16. Wang, Y.-H.; Morris-Natschke, S.L.; Yang, J.; Niu, H.-M.; Long, C.-L.; Lee, K.-H. Anticancer Principles from Medicinal Piper ( Hú Jiāo) Plants. J. Tradit. Complement. Med. 2014, 4, 8–16. [Google Scholar] [CrossRef] [Green Version]
  17. Aggarwal, B.B.; Ichikawa, H.; Garodia, P.; Weerasinghe, P.; Sethi, G.; Bhatt, I.D.; Pandey, M.K.; Shishodia, S.; Nair, M.G. From Traditional Ayurvedic Medicine to Modern Medicine: Identification of Therapeutic Targets for Suppression of Inflammation and Cancer. Expert Opin. Ther. Targets 2006, 10, 87–118. [Google Scholar] [CrossRef] [PubMed]
  18. Caamal-Fuentes, E.; Torres-Tapia, L.W.; Simá-Polanco, P.; Peraza-Sánchez, S.R.; Moo-Puc, R. Screening of Plants Used in Mayan Traditional Medicine to Treat Cancer-like Symptoms. J. Ethnopharmacol. 2011, 135, 719–724. [Google Scholar] [CrossRef] [PubMed]
  19. Zhang, L.; Lokeshwar, B.L. Medicinal Properties of the Jamaican Pepper Plant Pimenta Dioica and Allspice. Curr. Drug Targets 2012, 13, 1900–1906. [Google Scholar] [CrossRef]
  20. López, S.N.; Lopes, A.A.; Batista, J.M.; Flausino, O.; Bolzani, V.D.S.; Kato, M.J.; Furlan, M. Geranylation of Benzoic Acid Derivatives by Enzymatic Extracts from Piper Crassinervium (Piperaceae). Bioresour. Technol. 2010, 101, 4251–4260. [Google Scholar] [CrossRef]
  21. Nascimento, J.C.d.; Paula, d.V.F.; David, J.M.; David, J.P. Occurrence, Biological Activities and 13C NMR Data of Amides from Piper (Piperaceae). Química Nova 2012, 35, 2288–2311. [Google Scholar] [CrossRef] [Green Version]
  22. Quijano-Abril, A.; Callejas-Posada, R.; Miranda-Esquivel, D.R. Areas of Endemism and Distribution Patterns for Neotropical Piper Species (Piperaceae). J. Biogeogr. 2006, 33, 1266–1278. [Google Scholar] [CrossRef]
  23. Yarnell, E. Herbs for Rheumatoid Arthritis. Altern. Complement. Ther. 2017, 23, 149–156. [Google Scholar] [CrossRef]
  24. Srinivasan, K. Biological Activities of Red Pepper ( Capsicum Annuum ) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
  25. Kim, S.-H.; Lee, Y.-C. Piperine Inhibits Eosinophil Infiltration and Airway Hyperresponsiveness by Suppressing T Cell Activity and Th2 Cytokine Production in the Ovalbumin-Induced Asthma Model. J. Pharm. Pharmacol. 2009, 61, 353–359. [Google Scholar] [CrossRef] [PubMed]
  26. Mehmood, M.H.; Gilani, A.H. Pharmacological Basis for the Medicinal Use of Black Pepper and Piperine in Gastrointestinal Disorders. J. Med. Food 2010, 13, 1086–1096. [Google Scholar] [CrossRef]
  27. López, K.S.E.; Marques, A.M.; Moreira, D.D.L.; Velozo, L.S.; Sudo, R.T.; Zapata-Sudo, G.; Guimarães, E.F.; Kaplan, M.A.C. Local Anesthetic Activity from Extracts, Fractions and Pure Compounds from the Roots of Ottonia Anisum Spreng. (Piperaceae). Ann. Braz. Acad. Sci. 2016, 88, 2229–2237. [Google Scholar] [CrossRef] [Green Version]
  28. Fusco, B.M.; Giacovazzo, M. Peppers and Pain. The Promise of Capsaicin. Drugs 1997, 53, 909–914. [Google Scholar] [CrossRef] [PubMed]
  29. Parise-Filho, R.; Pastrello, M.; Pereira Camerlingo, C.E.; Silva, G.J.; Agostinho, L.A.; de Souza, T.; Motter Magri, F.M.; Ribeiro, R.R.; Brandt, C.A.; Polli, M.C. The Anti-Inflammatory Activity of Dillapiole and Some Semisynthetic Analogues. Pharm. Biol. 2011, 49, 1173–1179. [Google Scholar] [CrossRef]
  30. Park, B.S.; Son, D.J.; Park, Y.H.; Kim, T.W.; Lee, S.E. Antiplatelet Effects of Acidamides Isolated from the Fruits of Piper Longum L. Phytomedicine 2007, 14, 853–855. [Google Scholar] [CrossRef]
  31. Amarowicz, R. Antioxidant Activity of Peppers. Eur. J. Lipid Sci. Technol. 2014, 116, 237–239. [Google Scholar] [CrossRef]
  32. Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L. V Overview of the Therapeutic Potential of Piplartine (Piperlongumine). Eur. J. Pharm. Sci. 2013, 48, 453–463. [Google Scholar] [CrossRef] [PubMed]
  33. Cícero Bezerra Felipe, F.; Trajano Sousa Filho, J.; de Oliveira Souza, L.E.; Alexandre Silveira, J.; Esdras de Andrade Uchoa, D.; Rocha Silveira, E.; Deusdênia Loiola Pessoa, O.; de Barros Viana, G.S. Piplartine, an Amide Alkaloid from Piper Tuberculatum, Presents Anxiolytic and Antidepressant Effects in Mice. Phytomedicine 2007, 14, 605–612. [Google Scholar] [CrossRef]
  34. Koul, I.; Kapil, A. Evaluation of the Liver Protective Potential of Piperine, an Active Principle of Black and Long Peppers. Planta Med. 1993, 59, 413–417. [Google Scholar] [CrossRef]
  35. Parise-Filho, R.; Pasqualoto, K.F.M.; Magri, F.M.M.; Ferreira, A.K.; da Silva, B.A.V.G.; Damião, M.C.F.C.B.; Tavares, M.T.; Azevedo, R.A.; Auada, A.V.V.; Polli, M.C.; et al. Dillapiole as Antileishmanial Agent: Discovery, Cytotoxic Activity and Preliminary SAR Studies of Dillapiole Analogues. Arch. Pharm. Pharm. Med. Chem. 2012, 345, 934–944. [Google Scholar] [CrossRef] [PubMed]
  36. Pongkorpsakol, P.; Wongkrasant, P.; Kumpun, S.; Chatsudthipong, V.; Muanprasat, C. Inhibition of Intestinal Chloride Secretion by Piperine as a Cellular Basis for the Anti-Secretory Effect of Black Peppers. Pharmacol. Res. 2015, 100, 271–280. [Google Scholar] [CrossRef]
  37. Ferreira, A.K.; de-Sá-Júnior, P.L.; Pasqualoto, K.F.M.; de Azevedo, R.A.; Câmara, D.A.D.; Costa, A.S.; Figueiredo, C.R.; Matsuo, A.L.; Massaoka, M.H.; Auada, A.V.V.; et al. Cytotoxic Effects of Dillapiole on MDA-MB-231 Cells Involve the Induction of Apoptosis through the Mitochondrial Pathway by Inducing an Oxidative Stress While Altering the Cytoskeleton Network. Biochimie 2014, 99, 195–207. [Google Scholar] [CrossRef]
  38. Olmstead, R.G.; Bohs, L. A Summary of Molecular Systematic Research in Solanaceae: 1982-2006. Acta Hortic. 2007, 745, 255–268. [Google Scholar] [CrossRef] [Green Version]
  39. Knapp, S. Tobacco to Tomatoes: A Phylogenetic Perspective on Fruit Diversity in the Solanaceae. J. Exp. Bot. 2002, 53, 2001–2022. [Google Scholar] [CrossRef] [PubMed]
  40. Singh, B.; Gupta, V.; Bansal, P.; Singh, R.; Kumar, D. Pharmacological Potential of Plant Used as Aphrodisiacs. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 104–113. [Google Scholar]
  41. Wannang, N.N.; Anuka, J.A.; Kwanashie, H.O.; Gyang, S.S.; Auta, A. Anti-Seizure Activity of the Aqueous Leaf Extract of Solanum Nigrum Linn (Solanaceae) in Experimental Animals. Afr. Health Sci. 2008, 8, 74–79. [Google Scholar]
  42. Ndebia, E.J.; Kamgang, R.; Nkeh-ChungagAnye, B.N. Analgesic and Anti-Inflammatory Properties of Aqueous Extract from Leaves of Solanum Torvum (Solanaceae). Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 240–244. [Google Scholar] [CrossRef] [Green Version]
  43. Monteiro, F.S.; Silva, A.C.L.; Martins, I.R.R.; Correia, A.C.C.; Basílio, I.J.L.D.; Agra, M.F.; Bhattacharyya, J.; Silva, B.A. Vasorelaxant Action of the Total Alkaloid Fraction Obtained from Solanum Paludosum Moric. (Solanaceae) Involves NO/CGMP/PKG Pathway and Potassium Channels. J. Ethnopharmacol. 2012, 141, 895–900. [Google Scholar] [CrossRef]
  44. Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G.; Sasikumar, P. Antihyperglycemic Activity and Antidiabetic Effect of Methyl Caffeate Isolated from Solanum Torvum Swartz. Fruit in Streptozotocin Induced Diabetic Rats. Eur. J. Pharmacol. 2011, 670, 623–631. [Google Scholar] [CrossRef]
  45. Giorgetti, M.; Negri, G. Plants from Solanaceae Family with Possible Anxiolytic Effect Reported on 19thcentury’s Brazilian Medical Journal. Braz. J. Pharmacogn. 2011, 21, 772–780. [Google Scholar] [CrossRef] [Green Version]
