Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products
Abstract
:1. Introduction
2. Applications and Technological Advances of Nanoscience in the Food Industry
3. Classification of Nanoencapsulation Systems/Techniques
Active Compound | NPs | Encapsulation Conditions | Physical Properties | Outcomes | Ref. |
---|---|---|---|---|---|
Curcumin | Zein LMW 25–30 kDa | Electrospray/electrohydrodynamic atomization technique Zein concentration: 2.5% (w/w) Flow rate: 0.15 mL/h Voltage: 14 kV Working distance: 7 cmCurcumin: Zein ratios: 1:500, 1:100, 1:50, 1:20 and 1:10 (w/w) | NPS: 175–250 nm EE: 85–90% | Zein compact NPs charged with curcumin, making possible to extend the use of curcumin like a coloring agent in aqueous food products. | [28] |
DHBA, PA, and RA | Chitosan: LMW: 107 kDa, 0.2% (w/v) HMW: 624 kDa, 0.4% (w/v) | Ionic gelation RA 0.6% (w/v); PA 0.3% (w/v); DHBA 0.3% (w/v) | LMW and HMW showed, respectively: NPS: 356–374 nm and 511–604.2 nm PDI: 0.22–0.23 and 0.15–0.20 ZP: 28–30 mV and 22.9–31.1 mV pH: 5.0–5.7 and 5.2–5.5 | NPs produced with HMW chitosan produced higher values of inhibition. E. coli and B. cereus were the most susceptible to NPs. | [29] |
D-limonene | Pectin-whey protein nanocomplexes | Whey proteins (4, 6 and 8% w/w) Pectin (0.5, 0.75 and 1% w/w) | Spherical NPs NPS: 160 nm EE: 88% ZP: −0.53 mV pH = 3 | The resulted NPs can be used in food products such as cakes, muffins, biscuits and juices. These NPs protected flavoring during processing and storage, and also its release can be controlled. | [26] |
Epigallocatechin gallate | Chitosan/ β-lactoglobulin NPs | EG (0, 10, 20, 30, and 40 mg) Chitosan (1.0–2.0 mg/mL) β-Lg (0, 10, 20, 30, and 40 mg/mL) | NPS: 193.8–289.2 nm EE: 40–60% PDI: 0.13–0.21 ZP: 28.3–24.9 mV pH 6.0–7.0 | Double-walled chitosan/β-Lg NPs. Prolonged release capabilities and excellent adhesion properties of could enhance the effective absorption of these NPs in the human intestine. | [24] |
Eugenol | Zein-caseinate-pectin complex | Spray drying | NPS: 140 nm pH 6.6 | NPs with spherical shape. Caseinate allowed it to stabilize complex NPs during spray drying and storage. | [30] |
Guabiroba fruit | PLGA | PLGA-lactic: glycolic acid ratio: 65:35 or 50:50 (MW 40,000–75,000 g/mol) | NPS: 202.5–243.8 nm PDI: 0.37–0.43 | PLGA NPs can be used as a delivery system for phenolic compounds at levels lower than originally required for enhanced functional properties. | [31] |
Quercetin | Chitosan-alginate | NP1: Sodium alginate (3 mg/mL); calcium chloride (3.35 mg/mL); chitosan (0.75 mg/mL). NP2: Chitosan solution (3 mg/mL); calcium chloride; sodium alginate (0.75 mg/mL) | NPS: ≅400–600 nm ZP: −30 to + 30 mV | NPs prepared with higher concentration of sodium alginate displayed smaller size and negative values for ZP. NPs showed low or absent toxicity in different cell models in vitro and better protection against oxidative stress than free quercetin. | [32] |
Thymol | Zein stabilized with sodium caseinate and chitosan hydrochloride | Thymol: zein ratios: 1:1, 1:2, 1:4, 2:1 | NPS: ≅520 nm EE: 80.51–82.89% PDI: 0.16–0.24 IP: 6.18 to 5.05 ZP: 64.45 mV pH ≅4.3 | Increase of EE. | [33] |
4. Coating Materials
4.1. Natural Polymers Used for the Delivery of Bioactive Ingredients
4.1.1. Carbohydrates
4.1.2. Proteins
4.1.3. Zein Nanostructures
4.2. Fat and Waxes
5. Nanoencapsulation of Bioactive Compounds and Food Ingredients
5.1. Phenolic Compounds and Carotenoids
5.2. Essential Oils and Fatty Acids
5.3. Vitamins
5.4. Peptides and Enzymes
5.5. Probiotics and Prebiotics
6. Critical Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delshadi, R.; Bahrami, A.; Tafti, A.G.; Barba, F.J.; Williams, L.L. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends Food Sci. Technol. 2020, 104, 72–83. [Google Scholar] [CrossRef]
- Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F.J.; Abbaspourrad, A.; Greiner, R. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Adv. 2017, 7, 28951–28964. [Google Scholar] [CrossRef] [Green Version]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control. 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Yu, H.; Park, J.Y.; Kwon, C.W.; Hong, S.C.; Park, K.M.; Chang, P.S. An overview of nanotechnology in food science: Pre-parative methods, practical applications, and safety. J. Chem. 2018, 5427978. [Google Scholar] [CrossRef]
- Handford, C.E.; Dean, M.; Henchion, M.; Spence, M.; Elliott, C.T.; Campbell, K. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends Food Sci. Technol. 2014, 40, 226–241. [Google Scholar] [CrossRef]
- Ponce, A.G.; Ayala-Zavala, J.F.; Marcovich, N.E.; Vazquez, F.J.; Ansorena, M.R. Nanotechnology trends in the food industry: Recent developments, risks, and regulation. In Impact of Nanoscience in the Food Industry; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 113–141. [Google Scholar]
- Min, J.B.; Kim, E.S.; Lee, J.-S.; Lee, H.G. Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles. Food Sci. Biotechnol. 2017, 27, 441–450. [Google Scholar] [CrossRef]
- Malekhosseini, P.; Alami, M.; Khomeiri, M.; Esteghlal, S.; Nekoei, A.; Hosseini, S.M.H. Development of casein-based nanoencapsulation systems for delivery of epigallocatechin gallate and folic acid. Food Sci. Nutr. 2019, 7, 519–527. [Google Scholar] [CrossRef]
- Gómez, B.; Barba, F.J.; Domínguez, R.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Toldrá, F.; Lorenzo, J.M. Microen-capsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends Food Sci. Technol. 2018, 82, 135–147. [Google Scholar] [CrossRef]
- Jampilek, J.; Kos, J.; Kralova, K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials 2019, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.M. An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Jafari, S.M., Ed.; Academic Press: London, UK, 2017; pp. 1–34. [Google Scholar]
- Human, C.; de Beer, D.; van der Rijst, M.; Aucamp, M.; Joubert, E. Electrospraying as a suitable method for nanoencap-sulation of the hydrophilic bioactive dihydrochalcone, aspalathin. Food Chem. 2019, 276, 467–474. [Google Scholar] [CrossRef]
- Mahmoud, K.F.; Ali, H.S.; Amin, A.A. Nanoencapsulation of bioactive compounds extracted from Egyptian prickly pears peel fruit: Antioxidant and their application in Guava juice. Asian J. Sci. Res. 2018, 11, 574–586. [Google Scholar] [CrossRef]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydr. Polym. 2017, 177, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Murthy, K.N.C.; Monika, P.; Jayaprakasha, G.K.; Patil, B.S. Nanoencapsulation: An advanced nanotechnological approach to enhance the biological efficacy of curcumin. In Proceedings of the ACS Symposium Series, Washington, DC, USA, 10 October 2018; pp. 383–405. [Google Scholar]
- Kadappan, A.S.; Guo, C.; Gumus, C.E.; Bessey, A.; Wood, R.J.; McClements, D.J.; Liu, Z. The efficacy of nanoemulsion-based delivery to improve vitamin D absorption: Comparison of in vitro and in vivo studies. Mol. Nutr. Food Res. 2018, 62, 1700836. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Mariutti, L.R.B.; Bragagnolo, N.; Mercadante, A.Z.; Barbosa-Cánovas, G.V.; Orlien, V. Bioaccessibility of bio-active compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol. 2017, 67, 195–206. [Google Scholar] [CrossRef]
- Quilaqueo, M.; Millao, S.; Luzardo-Ocampo, I.; Campos-Vega, R.; Acevedo, F.; Shene, C.; Rubilar, M. Inclusion of piperine in β-cyclodextrin complexes improves their bioaccessibility and in vitro antioxidant capacity. Food Hydrocoll. 2019, 91, 143–152. [Google Scholar] [CrossRef]