  46. Govindarajan, V.S. Capsicum-Production, Technology, Chemistry, and Quality Part 1: History, Botany, Cultivation, and Primary Processing. Crit. Rev. Food Sci. Nutr. 1985, 22, 109–176. [Google Scholar] [CrossRef] [PubMed]
  47. Canto-Flick, A.; Balam-Uc, E.; Bello-Bello, J.J.; Lecona-Guzmán, C.; Solís-Marroquín, D.; Avilés-Viñas, S.; Gómez-Uc, E.; López-Puc, G.; Santana-Buzzy, N.; Iglesias-Andreu, L.G. Capsaicinoids Content in Habanero Pepper (Capsicum Chinense Jacq.): Hottest Known Cultivars. HortScience 2008, 43, 1344–1349. [Google Scholar] [CrossRef] [Green Version]
  48. Gurnani, N.; Gupta, M.; Mehta, D.; Mehta, B.K. Chemical Composition, Total Phenolic and Flavonoid Contents, and in Vitro Antimicrobial and Antioxidant Activities of Crude Extracts from Red Chilli Seeds (Capsicum Frutescens L.)Gurnani, N.J. Taibah Univ. Sci. 2015, 10, 462–470. [Google Scholar] [CrossRef] [Green Version]
  49. Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive Characteristics and Antioxidant Activities of Nine Peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
  50. Oboh, G.; Puntel, R.L.; Rocha, J.B.T. Hot Pepper (Capsicum Annuum, Tepin and Capsicum Chinese, Habanero) Prevents Fe2+-Induced Lipid Peroxidation in Brain-in Vitro. Food Chem. 2007, 102, 178–185. [Google Scholar] [CrossRef]
  51. Tundis, R.; Menichini, F.; Bonesi, M.; Conforti, F.; Statti, G.; Menichini, F.; Loizzo, M.R. Antioxidant and Hypoglycaemic Activities and Their Relationship to Phytochemicals in Capsicum Annuum Cultivars during Fruit Development. Lwt Food Sci. Technol. 2013, 53, 370–377. [Google Scholar] [CrossRef]
  52. Zimmer, A.R.; Leonardi, B.; Miron, D.; Schapoval, E.; Oliveira, J.R.D.; Gosmann, G. Antioxidant and Anti-Inflammatory Properties of Capsicum Baccatum: From Traditional Use to Scientific Approach. J. Ethnopharmacol. 2012, 139, 228–233. [Google Scholar] [CrossRef] [Green Version]
  53. Govindarajan, V.S.; Sathyanarayana, M.N. Capsicum—Production, Technology, Chemistry, and Quality. Part v. Impact on Physiology, Pharmacology, Nutrition, and Metabolism; Structure, Pungency, Pain, and Desensitization Sequences. Crit. Rev. Food Sci. Nutr. 1991, 29, 435–474. [Google Scholar] [CrossRef] [PubMed]
  54. De Melo, J.G.; Santos, A.G.; De Amorim, E.L.C.; Nascimento, S.C.D.; De Albuquerque, U.P. Medicinal Plants Used as Antitumor Agents in Brazil: An Ethnobotanical Approach. Evid. Based Complement. Altern. Med. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Vasconcelos, T.N.C.; Lucas, E.J.; Brigido, P. One New Species, Two New Combinations and Taxonomic Notes on the All-Spice Genus Pimenta (Myrtaceae) from Hispaniola. Phytotaxa 2018, 348, 32–40. [Google Scholar] [CrossRef]
  56. Gomes, S.M.; Dalla Nora Somavilla, N.S.; Gomes-Bezerra, K.M.; de Miranda, S.C.; De-Carvalhoa, P.S.; Graciano-Ribeiro, D. Leaf Anatomy of Myrtaceae Species: Contributions to the Taxonomy and Phylogeny. Acta Bot. Bras. 2009, 23, 223–238. [Google Scholar]
  57. Akin, M.; Aktumsek, A.; Nostro, A. Antibacterial Activity and Composition of the Essential Oils of Eucalyptus Camaldulensis Dehn. and Myrtus Communis L. Growing in Northern Cyprus. Afr. J. Biotechnol. 2010, 9, 531–535. [Google Scholar] [CrossRef]
  58. Yokomizo, N.K.S.; Nakaoka-Sakita, M. Antimicrobial Activity and Essential Oils Yield of Pimenta Pseudocaryophyllus Var. Pseudocaryophyllus (Gomes) Landrum, Myrtaceae. Rev. Bras. Plantas Med. 2014, 16, 513–520. [Google Scholar] [CrossRef] [Green Version]
  59. Weston, R.J. Bioactive Products from Fruit of the Feijoa (Feijoa Sellowiana, Myrtaceae): A Review. Food Chem. 2010, 121, 923–926. [Google Scholar] [CrossRef]
  60. Myburg, A.A.; Grattapaglia, D.; Tuskan, G.A.; Hellsten, U.; Hayes, R.D.; Grimwood, J.; Jenkins, J.; Lindquist, E.; Tice, H.; Bauer, D.; et al. The Genome of Eucalyptus Grandis. Nature 2014, 510, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Ramos, A.; Visozo, A.; Piloto, J.; García, A.; Rodríguez, C.A.; Rivero, R. Screening of Antimutagenicity via Antioxidant Activity in Cuban Medicinal Plants. J. Ethnopharmacol. 2003, 87, 241–246. [Google Scholar] [CrossRef]
  62. Paula, J.A.M.; Reis, J.B.; Ferreira, L.H.M.; Menezes, A.C.S.; Paula, J.R. Gênero Pimenta: Aspectos botânicos, composição química e potencial farmacológico. Rev. Bras. Plantas Med. 2010, 12, 363–379. [Google Scholar] [CrossRef] [Green Version]
  63. Marzouk, M.S.A.; Moharram, F.A.; Mohamed, M.A.; Gamal-Eldeen, A.M.; Aboutabl, E.A. Anticancer and Antioxidant Tannins from Pimenta Dioica Leaves. Z. Nat. C 2007, 62, 526–536. [Google Scholar] [CrossRef]
  64. Paula, J.A.M.D.; Silva, M.D.R.R.; Costa, M.P.; Diniz, D.G.A.; Sá, F.A.S.; Alves, S.F.; Costa, É.A.; Lino, R.C.; Paula, J.R. De Phytochemical Analysis and Antimicrobial, Antinociceptive, and Anti-Inflammatory Activities of Two Chemotypes of Pimenta Pseudocaryophyllus (Myrtaceae). Evid. Based Complement. Altern. Med. 2012. [Google Scholar] [CrossRef] [Green Version]
  65. García, M.D.; Fernández, M.A.; Alvarez, A.; Saenz, M.T. Antinociceptive and Anti-Inflammatory Effect of the Aqueous Extract from Leaves of Pimenta Racemosa Var. Ozua (Mirtaceae). J. Ethnopharmacol. 2004, 91, 69–73. [Google Scholar] [CrossRef]
  66. Padmakumari, K.P.; Sasidharan, I.; Sreekumar, M.M. Composition and Antioxidant Activity of Essential Oil of Pimento (Pimenta Dioica (L) Merr.) from Jamaica. Nat. Prod. Res. 2011, 25, 152–160. [Google Scholar] [CrossRef]
  67. Kikuzaki, H.; Hara, S.; Kawai, Y.; Nakatani, N. Antioxidative Phenylpropanoids from Berries of Pimenta Dioica. Phytochemistry 1999, 52, 1307–1312. [Google Scholar] [CrossRef]
  68. Seo, S.M.; Kim, J.; Lee, S.G.; Shin, C.H.; Shin, S.C.; Park, I.K. Fumigant Antitermitic Activity of Plant Essential Oils and Components from Ajowan (Trachyspermum Ammi), Allspice (Pimenta Dioica), Caraway (Carům Carvi), Dill (Anethum Graveoiens), Geranium (Pelargonium Graveoiens), and Litsea (Litsea Cubeba) Oils Against. J. Agric. Food Chem. 2009, 57, 6596–6602. [Google Scholar] [CrossRef] [PubMed]
  69. Enoque, M.; Lima, L.; Cordeiro, I.; Cláudia, M.; Young, M.; Sobra, M.E.G.; Roberto, P.; Moreno, H. Antimicrobial Activity of the Essential Oil from Two Specimens of Pimenta Pseudocaryophyllus (Gomes) L. R. Landrum (Myrtaceae) Native from São Paulo State–Brazil. Pharmacologyonline 2006, 3, 589–593. [Google Scholar] [CrossRef] [Green Version]
  70. Saenz, M.T.; Tornos, M.P.; Alvarez, A.; Fernandez, M.A.; García, M.D. Antibacterial Activity of Essential Oils of Pimenta Racemosa Var. Terebinthina and Pimenta Racemosa Var. Grisea. Fitoterapia 2004, 75, 599–602. [Google Scholar] [CrossRef]
  71. Zabka, M.; Pavela, R.; Slezakova, L. Antifungal Effect of Pimenta Dioica Essential Oil against Dangerous Pathogenic and Toxinogenic Fungi. Ind. Crop. Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
  72. Wu, C.-C.C.; Bratton, S.B. Regulation of the Intrinsic Apoptosis Pathway by Reactive Oxygen Species. Antioxid. Redox Signal. 2012, 19, 121025083704002. [Google Scholar] [CrossRef] [Green Version]
  73. Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed Cell Death Pathways in Cancer: A Review of Apoptosis, Autophagy and Programmed Necrosis. Cell Prolif. 2012, 45, 487–498. [Google Scholar] [CrossRef]
  74. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
  75. Liang, X.; Xu, K.; Xu, Y.; Liu, J.; Qian, X. B1-Induced Caspase-Independent Apoptosis in MCF-7 Cells Is Mediated by down-Regulation of Bcl-2 via P53 Binding to P2 Promoter TATA Box. Toxicol. Appl. Pharmacol. 2011, 256, 52–61. [Google Scholar] [CrossRef] [PubMed]
  76. Thoennissen, N.H.; O’Kelly, J.; Lu, D.; Iwanski, G.B.; La, D.T.; Abbassi, S.; Leiter, A.; Karlan, B.; Mehta, R.; Koeffler, H.P. Capsaicin Causes Cell-Cycle Arrest and Apoptosis in ER-Positive and -Negative Breast Cancer Cells by Modulating the EGFR/HER-2 Pathway. Oncogene 2010, 29, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
  78. McStay, G.P.; Green, D.R. Measuring Apoptosis: Caspase Inhibitors and Activity Assays. Cold Spring Harb. Protoc. 2014, 2014, 799–806. [Google Scholar] [CrossRef] [Green Version]
  79. Roos, W.P.; Thomas, A.D.; Kaina, B. DNA Damage and the Balance between Survival and Death in Cancer Biology. Nat. Rev. Cancer 2015, 16, 20–33. [Google Scholar] [CrossRef]
  80. Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From Basic Apoptosis Discoveries to Advanced Selective BCL-2 Family Inhibitors. Nat. Rev. Drug Discov. 2017, 16, 273–284. [Google Scholar] [CrossRef]
  81. Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C.; Wang, X. Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors. Cell 1998, 94, 481–490. [Google Scholar] [CrossRef] [Green Version]
  82. Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and Cancer. Cell 2016, 166, 555–566. [Google Scholar] [CrossRef] [PubMed]
  83. Man, S.M.; Kanneganti, T. Converging Roles of Caspases in Inflammasome Activation, Cell Death and Innate Immunity. Nat. Rev. Immunol. 2016, 16, 7–21. [Google Scholar] [CrossRef]
  84. Lopez, J.; Tait, S.W.G. Mitochondrial Apoptosis: Killing Cancer Using the Enemy Within. Br. J. Cancer 2015, 112, 957–962. [Google Scholar] [CrossRef] [Green Version]
  85. Tsai, I.-L.; Lee, F.-P.; Wu, C.-C.; Duh, C.-Y.; Ishikawa, T.; Chen, J.-J.; Chen, Y.-C.; Seki, H.; Chen, I.-S. New Cytotoxic Cyclobutanoid Amides, a New Furanoid Lignan and Anti-Platelet Aggregation Constituents from Piper Arborescens. Planta Med. 2005, 71, 535–542. [Google Scholar] [CrossRef]
  86. Kim, K.H.; Kim, H.K.; Choi, S.U.; Moon, E.; Kim, S.Y.; Lee, K.R. Bioactive Lignans from the Rhizomes of Acorus Gramineus. J. Nat. Prod. 2011, 74, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
  87. Couture, A.; Deniau, E.; Grandclaudon, P.; Rybalko-Rosen, H.; Léonce, S.; Pfeiffer, B.; Renard, P. Synthesis and Biological Evaluation of Aristolactams. Bioorg. Med. Chem. Lett. 2002, 12, 3557–3559. [Google Scholar] [CrossRef]
  88. Punganuru, S.R.; Madala, H.R.; Venugopal, S.N.; Samala, R.; Mikelis, C.; Srivenugopal, K.S. Design and Synthesis of a C7-Aryl Piperlongumine Derivative with Potent Antimicrotubule and Mutant P53-Reactivating Properties. Eur. J. Med. Chem. 2016, 107, 233–244. [Google Scholar] [CrossRef] [PubMed]
  89. Hegde, V.R.; Borges, S.; Pu, H.; Patel, M.; Gullo, V.P.; Wu, B.; Kirschmeier, P.; Williams, M.J.; Madison, V.; Fischmann, T.; et al. Semi-Synthetic Aristolactams--Inhibitors of CDK2 Enzyme. Bioorg. Med. Chem. Lett. 2010, 20, 1384–1387. [Google Scholar] [CrossRef]
  90. Chang-Yih, D.; Yang-Chang, W.; Shang-Kwei, W. Cytotoxic Pyridone Alkaloids from Piper Aborescens. Phytochemistry 1990, 29, 2689–2691. [Google Scholar] [CrossRef]
  91. Bezerra, D.P.; Pessoa, C.; Moraes, M.O.d.; Silveira, E.R.; Lima, M.A.S.; Martins Elmiro, F.J.; Costa-Lotufo, L.V. Antiproliferative Effects of Two Amides, Piperine and Piplartine, from Piper Species. Z. Nat. C 2005, 60, 539–543. [Google Scholar] [CrossRef] [Green Version]
  92. Bezerra, D.P.; Militão, G.C.G.; de Castro, F.O.; Pessoa, C.; de Moraes, M.O.; Silveira, E.R.; Lima, M.A.S.; Elmiro, F.J.M.; Costa-Lotufo, L.V. Piplartine Induces Inhibition of Leukemia Cell Proliferation Triggering Both Apoptosis and Necrosis Pathways. Toxicol. Vitr. Int. J. Publ. Assoc. Bibra 2007, 21, 1–8. [Google Scholar] [CrossRef]
  93. Wu, Y.; Min, X.; Zhuang, C.; Li, J.; Yu, Z.; Dong, G.; Yao, J.; Wang, S.; Liu, Y.; Wu, S.; et al. Design, Synthesis and Biological Activity of Piperlongumine Derivatives as Selective Anticancer Agents. Eur. J. Med. Chem. 2014, 82, 545–551. [Google Scholar] [CrossRef]
  94. Sommerwerk, S.; Kluge, R.; Ströhl, D.; Heller, L.; Kramell, A.E.; Ogiolda, S.; Liebing, P.; Csuk, R. Synthesis, Characterization and Cytotoxicity of New Piplartine Dimers. Tetrahedron 2016, 72, 1447–1454. [Google Scholar] [CrossRef]
  95. Nerurkar, P.V.; Dragull, K.; Tang, C.-S.S. In Vitro Toxicity of Kava Alkaloid, Pipermethystine, in HepG2 Cells Compared to Kavalactones. Toxicol. Sci. Off. J. Soc. Toxicol. 2004, 79, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Sriwiriyajan, S.; Sukpondma, Y.; Srisawat, T.; Madla, S.; Graidist, P. (−)-Kusunokinin and Piperloguminine from Piper Nigrum: An Alternative Option to Treat Breast Cancer. Biomed. Pharmacother. 2017, 92, 732–743. [Google Scholar] [CrossRef]
  97. Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a Potential Anti-Cancer Lead Compound against HL60 and MCT-7 Cell Lines and Microbial Transformation of Piperine from Piper Nigrum. Molecules 2010, 15, 2398–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  98. Gutierrez, R.M.P.; Gonzalez, A.M.N.; Hoyo-Vadillo, C. Alkaloids from Piper: A Review of Its Phytochemistry and Pharmacology. Mini Rev. Med. Chem. 2013, 13, 163–193. [Google Scholar] [CrossRef]
  99. Chen, J.; Duh, C.; Huang, H.; Chen, I. Cytotoxic Constituents of Piper Sintenense. Helv. Chim. Acta 2003, 86, 2058–2064. [Google Scholar] [CrossRef]
  100. Rao, V.R.S.; Suresh, G.; Rao, R.R.; Babu, K.S.; Chashoo, G.; Saxena, A.K.; Rao, J.M.; Rama Subba Rao, V.; Suresh, G.; Ranga Rao, R.; et al. Synthesis of Piperine-Amino Acid Ester Conjugates and Study of Their Cytotoxic Activities against Human Cancer Cell Lines. Med. Chem. Res. 2012, 21, 38–46. [Google Scholar] [CrossRef]
  101. Umadevi, P.; Deepti, K.; Venugopal, D.V.R. Synthesis, Anticancer and Antibacterial Activities of Piperine Analogs. Med. Chem. Res. 2013, 22, 5466–5471. [Google Scholar] [CrossRef]
  102. Lin, Y.; Xu, J.; Liao, H.; Li, L.; Pan, L. Piperine Induces Apoptosis of Lung Cancer A549 Cells via P53-Dependent Mitochondrial Signaling Pathway. Tumor Biol. 2014, 35, 3305–3310. [Google Scholar] [CrossRef]
  103. Muharini, R.; Liu, Z.; Lin, W.; Proksch, P. New Amides from the Fruits of Piper Retrofractum. Tetrahedron Lett. 2015, 56, 2521–2525. [Google Scholar] [CrossRef]
  104. Orjala, J.; Wright, A.; Rali, T.; Sticher, O. Aduncamide, a Cytotoxic and Antibacterial β-Phenylethylamine-Derived Amide from Piper Aduncum. Nat. Prod. Lett. 1993, 2, 231–236. [Google Scholar] [CrossRef]
  105. Rali, T.; Wossa, S.W.; Leach, D.N.; Waterman, P.G. Volatile Chemical Constituents of Piper Aduncum L and Piper Gibbilimbum C. DC (Piperaceae) from Papua New Guinea. Molecules 2007, 12, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Chen, I.S.; Chen, Y.C.; Liao, C.H. Amides with Anti-Platelet Aggregation Activity from Piper Taiwanense. Fitoterapia 2007, 78, 414–419. [Google Scholar] [CrossRef]
  107. Rao, V.R.S.; Suresh, G.; Babu, K.S.; Raju, S.S.; Vishnu Vardhan, M.V.P.S.P.S.; Ramakrishna, S.; Rao, J.M. Novel Dimeric Amide Alkaloids from Piper Chaba Hunter: Isolation, Cytotoxic Activity, and Their Biomimetic Synthesis. Tetrahedron 2011, 67, 1885–1892. [Google Scholar] [CrossRef]
  108. Ren, J.; Xu, Y.; Huang, Q.; Yang, J.; Yang, M.; Hu, K.; Wei, K. Chabamide Induces Cell Cycle Arrest and Apoptosis by the Akt/MAPK Pathway and Inhibition of P-Glycoprotein in K562/ADR Cells. Anti Cancer Drugs 2015, 26, 498–507. [Google Scholar] [CrossRef]