- Grumezescu, A.M.; Holban, A.M. Impact of Nanoscience in the Food Industry; Academic Press: London, UK, 2018. [Google Scholar]
- Salem, M.A.; Ezzat, S.M. Nanoemulsions in food industry. In Some New Aspects of Colloidal Systems in Foods; IntechOpen: London, UK, 2019; pp. 1–21. [Google Scholar]
- Panigrahi, S.S.; Syed, I.; Sivabalan, S.; Sarkar, P. Nanoencapsulation strategies for lipid-soluble vitamins. Chem. Pap. 2018, 73, 1–16. [Google Scholar] [CrossRef]
- Borel, T.; Sabliov, C. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu. Rev. Food Sci. Technol. 2014, 5, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.N.P.; Ishwarya, S.P.; Anandharamakrishnan, C. Nanoencapsulation of roasted coffee bean oil in whey protein wall system through nanospray drying. J. Food Process. Preserv. 2019, 43, e13893. [Google Scholar] [CrossRef]
- Liang, J.; Yan, H.; Yang, H.-J.; Kim, H.W.; Wan, X.; Lee, J.; Ko, S. Synthesis and controlled-release properties of chi-tosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate. Food Sci. Biotechnol. 2016, 25, 1583–1590. [Google Scholar] [CrossRef]
- Granata, G.; Consoli, G.M.; Nigro, R.L.; Geraci, C. Hydroxycinnamic acids loaded in lipid-core nanocapsules. Food Chem. 2018, 245, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Nanoencapsulation of D-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocoll. 2018, 77, 152–162. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar]
- Gomez-Estaca, J.; Balaguer, M.P.; Gavara, R.; Hernandez-Munoz, P. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll. 2012, 28, 82–91. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pereira, A.; Castro, P.M.; Pintado, M. Production of antimicrobial chitosan nanoparticles against food pathogens. J. Food Eng. 2015, 167, 210–216. [Google Scholar] [CrossRef]
- Veneranda, M.; Hu, Q.; Wang, T.; Luo, Y.; Castro, K.; Madariaga, J.M. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. LWT Food Sci. Technol. 2018, 89, 596–603. [Google Scholar] [CrossRef]
- Pereira, M.C.; Oliveira, D.A.; Hill, L.E.; Zambiazi, R.C.; Borges, C.D.; Vizzotto, M.; Mertens-Talcott, S.; Talcott, S.; Gomes, C.L. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem. 2018, 240, 396–404. [Google Scholar] [CrossRef]
- Aluani, D.; Tzankova, V.; Kondeva-Burdina, M.; Yordanov, Y.; Nikolova, E.; Odzhakov, F.; Apostolov, A.; Markova, T.; Yoncheva, K. Evaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int. J. Biol. Macromol. 2017, 103, 771–782. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, Y.; Luo, Y.; Ge, M.; Yang, T.; Yu, L.; Wang, Q. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem. 2014, 142, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Chow, P.Y.; Gue, S.Z.; Leow, S.K.; Goh, L.B. Solid self-microemulsifying system (S-SMECS) for enhanced bioavailability and pigmentation of highly lipophilic bioactive carotenoid. Powder Technol. 2015, 274, 199–204. [Google Scholar] [CrossRef]
- Mozafari, M.R.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 2008, 18, 309–327. [Google Scholar] [CrossRef]
- Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019, 275, 113–122. [Google Scholar] [CrossRef]
- Kunjachan, S.; Jose, S. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J. Pharm. 2010, 4, 148. [Google Scholar] [CrossRef]
- Bhushani, J.A.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applica-tions. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
- Horuz, T.İ.; Belibağli, K.B. Nanoencapsulation of carotenoids extracted from tomato peels into zein fibers by electrospinning. J. Sci. Food Agric. 2019, 99, 759–766. [Google Scholar] [CrossRef]