  109. Tabudravu, J.N.; Jaspars, M. Anticancer Activities of Constituents of Kava (Piper Methysticum). South Pac. J. Nat. Appl. Sci. 2005, 23, 26–29. [Google Scholar] [CrossRef]
  110. Amaral, P.D.A.; Petrignet, J.; Gouault, N.; Agustini, T.; Lohézic-Ledévéhat, F.; Cariou, A.; Grée, R.; Eifler-Lima, V.L.; David, M. Synthesis of Novel Kavain-like Derivatives and Evaluation of Their Cytotoxic Activity. J. Braz. Chem. Soc. 2009, 20, 1687–1697. [Google Scholar] [CrossRef]
  111. Abu, N.; Akhtar, M.N.; Yeap, S.K.; Lim, K.L.; Ho, W.Y.; Zulfadli, A.J.; Omar, A.R.; Sulaiman, M.R.; Abdullah, M.P.; Alitheen, N.B. Flavokawain A Induces Apoptosis in MCF-7 and MDA-MB231 and Inhibits the Metastatic Process In Vitro. PLoS ONE 2014, 9, e105244. [Google Scholar] [CrossRef]
  112. Thieury, C.; Lebouvier, N.; Le Gu??vel, R.; Barguil, Y.; Herbette, G.; Antheaume, C.; Hnawia, E.; Asakawa, Y.; Nour, M.; Guillaudeux, T. Mechanisms of Action and Structure-Activity Relationships of Cytotoxic Flavokawain Derivatives. Bioorg. Med. Chem. 2017, 25, 1817–1829. [Google Scholar] [CrossRef]
  113. Tang, Y.; Li, X.; Liu, Z.; Simoneau, A.R.; Xie, J.; Zi, X. Flavokawain B, a Kava Chalcone, Induces Apoptosis via up-Regulation of Death-Receptor 5 and Bim Expression in Androgen Receptor Negative, Hormonal Refractory Prostate Cancer Cell Lines and Reduces Tumor Growth. Int. J. Cancer. 2010, 127, 1758–1768. [Google Scholar] [CrossRef] [Green Version]
  114. Zhao, X.; Chao, Y.-L.; Wan, Q.-B.; Chen, X.-M.; Su, P.; Sun, J.; Tang, Y. Flavokawain B Induces Apoptosis of Human Oral Adenoid Cystic Cancer ACC-2 Cells via up-Regulation of Bim and down-Regulation of Bcl-2 Expression. Can. J. Physiol. Pharmacol. 2011, 89, 875–883. [Google Scholar] [CrossRef] [PubMed]
  115. Hseu, Y.-C.; Lee, M.-S.; Wu, C.-R.; Cho, H.-J.; Lin, K.-Y.; Lai, G.-H.; Wang, S.-Y.; Kuo, Y.-H.; Kumar, K.J.S.; Yang, H.-L.; et al. The Chalcone Flavokawain B Induces G2/M Cell-Cycle Arrest and Apoptosis in Human Oral Carcinoma HSC-3 Cells through the Intracellular ROS Generation and Downregulation of the Akt/P38 MAPK Signaling Pathway. J. Agric. Food Chem. 2012, 60, 2385–2397. [Google Scholar] [CrossRef]
  116. Eskander, R.N.; Randall, L.M.; Sakai, T.; Guo, Y.; Hoang, B.; Zi, X. Flavokawain B, a Novel, Naturally Occurring Chalcone, Exhibits Robust Apoptotic Effects and Induces G2/M Arrest of a Uterine Leiomyosarcoma Cell Linejog. J. Obstet. Gynaecol. Res. 2012, 38, 1086–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  117. An, J.; Gao, Y.; Wang, J.; Zhu, Q.; Ma, Y.; Wu, J.; Sun, J.; Tang, Y. Flavokawain B Induces Apoptosis of Non-Small Cell Lung Cancer H460 Cells via Bax-Initiated Mitochondrial and JNK Pathway. Biotechnol. Lett. 2012, 34, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
  118. Jandial, D.D.; Krill, L.S.; Chen, L.; Wu, C.; Ke, Y.; Xie, J.; Hoang, B.H.; Zi, X. Induction of G2M Arrest by Flavokawain a, a Kava Chalcone, Increases the Responsiveness of HER2-Overexpressing Breast Cancer Cells to Herceptin. Molecules 2017, 22, 462. [Google Scholar] [CrossRef]
  119. Zi, X.; Simoneau, A.R. Flavokawain A, a Novel Chalcone from Kava Extract, Induces Apoptosis in Bladder Cancer Cells by Involvement of Bax Protein-Dependent and Mitochondria-Dependent Apoptotic Pathway and Tumor Growth in Mice. Cancer Res. 2005, 65, 3479–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  120. Phang, C.-W.; Karsani, S.A.; Sethi, G.; Abd Malek, S.N. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells. PLoS ONE 2016, 11, e0148775. [Google Scholar] [CrossRef] [Green Version]
  121. Nurestri, S.; Malek, A.; Phang, C.W.; Ibrahim, H.; Wahab, N.A.; Sim, K.S. Phytochemical and Cytotoxic Investigations of Alpinia Mutica Rhizomes. Molecules 2011, 16, 583–589. [Google Scholar] [CrossRef] [Green Version]
  122. Valadares, M.C.; de Carvalho, I.C.T.; de Oliveira Junior, L.; Vieira, M.D.S.; Benfica, P.L.; de Carvalho, F.S.; Andrade, L.V.S.; Lima, E.M.; Kato, M.J. Cytotoxicity and Antiangiogenic Activity of Grandisin. J. Pharm. Pharmacol. 2009, 61, 1709–1714. [Google Scholar] [CrossRef]
  123. Ferreira, I.R.S. Evaluation of Cytotoxicity of Phytochemicals in V79 Cells and Inhibition of Cell Growth in Human Leukemic Cells; Campinas State University: São Paulo, Brazil, 2014. [Google Scholar]
  124. Vieira, M.d.S.; de Oliveira, V.; Lima, E.M.; Kato, M.J.; Valadares, M.C. In Vitro Basal Cytotoxicity Assay Applied to Estimate Acute Oral Systemic Toxicity of Grandisin and Its Major Metabolite. Exp. Toxicol. Pathol. 2011, 63, 505–510. [Google Scholar] [CrossRef]
  125. Jiang, Z.H.; Liu, Y.P.; Huang, Z.H.; Wang, T.T.; Feng, X.Y.; Yue, H.; Guo, W.; Fu, Y.H. Cytotoxic Dihydrobenzofuran Neolignans from Mappianthus Iodoies. Bioorg. Chem. 2017, 75, 260–264. [Google Scholar] [CrossRef]
  126. Sawasdee, K.; Chaowasku, T.; Lipipun, V.; Dufat, T.-H.; Michel, S.; Likhitwitayawuid, K. Neolignans from Leaves of Miliusa Mollis. Fitoterapia 2013, 85, 49–56. [Google Scholar] [CrossRef]
  127. Longato, G.B.; Rizzo, L.Y.; De Oliveira Sousa, I.M.; Tinti, S.V.; Possenti, A.; Figueira, G.M.; Ruiz, A.L.T.G.; Foglio, M.A.; De Carvalho, J.E. In Vitro and in Vivo Anticancer Activity of Extracts, Fractions, and Eupomatenoid-5 Obtained from Piper Regnellii Leaves. Planta Med. 2011, 77, 1482–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S. A Comprehensive Review of the Carcinogenic and Anticarcinogenic Potential of Capsaicin. Toxicol. Pathol. 2012, 40, 847–873. [Google Scholar] [CrossRef]
  129. De-Sá-Júnior, P.L.; Pasqualoto, K.F.M.; Ferreira, A.K.; Tavares, M.T.; Damião, M.C.F.C.B.; De Azevedo, R.A.; Câmara, D.A.D.; Pereira, A.; De Souza, D.M.; Parise Filho, R. RPF101, A New Capsaicin-like Analogue, Disrupts the Microtubule Network Accompanied by Arrest in the G2/M Phase, Inducing Apoptosis and Mitotic Catastrophe in the MCF-7 Breast Cancer Cells. Toxicol. Appl. Pharmacol. 2013, 266, 385–398. [Google Scholar] [CrossRef]
  130. Damião, M.C.F.C.B.; Pasqualoto, K.F.M.; Ferreira, A.K.; Teixeira, S.F.; Azevedo, R.A.; Barbuto, J.A.M.; Palace-Berl, F.; Franchi-Junior, G.C.; Nowill, A.E.; Tavares, M.T.; et al. Novel Capsaicin Analogues as Potential Anticancer Agents: Synthesis, Biological Evaluation, and In Silico Approach. Arch. Der Pharm. 2014, 347, 885–895. [Google Scholar] [CrossRef] [PubMed]
  131. Ferreira, A.K.; Tavares, M.T.; Pasqualoto, K.F.M.; de Azevedo, R.A.; Teixeira, S.F.; Ferreira-Junior, W.A.; Bertin, A.M.; de-Sá-Junior, P.L.; Barbuto, J.A.M.; Figueiredo, C.R.; et al. RPF151, a Novel Capsaicin-like Analogue: In Vitro Studies and in Vivo Preclinical Antitumor Evaluation in a Breast Cancer Model. Tumor Biol. 2015. [Google Scholar] [CrossRef] [PubMed]
  132. Tavares, M.T. Novel Anticancer Candidates: Synthesis and Antitumor Activity of Capsaicin-like Sulfonate and Sulfonamide Analogues; University of Sao Paulo: São Paulo, Brazil, 2014. [Google Scholar]
  133. Batista Fernandes, T.; Alexandre de Azevedo, R.; Yang, R.; Fernandes Teixeira, S.; Henrique Goulart Trossini, G.; Alexandre Marzagao Barbuto, J.; Kleber Ferreira, A.; Parise Filho, R. Arylsulfonylhydrazone Induced Apoptosis in MDA-MB-231 Breast Cancer Cells. Lett. Drug Des. Discov. 2018, 15. [Google Scholar] [CrossRef]
  134. Pereira, G.J.V.; Tavares, M.T.; Azevedo, R.A.; Martins, B.B.; Cunha, M.R.; Bhardwaj, R.; Cury, Y.; Zambelli, V.O.; Barbosa, E.G.; Hediger, M.A.; et al. Capsaicin-like Analogue Induced Selective Apoptosis in A2058 Melanoma Cells: Design, Synthesis and Molecular Modeling. Bioorg. Med. Chem. 2019, 27, 2893–2904. [Google Scholar] [CrossRef]
  135. Kotake-Nara, E.; Kushiro, M.; Zhang, H.; Sugawara, T.; Miyashita, K.; Nagao, A. Carotenoids Affect Proliferation of Human Prostate Cancer Cells. J. Nutr. 2001, 131, 3303–3306. [Google Scholar] [CrossRef]
  136. Molnár, J.; Serly, J.; Pusztai, R.; Vincze, I.; Molnár, P.; Horváth, G.; Deli, J.; Maoka, T.; Zalatnai, A.; Tokuda, H.; et al. Putative Supramolecular Complexes Formed by Carotenoids and Xanthophylls with Ascorbic Acid to Reverse Multidrug Resistance in Cancer Cells. Anticancer Res. 2012, 32, 507–517. [Google Scholar]
  137. Zhang, L.; Shamaladevi, N.; Jayaprakasha, G.K.; Patil, B.S.; Lokeshwar, B.L. Polyphenol-Rich Extract of Pimenta Dioica Berries (Allspice) Kills Breast Cancer Cells by Autophagy and Delays Growth of Triple Negative Breast Cancer in Athymic Mice. Oncotarget 2015, 6, 16379–16395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. De Oliveira Chaves, M.C.; de Oliveira, A.H.; de Oliveira Santos, B.V. Aristolactams from Piper Marginatum Jacq (Piperaceae). Biochem. Syst. Ecol. 2006, 34, 75–77. [Google Scholar] [CrossRef]
  139. Kim, K.H.; Choi, J.W.; Choi, S.U.; Ha, S.K.; Kim, S.Y.; Park, H.-J.; Lee, K.R. The Chemical Constituents of Piper Kadsura and Their Cytotoxic and Anti-Neuroinflammtaory Activities. J. Enzym. Inhib. Med. Chem. 2011, 26, 254–260. [Google Scholar] [CrossRef]
  140. Shibutani, S.; Dong, H.; Suzuki, N.; Ueda, S.; Miller, F.; Grollman, A.P. Selective Toxicity of Aristolochic Acids I and II. Drug Metab. Dispos. 2007, 35, 1217–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Michl, J.; Ingrouille, M.J.; Simmonds, M.S.J.; Heinrich, M. Naturally Occurring Aristolochic Acid Analogues and Their Toxicities. Nat. Prod. Rep. 2014, 31, 676. [Google Scholar] [CrossRef]
  142. Asha, K.N.; Chowdhury, R.; Hasan, C.M.; Rashid, M.A. Antibacterial Activity and Cytotoxicity of Extractives from Uvaria Hamiltonii Stem Bark. Fitoterapia 2003, 74, 159–163. [Google Scholar] [CrossRef]
  143. De Moraes, J.; Nascimento, C.; Yamaguchi, L.F.; Kato, M.J.; Nakano, E. Schistosoma Mansoni: In Vitro Schistosomicidal Activity and Tegumental Alterations Induced by Piplartine on Schistosomula. Exp. Parasitol. 2012, 132, 222–227. [Google Scholar] [CrossRef] [PubMed]
  144. Kumar, J.U.; Shankaraiah, G.; Kumar, R.S.C.; Pitke, V.V.; Rao, T.; Poornima, B.; Babu, K.S.; Sreedhar, A.S. Synthesis, Anticancer, and Antibacterial Activities of Piplartine Derivatives on Cell Cycle Regulation and Growth Inhibition. J. Asian Nat. Prod. Res. 2013, 15, 658–669. [Google Scholar] [CrossRef]
  145. Da Nóbrega, F.; Ozdemir, O.; Nascimento Sousa, S.; Barboza, J.; Turkez, H.; de Sousa, D. Piplartine Analogues and Cytotoxic Evaluation against Glioblastoma. Molecules 2018, 23, 1382. [Google Scholar] [CrossRef] [Green Version]
  146. Liu, J.M.; Pan, F.; Li, L.; Liu, Q.R.; Chen, Y.; Xiong, X.X.; Cheng, K.; Yu, S.B.; Shi, Z.; Yu, A.C.-H.; et al. Piperlongumine Selectively Kills Glioblastoma Multiforme Cells via Reactive Oxygen Species Accumulation Dependent JNK and P38 Activation. Biochem. Biophys. Res. Commun. 2013, 437, 87–93. [Google Scholar] [CrossRef] [PubMed]
  147. Niu, M.; Xu, X.; Shen, Y.; Yao, Y.; Qiao, J.; Zhu, F.; Zeng, L.; Liu, X.; Xu, K. Piperlongumine Is a Novel Nuclear Export Inhibitor with Potent Anticancer Activity. Chem. Biol. Interact. 2015, 237, 66–72. [Google Scholar] [CrossRef]
  148. Piska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (Piplartine) as a Lead Compound for Anticancer Agents–Synthesis and Properties of Analogues: A Mini-Review. Eur. J. Med. Chem. 2018, 156, 13–20. [Google Scholar] [CrossRef]
  149. Smith, R.M. Pipermethystine, a Novel Pyridone Alkaloid from Piper Methysticum. Tetrahedron 1979, 35, 437–439. [Google Scholar] [CrossRef]
  150. Dunstan, W.R.; Garnett, H. XII.—The Constituents of Piper Ovatum. J. Chem. Soc. Trans. 1895, 67, 94–100. [Google Scholar] [CrossRef] [Green Version]
  151. Pandey, S.; Ovadje, P.U. Long Pepper Extract an Effective Anticancer Treatment. U.S. Patent 17/942,438, 2014. [Google Scholar]
  152. Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; de Alencar, N.M.N.; Mesquita, R.O.; Lima, M.W.; Alves, A.P.N.N.; Pessoa, O.D.L.; Chaves, J.H.; Silveira, E.R.; et al. In Vivo Growth Inhibition of Sarcoma 180 by Piperlonguminine, an Alkaloid Amide from the Piper Species. J. Appl. Toxicol. 2008, 28, 599–607. [Google Scholar] [CrossRef] [PubMed]
  153. Miranda, J.E.; Navickiene, H.M.D.; Nogueira-Couto, R.H.; De Bortoli, S.A.; Kato, M.J.; Bolzani, V.D.S.; Furlan, M. Susceptibility of Apis Mellifera (Hymenoptera: Apidae) to Pellitorine, an Amide Isolated from Piper Tuberculatum (Piperaceae). Apidologie 2003, 34, 409–415. [Google Scholar] [CrossRef] [Green Version]
  154. Damanhouri, Z.A.; Ahmad, A. A Review on Therapeutic Potential of Piper Nigrum L. (Black Pepper): The King of Spices. Med. Aromat. Plants 2014, 3. [Google Scholar] [CrossRef] [Green Version]
  155. Qu, H.; Lv, M.; Xu, H. Piperine: Bioactivities and Structural Modifications. Mini Rev. Med. Chem. 2015, 15, 145–156. [Google Scholar] [CrossRef]
  156. Jong-Woong, A.; Mi-Ja, A.; Ok-Pyo, Z.; Eun-Joo, K.; Sueg-Geun, L.; Hyung, J.K.; Kubo, I. Piperidine Alkaloids from Piper Retrofractum Fruits. Phytochemistry 1992, 31, 3609–3612. [Google Scholar] [CrossRef]
  157. Shoji, N.; Umeyama, A.; Saito, N.; Takemoto, T.; Kajiwara, A.; Ohizumi, Y. Dehydropipernonaline, an Amide Possessing Coronary Vasodilating Activity, Isolated from Piper Iongum L. J. Pharm. Sci. 1986, 75, 1188–1189. [Google Scholar] [CrossRef] [PubMed]
  158. Tabuneng, W.; Bando, H.; Amiya, T. Studies on the Constituents of the Crude Drug “Piperis Longi Fructus.” On the Alkaloids of Fruits of Piper Longum L. Chem. Pharm. Bull. 1983, 31, 3562–3565. [Google Scholar] [CrossRef] [Green Version]
  159. Lee, W.; Kim, K.-Y.; Yu, S.-N.; Kim, S.-H.; Chun, S.-S.; Ji, J.-H.; Yu, H.-S.; Ahn, S.-C. Pipernonaline from Piper Longum Linn. Induces ROS-Mediated Apoptosis in Human Prostate Cancer PC-3 Cells. Biochem. Biophys. Res. Commun. 2013, 430, 406–412. [Google Scholar] [CrossRef]
  160. Lee, F.-P.; Chen, Y.-C.; Chen, J.-J.; Tsai, I.-L.; Chen, I.-S. Cyclobutanoid Amides from Piper Arborescens. Helv. Chim. Acta 2004, 87, 463–468. [Google Scholar] [CrossRef]
  161. Gutekunst, W.R.; Baran, P.S. Total Synthesis and Structural Revision of the Piperarborenines via Sequential Cyclobutane C–H Arylation. J. Am. Chem. Soc. 2011, 133, 19076–19079. [Google Scholar] [CrossRef] [Green Version]
  162. Frébault, F.; Maulide, N. Total Synthesis and Structural Revision of the Piperarborenines: When Photochemistry Meets C—H Activation. Angew. Chem. Int. Ed. 2012, 51, 2815–2817. [Google Scholar] [CrossRef]
  163. Panish, R.A.; Chintala, S.R.; Fox, J.M. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B. Angew. Chem. Int. Ed. 2016, 55, 4983–4987. [Google Scholar] [CrossRef] [Green Version]
  164. Hu, J.-L.; Feng, L.-W.; Wang, L.; Xie, Z.; Tang, Y.; Li, X. Enantioselective Construction of Cyclobutanes: A New and Concise Approach to the Total Synthesis of (+)-Piperarborenine B. J. Am. Chem. Soc. 2016, 138, 13151–13154. [Google Scholar] [CrossRef]
  165. Rao, V.R.S.; Suresh Kumar, G.; Sarma, V.U.M.; Satyanarayana Raju, S.; Hari Babu, K.; Suresh Babu, K.; Hari Babu, T.; Rekha, K.; Rao, J.M. Chabamides F and G, Two Novel Dimeric Alkaloids from the Roots of Piper Chaba Hunter. Tetrahedron Lett. 2009, 50, 2774–2777. [Google Scholar] [CrossRef]