- Khoshakhlagh, K.; Mohebbi, M.; Koocheki, A.; Allafchian, A. Encapsulation of D-limonene in Alyssum homolocarpum seed gum nanocapsules by emulsion electrospraying: Morphology characterization and stability assessment. Bioact. Carbohydrates Diet. Fibre 2018, 16, 43–52. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity—A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef] [PubMed]
- Faridi, A.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces 2016, 146, 532–543. [Google Scholar] [CrossRef] [PubMed]
- De Souza Simões, L.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, Ó.L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Fathi, M.; Martín, Á.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol. 2014, 39, 18–39. [Google Scholar] [CrossRef]
- Akbari-Alavijeh, S.; Shaddel, R.; Jafari, S.M. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocoll. 2020, 105, 105774. [Google Scholar] [CrossRef]
- Lin, L.; Mao, X.; Sun, Y.; Rajivgandhi, G.; Cui, H. Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int. J. Food Microbiol. 2019, 292, 21–30. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, J.S.; Kim, E.S.; Lee, H.G. Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT 2019, 101, 138–144. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Yáñez, R.; Parajó, J.C.; Alonso, J.L. Pectic oligosacharides from lemon peel wastes: Production, purification, and chemical characterization. J. Agric. Food Chem. 2013, 61, 10043–10053. [Google Scholar] [CrossRef]
- Rehman, A.; Ahmad, T.; Aadil, R.M.; Spotti, M.J.; Bakry, A.M.; Khan, I.M.; Zhao, L.; Riaz, T.; Tong, Q. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci. Technol. 2019, 90, 35–46. [Google Scholar] [CrossRef]
- Lopes, N.A.; Pinilla, C.M.B.; Brandelli, A. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocoll. 2019, 93, 1–9. [Google Scholar] [CrossRef]
- Mohammadi, A.; Jafari, S.M.; Assadpour, E.; Esfanjani, A.F. Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. Int. J. Biol. Macromol. 2016, 82, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Peng, H.; Chen, S.; Luo, M.; Ning, F.; Zhu, X.; Xiong, H. Preparation and self-assembly mechanism of bovine serum albu-min-citrus peel pectin conjugated hydrogel: A potential delivery system for Vitamin C. J. Agric. Food Chem. 2016, 64, 7377–7384. [Google Scholar] [CrossRef]
- Ghorbanzade, T.; Jafari, S.M.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2017, 216, 146–152. [Google Scholar] [CrossRef]
- Jin, H.; Xia, F.; Jiang, C.; Zhao, Y.; He, L. Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chin. J. Chem. Eng. 2009, 17, 672–677. [Google Scholar] [CrossRef]
- Fathi, M.; Donsi, F.; McClements, D.J. Protein-based delivery systems for the nanoencapsulation of food ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17, 920–936. [Google Scholar] [CrossRef] [Green Version]
- Balandrán-Quintana, R.R.; Valdéz-Covarrubias, M.A.; Mendoza-Wilson, A.M.; Sotelo-Mundo, R.R. α-Lactalbumin hy-drolysate spontaneously produces disk-shaped nanoparticles. Int. Dairy J. 2013, 32, 133–135. [Google Scholar] [CrossRef]
- Monteiro, A.A.; Monteiro, M.R.; Pereira, R.N.; Diniz, R.; Costa, A.R.; Malcata, F.X.; Teixeira, J.A.; Teixeira, Á.V.; Oliveira, E.B.; Coimbra, J.S.; et al. Design of bio-based supramolecular structures through self-assembly of α-lactalbumin and lysozyme. Food Hydrocoll. 2016, 58, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Hewlings, S.; Kalman, D. Curcumin: A Review of its’ effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Ghayour, N.; Hosseini, S.M.H.; Eskandari, M.H.; Esteghlal, S.; Nekoei, A.-R.; Gahruie, H.H.; Tatar, M.; Naghibalhossaini, F. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocoll. 2019, 87, 394–403. [Google Scholar] [CrossRef]