  166. Da Silva, R.V.; Debonsi Navickiene, H.M.; Kato, M.J.; Bolzani, V.D.S.; Méda, C.I.; Young, M.C.M.; Furlan, M. Antifungal Amides from Piper Arboreum and Piper Tuberculatum. Phytochemistry 2002, 59, 521–527. [Google Scholar] [CrossRef]
  167. Hu, K.; Yang, M.; Xu, Y.; Wei, K.; Ren, J. Cell Cycle Arrest, Apoptosis, and Autophagy Induced by Chabamide in Human Leukemia Cells. Chin. Herb. Med. 2015, 8, 30–38. [Google Scholar] [CrossRef]
  168. Steiner, G.G. The Correlation between Cancer Incidence and Kava Consumption. Hawaii Med. J. 2000, 59, 420–422. [Google Scholar]
  169. Li, X.; Liu, Z.; Xu, X.; Blair, C.A.; Sun, Z.; Xie, J.; Lilly, M.B.; Zi, X. Kava Components Down-Regulate Expression of AR and AR Splice Variants and Reduce Growth in Patient-Derived Prostate Cancer Xenografts in Mice. PLoS ONE 2012, 7, e31213. [Google Scholar] [CrossRef] [Green Version]
  170. Tang, J.; Dunlop, R.A.; Rowe, A.; Rodgers, K.J.; Ramzan, I. Kavalactones Yangonin and Methysticin Induce Apoptosis in Human Hepatocytes (HepG2) In Vitro. Phytother. Res. 2010, 25, 417–423. [Google Scholar] [CrossRef]
  171. Zou, L.; Henderson, G.L.; Harkey, M.R.; Sakai, Y.; Li, A. Effects of Kava (Kava-Kava, ’Awa, Yaqona, Piper Methysticum) on c-DNA-Expressed Cytochrome P450 Enzymes and Human Cryopreserved Hepatocytes. Phytomed. Int. J. Phytother. Phytopharm. 2004, 11, 285–294. [Google Scholar] [CrossRef] [PubMed]
  172. Flores, N.; Cabrera, G.; Jiménez, I.; Piñero, J.; Giménez, A.; Bourdy, G.; Cortés-Selva, F.; Bazzocchi, I. Leishmanicidal Constituents from the Leaves of Piper Rusbyi. Planta Med. 2007, 73, 206–211. [Google Scholar] [CrossRef]
  173. Dos Santos, R.A.; Ramos, C.S.; Young, M.C.M.; Pinheiro, T.G.; Amorim, A.M.; Kato, M.J.; Batista, R. Antifungal Constituents from the Roots of Piper Dilatatum Rich. J. Chem. 2013, 2013, 160165. [Google Scholar] [CrossRef]
  174. Sakai, T.; Eskander, R.N.; Guo, Y.; Kim, K.J.; Mefford, J.; Hopkins, J.; Bhatia, N.N.; Zi, X.; Hoang, B.H. Flavokawain B, a Kava Chalcone, Induces Apoptosis in Synovial Sarcoma Cell Lines. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2012, 30, 1045–1050. [Google Scholar] [CrossRef]
  175. Phang, C.-W.; Karsani, S.; Abd Malek, S. Induction of Apoptosis and Cell Cycle Arrest by Flavokawain C on HT-29 Human Colon Adenocarcinoma via Enhancement of Reactive Oxygen Species Generation, Upregulation of P21, P27, and Gadd153, and Inactivation of Inhibitor of Apoptosis Proteins. Pharmacogn. Mag. 2017, 13, 321–328. [Google Scholar] [CrossRef] [Green Version]
  176. Lina, E.; Lin, W.-H.; Wang, S.-Y.; Chen, C.-S.; Liao, J.-W.; Chang, H.-W.; Chen, S.-C.; Lin, K.-Y.; Wang, L.; Yangh, H.-L.; et al. Flavokawain B Inhibits Growth of Human Squamous Carcinoma Cells: Involvement of Apoptosis and Cell Cycle Dysregulation in Vitro and in Vivo. J. Nutr. Biochem. 2012, 23, 368–378. [Google Scholar] [CrossRef]
  177. Ji, T.; Lin, C.; Krill, L.S.; Eskander, R.; Guo, Y.; Zi, X.; Hoang, B.H. Flavokawain B, a Kava Chalcone, Inhibits Growth of Human Osteosarcoma Cells through G2/M Cell Cycle Arrest and Apoptosis. Mol. Cancer 2013, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  178. Abu, N.; Akhtar, M.N.; Yeap, S.K.; Lim, K.L.; Ho, W.Y.; Abdullah, M.P.; Ho, C.L.; Omar, A.R.; Ismail, J.; Alitheen, N.B. Flavokawain B Induced Cytotoxicity in Two Breast Cancer Cell Lines, MCF-7 and MDA-MB231 and Inhibited the Metastatic Potential of MDA-MB231 via the Regulation of Several Tyrosine Kinases In Vitro. BMC Complement. Altern. Med. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  179. Martins, R.C.C.; Latorre, L.R.; Sartorelli, P.; Kato, M.J. Phenylpropanoids and Tetrahydrofuran Lignans from Piper Solmsianum. Phytochemistry 2000, 55, 843–846. [Google Scholar] [CrossRef]
  180. Ramos, C.S.; Linnert, H.V.; de Moraes, M.M.; do Amaral, J.H.; Yamaguchi, L.F.; Kato, M.J. Configuration and Stability of Naturally Occurring All-Cis-Tetrahydrofuran Lignans from Piper Solmsianum. RSC Adv. 2017, 7, 46932–46937. [Google Scholar] [CrossRef] [Green Version]
  181. Barth, T.; Habenschus, M.D.; Lima Moreira, F.; Ferreira, L.D.S.; Lopes, N.P.; Moraes de Oliveira, A.R. In Vitro Metabolism of the Lignan (−)-Grandisin, an Anticancer Drug Candidate, by Human Liver Microsomes. Drug Test. Anal. 2015, 7, 780–786. [Google Scholar] [CrossRef] [PubMed]
  182. Messiano, G.B.; Santos, R.A.D.S.; Ferreira, L.D.S.; Simões, R.A.; Jabor, V.A.P.; Kato, M.J.; Lopes, N.P.; Pupo, M.T.; de Oliveira, A.R.M. In Vitro Metabolism Study of the Promising Anticancer Agent the Lignan (-)-Grandisin. J. Pharm. Biomed. Anal. 2013, 72, 240–244. [Google Scholar] [CrossRef]
  183. Cortez, A.P.; Menezes, E.G.P.; Benfica, P.L.; Santos, A.P.d.; Cleres, L.M.; Ribeiro, H.D.O.; Lima, E.M.; Kato, M.J.; Valadares, M.C. Grandisin Induces Apoptosis in Leukemic K562 Cells. Braz. J. Pharm. Sci. 2017, 53, e15210. [Google Scholar] [CrossRef] [Green Version]
  184. Stecanella, L.A.; Taveira, S.F.; Marreto, R.N.; Valadares, M.C.; Vieira, M.d.S.; Kato, M.J.; Lima, E.M. Development and Characterization of PLGA Nanocapsules of Grandisin Isolated from Virola Surinamensis: In Vitro Release and Cytotoxicity Studies. Braz. J. Pharmacogn. 2013, 23, 153–159. [Google Scholar] [CrossRef] [Green Version]
  185. Ma, Y.; Han, G.Q.; Wang, Y.Y. PAF Antagonistic Benzofuran Neolignans from Piper Kadsura. Acta Pharm. Sin. 1993, 28, 370–373. [Google Scholar]
  186. Chauret, D.C.; Bernard, C.B.; Arnason, J.T.; Durst, T.; Krishnamurty, H.G.; Sanchez-Vindas, P.; Moreno, N.; San Roman, L.; Poveda, L. Insecticidal Neolignans from Piper Decurrens. J. Nat. Prod. 1996, 59, 152–155. [Google Scholar] [CrossRef] [PubMed]
  187. Zheng, S.; Yu, W.; Xu, M.; Che, C. First Synthesis of Naturally Occurring (±)-\textlessi\textgreaterepi\textless/I\textgreater-Conocarpan. Tethrahedron Lett. 2003, 44, 1445–1447. [Google Scholar] [CrossRef]
  188. Campos, M.P.; Cechinel Filho, V.; Silva, R.Z.; Yunes, R.A.; Monache, F.D.; Cruz, A.B. Antibacterial Activity of Extract, Fractions and Four Compounds Extracted from Piper Solmsianum C. DC. Var. Solmsianum (Piperaceae). Z. Fur Nat. Sect. C J. Biosci. 2007, 62, 173–178. [Google Scholar] [CrossRef]
  189. Johann, S.; Cota, B.B.; Souza-Fagundes, E.M.; Pizzolatti, M.G.; Resende, M.A.; Zani, C.L. Antifungal Activities of Compounds Isolated from Piper Abutiloides Kunth. Mycoses 2009, 52, 499–506. [Google Scholar] [CrossRef] [PubMed]
  190. Moreira, D.D.L.; de Paiva, R.A.; Marques, A.M.; Borges, R.M.; Barreto, A.L.S.; Curvelo, J.A.D.R.; Cavalcanti, J.F.; Romanos, M.T.V.; Romanos, M.T.V.; Soares, R.M.D.A.; et al. Bioactive Neolignans from the Leaves of Piper Rivinoides Kunth (Piperaceae). Rec. Nat. Prod. 2016, 10, 472–484. [Google Scholar]
  191. Rimando, A.M.; Pezzuto, J.M.; Farnsworth, N.R.; Santisuk, T.; Reutrakul, V. Revision of the NMR Assignments of Pterostlbene and of Dihydrodehydrodiconiferyl Alcohol: Cytotoxic Constituents from Anogeissus Acuminata. Nat. Prod. Lett. 1994, 4, 267–272. [Google Scholar] [CrossRef]
  192. Longato, G.B.; Fiorito, G.F.; Vendramini-Costa, D.B.; Sousa, I.M.D.O.; Tinti, S.V.; Ruiz, A.L.T.G.; de Almeida, S.M.V.; Padilha, R.J.R.; Foglio, M.A.; de Carvalho, J.E. Different Cell Death Responses Induced by Eupomatenoid-5 in MCF-7 and 786-0 Tumor Cell Lines. Toxicol. Vitr. 2015, 29, 1026–1033. [Google Scholar] [CrossRef]
  193. Gibbs, H.A.A.; O’Garro, L.W. Capsaicin Content of West Indies Hot Pepper Cultivars Using Colorimetric and Chromatographic Techniques. HortScience 2004, 39, 132–135. [Google Scholar] [CrossRef] [Green Version]
  194. Sanatombi, K.; Sharma, G.J. Capsaicin Content and Pungency of Different Capsicum Spp. Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2008, 36, 89–90. [Google Scholar] [CrossRef]
  195. Thapa, B.; Skalko-Basnet, N.; Takano, A.; Masuda, K.; Basnet, P. High-Performance Liquid Chromatography Analysis of Capsaicin Content in 16 Capsicum Fruits from Nepal. J. Med. Food 2009, 12, 908–913. [Google Scholar] [CrossRef] [PubMed]
  196. Yaldiz, G.; Ozguven, M.; Sekeroglu, N. Variation in Capsaicin Contents of Different Capsicum Species and Lines by Varying Drying Parameters. Ind. Crop. Prod. 2010, 32, 434–438. [Google Scholar] [CrossRef]
  197. Hayman, M.; Kam, P.C.A. Capsaicin: A Review of Its Pharmacology and Clinical Applications. Curr. Anaesth. Crit. Care 2008, 19, 338–343. [Google Scholar] [CrossRef]
  198. Luo, X.-J.J.; Peng, J.; Li, Y.-J.J. Recent Advances in the Study on Capsaicinoids and Capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef]
  199. Sánchez, A.M.; Sánchez, M.G.; Malagarie-Cazenave, S.; Olea, N.; Díaz-Laviada, I. Induction of Apoptosis in Prostate Tumor PC-3 Cells and Inhibition of Xenograft Prostate Tumor Growth by the Vanilloid Capsaicin. Apoptosis 2006, 11, 89–99. [Google Scholar] [CrossRef] [PubMed]
  200. De Lourdes Reyes-Escogido, M.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and Pharmacological Aspects of Capsaicin. Molecules 2011, 16, 1253–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  201. Ryu, H.C.; Seo, S.; Kim, M.S.; Kim, M.Y.; Kim, H.O.; Ann, J.; Tran, P.T.; Hoang, V.H.; Byun, J.; Cui, M.; et al. 2-Aryl Substituted Pyridine C-Region Analogues of 2-(3-Fluoro-4-Methylsulfonylaminophenyl)Propanamides as Highly Potent TRPV1 Antagonists. Bioorg. Med. Chem. Lett. 2014, 24, 4044–4047. [Google Scholar] [CrossRef]
  202. Darré, L.; Domene, C. Binding of Capsaicin to the TRPV1 Ion Channel. Mol. Pharm. 2015, 12, 4454–4465. [Google Scholar] [CrossRef]
  203. Yang, F.; Zheng, J. Understand Spiciness: Mechanism of TRPV1 Channel Activation by Capsaicin. Protein Cell 2017, 8, 169–177. [Google Scholar] [CrossRef] [Green Version]
  204. Yang, F.; Xiao, X.; Cheng, W.; Yang, W.; Yu, P.; Song, Z.; Yarov-Yarovoy, V.; Zheng, J. Structural Mechanism Underlying Capsaicin Binding and Activation of the TRPV1 Ion Channel. Nat. Chem. Biol. 2015, 11, 518–526. [Google Scholar] [CrossRef] [Green Version]
  205. Lee, J.H.; Lee, Y.; Ryu, H.; Kang, D.W.; Lee, J.; Lazar, J.; Pearce, L.V.; Pavlyukovets, V.A.; Blumberg, P.M.; Choi, S. Structural Insights into Transient Receptor Potential Vanilloid Type 1 (TRPV1) from Homology Modeling, Flexible Docking, and Mutational Studies. J. Comput. Aided Mol. Des. 2011, 25, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  206. Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 Structures in Nanodiscs Reveal Mechanisms of Ligand and Lipid Action. Nature 2016, 534, 347–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  207. Cui, J.; Bian, J.S.; Kagan, A.; McDonald, T.V. CaT1 Contributes to the Stores-Operated Calcium Current in Jurkat T-Lymphocytes. J. Biol. Chem. 2002, 277, 47175–47183. [Google Scholar] [CrossRef] [Green Version]
  208. Pérez De Vega, M.J.; Gómez-Monterrey, I.; Ferrer-Montiel, A.; González-Muñiz, R. Transient Receptor Potential Melastatin 8 Channel (TRPM8) Modulation: Cool Entryway for Treating Pain and Cancer. J. Med. Chem. 2016, 59, 10006–10029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  209. Chow, J.; Norng, M.; Zhang, J.; Chai, J. TRPV6 Mediates Capsaicin-Induced Apoptosis in Gastric Cancer Cells—Mechanisms behind a Possible New “Hot” Cancer Treatment. Biochim. Et Biophys. Acta (Bba) Mol. Cell Res. 2007, 1773, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  210. Cunha, M.R.; Bhardwaj, R.; Carrel, A.L.; Lindinger, S.; Romanin, C.; Parise-Filho, R.; Hediger, M.A.; Reymond, J.-L. Natural Product Inspired Optimization of a Selective TRPV6 Calcium Channel Inhibitor. Rsc Med. Chem. 2020, 11, 1032–1040. [Google Scholar] [CrossRef]
  211. Lau, J.K.; Brown, K.C.; Dom, A.M.; Witte, T.R.; Thornhill, B.A.; Crabtree, C.M.; Perry, H.E.; Brown, J.M.; Ball, J.G.; Creel, R.G.; et al. Capsaicin Induces Apoptosis in Human Small Cell Lung Cancer via the TRPV6 Receptor and the Calpain Pathway. Apoptosis 2014, 19, 1190–1201. [Google Scholar] [CrossRef]
  212. Ip, S.W.; Lan, S.H.; Huang, A.C.; Yang, J.S.; Chen, Y.Y.; Huang, H.Y.; Lin, Z.P.; Hsu, Y.M.; Yang, M.D.; Chiu, C.F.; et al. Capsaicin Induces Apoptosis in SCC-4 Human Tongue Cancer Cells through Mitochondria-Dependent and -Independent Pathways. Environ. Toxicol. 2012, 27, 332–341. [Google Scholar] [CrossRef]
  213. Ito, K.; Nakazato, T.; Yamato, K.; Miyakawa, Y.; Yamada, T.; Hozumi, N.; Segawa, K.; Ikeda, Y.; Kizaki, M. Induction of Apoptosis in Leukemic Cells by Homovanillic Acid Derivative, Capsaicin, through Oxidative Stress: Implication of Phosphorylation of P53 at Ser-15 Residue by Reactive Oxygen Species. Cancer Res. 2004, 64, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
  214. Tavares, M.T.; Pasqualoto, K.F.M.; van de Streek, J.; Ferreira, A.K.; Azevedo, R.A.; Damião, M.C.F.C.B.; Rodrigues, C.P.; de-Sá-Júnior, P.L.; Barbuto, J.A.M.; Parise-Filho, R.; et al. Synthesis, Characterization, in Silico Approach and in Vitro Antiproliferative Activity of RPF151, a Benzodioxole Sulfonamide Analogue Designed from Capsaicin Scaffold. J. Mol. Struct. 2015, 1088, 138–146. [Google Scholar] [CrossRef]
  215. Cunha, M.R.; Tavares, M.T.; Carvalho, C.F.; Silva, N.A.T.; Souza, A.D.F.; Pereira, G.J.V.; Ferreira, F.F.; Parise-Filho, R. Environmentally Safe Condition for the Synthesis of Aryl and Alkyl Sulfonyl Hydrazones via One-Pot Reaction. Acs Sustain. Chem. Eng. Sustain. Chem. Eng. 2016, 4, 1899–1905. [Google Scholar] [CrossRef]
  216. Ha, S.-H.; Kim, J.-B.; Park, J.-S.; Lee, S.-W.; Cho, K.-J. A Comparison of the Carotenoid Accumulation in Capsicum Varieties That Show Different Ripening Colours: Deletion of the Capsanthin-Capsorubin Synthase Gene Is Not a Prerequisite for the Formation of a Yellow Pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  217. Narisawa, T.; Fukaura, Y.; Hasebe, M.; Nomura, S.; Oshima, S.; Inakuma, T. Prevention of N-Methylnitrosourea-Induced Colon Carcinogenesis in Rats by Oxygenated Carotenoid Capsanthin and Capsanthin-Rich Paprika Juice. Proc. Soc. Exp. Biol. Med. 2000, 224, 116–122. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Chemical structures of the reported Piper sp. cytotoxic compounds and analogues.
Figure 1. Chemical structures of the reported Piper sp. cytotoxic compounds and analogues.
Molecules 26 01521 g001aMolecules 26 01521 g001b
Figure 2. Chemical structures of the reported Capsicum sp. cytotoxic compounds and some analogues.
Figure 2. Chemical structures of the reported Capsicum sp. cytotoxic compounds and some analogues.
Molecules 26 01521 g002
Figure 3. Chemical structures of the reported Pimenta dioica cytotoxic compounds.
Figure 3. Chemical structures of the reported Pimenta dioica cytotoxic compounds.
Molecules 26 01521 g003
Table 1. Potency (IC50; µM) of pepper-derived compounds against several cancer cell lines 1.
Table 1. Potency (IC50; µM) of pepper-derived compounds against several cancer cell lines 1.
CompoundCell Line and IC50 (µM)References
Piperolactam A (1)A549 (10.1); HCT15 (27.8); SK-MEL-2 (18.3); SK-OV-3 (18.3)[85,86]
Piperolactam B (2)A549 (21.7); HCT15 (21.3); SK-MEL-2 (11.6); SK-OV-3 (14.4); P-388 (46.1)[85,86]
Piperolactam C (3)A549 (>162.0); P-388 (78.0); HT-29 (69.0)[85]
4L1210 (1.6)[87,88]
5L1210 (2.6)[87,88]
6L1210 (2.3)[87,88]
7L1210 (1.6)[87,88]
8L1210 (1.8)[87,88]
9MCF-7 (2.0)[89]
Piplartine or Piperlongumine (10)518A2 (2.6); A2780 (0.5); A549 (1.9); CEM (4.4); GBM10 (3.8); HCT116 (6.0); HCT8 (2.2); HL60 (5.3); HT1080 (3.4); HT-29 (1.4); JURKAT (5.3); K-562 (5.7); KB (5.6); MCF-7 (5.0); MOLT-4 (1.7); MRC-5 (35.0); SF188 (3.9); SKBR3 (4.0); T98G (4.9); WI38 (26.8); ZR-75-30 (5.9)[88,90,91,92,93,94]
11A549 (4.1); MCF-7 (4.2)[88]
12A549 (4.7); MCF-7 (4.9)[88]
13A549 (1.8); MCF-7 (1.6)[88]
14A549 (2.0); MCF-7 (1.8)[88]
15A549 (3.8); MCF-7 (5.0)[88]
16A549 (24.0); MDA-MB-231 (11.7)[93]
17A549 (18.0); MDA-MB-231 (23.7)[93]
18A549 (19.8); MDA-MB-231 (6.7)[93]
19A549 (3.9); MDA-MB-231 (6.1)[93]
20A549 (4.1); MDA-MB-231 (7.3)[93]
21A549 (4.8); MDA-MB-231 (2.7)[93]
22A549 (2.7); MDA-MB-231 (2.5)[93]
23A549 (2.2); MDA-MB-231 (2.1)[93]
Pipermethystine 24HepG2 (not reported)[95]
Piperlonguminine 25MCF-7 (6.0); MCF-12A (50.8); MDA-MB-231 (261.7); MDA-MB-468 (8.0); SW-620 (16.9)[96]
Pellitorine 26HL60 (58.0); MCF-7 (8.0)[97,98]
Sarmetine 27P-388 (ED50 = 13.0)[99]
Piperine 28A549 (427.5); COLO-205 (46.0); HeLa (95.0); Hep-G2 (70.0); IMR-32 (89.0); MCF-7 (99.0)[100,101,102]
Piperninaline 29L5178Y (17.0)[103]
Dehydropiperninaline 30L5178Y (8.9)[103]
Aduncamide 31KB (ED50 = 18.0)[104,105]
32Not active[106]
33Not active[106]
34Not active[106]
Piperarborenine A 35A549 (4.23); HT-29 (6.21); P-388 (0.21)[85]
Piperarborenine B 36A549 (1.39); HT-29 (2.41); P-388 (0.13)[85]
Piperarborenine C 37A549 (0.23); HT-29 (0.26); P-388 (0.18)[85]
Piperarborenine D 38A549 (0.28); HT-29 (0.35); P-388 (0.20)[85]
Piperarborenine E 39A549 (0.19); HT-29 (0.22); P-388 (0.02)[85]
Piperarboresine 40A549 (5.01); HT-29 (5.69); P-388 (4.87)[85]
Piplartine-dimer A 41P-388 (8.48)[85]
Chabamide 42A549 (67.3); CNE (67.0); COLO-205 (5.4); DU-145 (16.0); HeLa (24.0; 189.8); HepG2 (60.8); K-562 (10.8); MCF-7 (39.1); SGC-7901 (12.0)[107,108]
Chabamide F 43COLO-205 (181.7); HeLa (119.4); HepG2 (44.6); HT-29 (259.7); MCF-7 (49.9)[107]
Chabamide G 44COLO-205 (0.0369); HeLa (85.3); HepG2 (108.0); MCF-7 (51.4)[107]
Chabamide H 45COLO-205 (69.5); HepG2 (253.5); MCF-7 (319.4)[107]
Chabamide I 46COLO-205 (80.5); HeLa (263.4)[107]
Chabamide J 47HT-29 (450.4)[107]
Chabamide K 48COLO-205 (379.4); Hela (191.0); HepG2 (437.2); HT-29 (397.8)[107]
cis-Yangonin 49A2780 (2.9); K652 (1.6)[109]
trans-Yangonin 50A2780 (9.3); K652 (5.5)[109]
Demethoxyyangonin 51A2780 (16.6); K652 (12.6)[109]
Kavain 52A2780 (11.0); K652 (23.2)[109]
Methysticin 53A375 (65.0); HaCaT (29.0)[110]
54A375 (65.0); HaCaT (29.0)[110]
Flavokavain A 55MCF-7 (25.0); MDA-MB-231 (17.5)[111,112]
Flavokavain B 56A2058 (18.3); ACC-2 (4.7); CaCo-2 (9.9); Cal-27 (26.7); DU-145 (3.9); H460 (18.2); HaCaT (13.6); HCT116 (7.5); HuH7 (15.9); HSC-3 (17.2); LAPC4 (32.0); LNCaP (48.3); MCF-7 (38.4); MCF-7/HER2 (13.6); MDA-MB-231 (12.3/45.0); NCI-H727 (11.3); PC-3 (6.2); RL (8.2); SKBR3/HER2 (10.0); SK-LMS-1 (4.4)[112,113,114,115,116,117,118]
Flavokavain C 57A549 (40.3); CaSKi (39.9); CCD-18Co (160.9); EJ (8.3); HCT116 (12.7); HepG2 (60.0); HT-29 (39.0); L-02 (57.0); MCF-7 (47.6); RT-4 (1.5)[119,120]
58CaCo-2 (10.0); HaCaT (10.9); HCT116 (9.2); MCF-7 (10.5); NCI-H727 (11.0); PC-3 (9.6); RL (10.1)[112]
59CaCo-2 (11.2); HaCaT (10.4); HCT116 (7.7); HuH7 (15.0); MCF-7 (10.3); MDA-MB-231 (13.2); NCI-H727 (14.8); PC-3 (7.3); RL (9.0)[112]
60CaCo-2 (9.6); HaCaT (10.5); HCT116 (10.0); HuH7 (16.6); MCF-7 (15.9); NCI-H727 (9.9); PC-3 (8.7); RL (8.9)[112]
61CaCo-2 (9.2); HCT116 (12.4); MCF-7 (8.8); PC-3 (13.2); RL (5.4)[112]
62HCT116 (54.1); MCF-7 (7.3);[121]
63CaCo-2 (5.8); HaCaT (7.2); HCT116 (6.9); HuH7 (15.5); MCF-7 (9.4); MDA-MB-231 (12.9); NCI-H727 (11.4); PC-3 (5.1); RL (6.9)[112]
64CaCo-2 (3.9); HaCaT (5.3); HCT116 (4.3); HuH7 (8.9); MCF-7 (9.4); MDA-MB-231 (8.7); NCI-H727 (8.2); PC-3 (3.1); RL (5.9)[112]
65CaCo-2 (4.5); HaCaT (8.7); HCT116 (4.2); HuH7 (9.8); MCF-7 (8.9); MDA-MB-231 (13.0); NCI-H727 (4.0); PC-3 (8.1); RL (9.0)[112]
66CaCo-2 (8.8); HaCaT (7.7); HCT116 (6.8); HuH7 (14.1); MCF-7 (9.3); MDA-MB-231 (9.9); NCI-H727 (8.7); PC-3 (7.6); RL (8.3)[112]
67CaCo-2 (5.5); HaCaT (7.6); HCT116 (6.2); HuH7 (14.6); MCF-7 (7.7); MDA-MB-231 (10.7); NCI-H727 (5.5); PC-3 (5.5); RL (6.4)[112]
68CaCo-2 (5.7); HaCaT (7.6); HCT116 (5.4); HuH7 (12.7); MCF-7 (7.5); MDA-MB-231 (8.2); NCI-H727 (6.0); PC-3 (5.8); RL (6.5)[112]
69CaCo-2 (6.8); HaCaT (9.0); HCT116 (6.2); HuH7 (13.9); MCF-7 (9.5); MDA-MB-231 (11.1); NCI-H727 (11.3); PC-3 (7.1); RL (8.3)[112]
70CaCo-2 (2.6); HaCaT (2.8); HCT116 (2.7); HuH7 (4.9); MCF-7 (5.0); MDA-MB-231 (3.3); NCI-H727 (4.1); PC-3 (2.5); RL (3.4)[112]
Grandisin 71EAT (0.2); HL60 (60.0); U937 (30.0); V79 (174.0)[122,123]
72A549 (6.90); SK-MEL-2 (4.50); SK-OV-3 (9.40)[86]
733T3-A31 (0.043)[124]
Conocarpan 74A549 (11.2); HL60 (5.8); MCF-7 (7.8); SMMC-7721 (8.9); SW-480 (2.1)[125]
Decurrenal 75MCF-7 (169.1)[126]
Eupomatenoid-5 76786-0 (TGI = 6.6); HT-29 (TGI = 48.5); K-562 (TGI = 338.5); MCF-7 (TGI = 21.2); NCI-H460 (TGI = 34.8); OVCAR-3 (TGI = 18.7); PC-3 (TGI = 21.0); UACC-62 (TGI = 27.9)[127]
Capsaicin 773T3 (83.0); A375 (6.0); A2058 (200.0); AsPC1 (150.0); B16F10 (117.0); BxPC3 (150.0); HepG2 (50.0); MCF-7 (53.0); MCF-10A H-ras (56.0); MDA-MB-231 (21.7); PC-3 (20.0); RT-4 (80.0)[128,129,130]
78B16F10 (87.0); MCF-7 (32.0)[128,129,130]
79B16F10 (38.0); MCF-7 (28.0); MDA-MB-231 (87.0)[131]
80B16F10 (75.0); MDA-MB-231 (109.0)[132]
81B16F10 (50.0); MCF-7 (32.0); MDA-MB-231 (14.2)[129]
82B16F10 (120.0); MDA-MB-231 (75.0)[132]
83MCF-7 (142.4); MDA-MB-231 (104.6)[133]
84MCF-7 (144.6); MDA-MB-231 (173.2)[133]
85B16F10 (130.0); SK-MEL-28 (85.0)[130]
86A2058 (55.2); SK-MEL-25 (67.2); U-87 (86.9)[134]
Capsanthin 87DU-145 (ND); PC-3 (ND)[135,136]
Capsorubin 88A549 (< 20.0)[135,136]
Ericifolin 89LNCaP (< 5.0)[137]
Nilocitin 90HCT116 (19.4); HepG2 (22.8); MCF-7 (40.8)[63]
Pedunculagin 91HCT116 (4.4); HepG2 (6.4); MCF-7 (18.4)[63]
Castalagin 92HCT116 (7.4); HepG2 (9.8); MCF-7 (26.2)[63]
Grandinin 93HCT116 (13.8); HepG2 (18.4); MCF-7 (22.1)[63]
1 IC50 = half of maximal inhibitory concentration; ED50 = median of effective dose; TGI = total growth inhibition; ND = not determined.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cunha, M.R.; Tavares, M.T.; Fernandes, T.B.; Parise-Filho, R. Peppers: A “Hot” Natural Source for Antitumor Compounds. Molecules 2021, 26, 1521. https://doi.org/10.3390/molecules26061521

AMA Style

Cunha MR, Tavares MT, Fernandes TB, Parise-Filho R. Peppers: A “Hot” Natural Source for Antitumor Compounds. Molecules. 2021; 26(6):1521. https://doi.org/10.3390/molecules26061521

Chicago/Turabian Style

Cunha, Micael Rodrigues, Maurício Temotheo Tavares, Thais Batista Fernandes, and Roberto Parise-Filho. 2021. "Peppers: A “Hot” Natural Source for Antitumor Compounds" Molecules 26, no. 6: 1521. https://doi.org/10.3390/molecules26061521

APA Style

Cunha, M. R., Tavares, M. T., Fernandes, T. B., & Parise-Filho, R. (2021). Peppers: A “Hot” Natural Source for Antitumor Compounds. Molecules, 26(6), 1521. https://doi.org/10.3390/molecules26061521

Article Metrics

Back to TopTop