- Samadarsi, R.; Dutta, D. Design and characterization of mangiferin nanoparticles for oral delivery. J. Food Eng. 2019, 247, 80–94. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Murthy, K.N.C.; Patil, B.S. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein. Eur. J. Pharmacol. 2016, 789, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Luo, Y.; Wang, Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT 2012, 48, 283–290. [Google Scholar] [CrossRef]
- Sozer, N.; Kokini, J.L. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009, 27, 82–89. [Google Scholar] [CrossRef]
- Dai, L.; Sun, C.; Li, R.; Mao, L.; Liu, F.; Gao, Y. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 2017, 237, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S.M. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci. Technol. 2018, 74, 132–146. [Google Scholar] [CrossRef]
- Kiani, A.; Fathi, M.; Ghasemi, S.M. Production of novel vitamin D3 loaded lipid nanocapsules for milk fortification. Int. J. Food Prop. 2017, 20, 2466–2476. [Google Scholar] [CrossRef] [Green Version]
- Khatib, N.; Varidi, M.J.; Mohebbi, M.; Varidi, M.; Hosseini, S.M.H. Replacement of nitrite with lupulon–xanthohumol loaded nanoliposome in cooked beef-sausage: Experimental and model-based study. J. Food Sci. Technol. 2020, 57, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Bamba, B.; Shi, J.; Tranchant, C.; Xue, S.; Forney, C.; Lim, L.-T.; Xu, W.; Xu, G. Coencapsulation of polyphenols and an-thocyanins from blueberry pomace by double emulsion stabilized by whey proteins: Effect of homogenization parameters. Molecules 2018, 23, 2525. [Google Scholar] [CrossRef] [Green Version]
- Esfanjani, A.F.; Assadpour, E.; Jafari, S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol. 2018, 76, 56–66. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Lorenzo, J.M.; Gabrić, D.; Shpigelman, A.; Cravotto, G.; Kovačević, D.B. An integrated approach to mandarin processing: Food safety and nutritional quality, consumer preference, and nutrient bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1345–1358. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Chen, H.; Zhong, Q. Nanoencapsulation of caffeic acid phenethyl ester in sucrose fatty acid esters to improve activities against cancer cells. J. Food Eng. 2019, 246, 125–133. [Google Scholar] [CrossRef]
- Budryn, G.; Zaczyńska, D.; Oracz, J. Effect of addition of green coffee extract and nanoencapsulated chlorogenic acids on aroma of different food products. LWT 2016, 73, 197–204. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Hasani, S. Characteristics and oxidative stability of fish oil nano-liposomes and its application in functional bread. J. Food Meas. Charact. 2018, 12, 1084–1092. [Google Scholar] [CrossRef]
- Bai, J.J.; Lee, J.G.; Lee, S.Y.; Kim, S.; Choi, M.J.; Cho, Y. Changes in quality characteristics of pork patties containing anti-oxidative fish skin peptide or fish skin peptideloaded nanoliposomes during refrigerated storage. Korean J. Food Sci. Anim. Resour. 2017, 37, 752–763. [Google Scholar] [CrossRef] [Green Version]
- Pinilla, C.M.B.; Brandelli, A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov. Food Sci. Emerg. Technol. 2016, 36, 287–293. [Google Scholar] [CrossRef]
- Tavakoli, H.; Hosseini, O.; Jafari, S.M.; Katouzian, I. Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. J. Agric. Food Chem. 2018, 66, 9231–9240. [Google Scholar] [CrossRef]
- Yekta, M.M.; Rezaei, M.; Nouri, L.; Azizi, M.H.; Jabbari, M.; Eş, I.; Khaneghah, A.M. Antimicrobial and antioxidant properties of burgers with quinoa peptide-loaded nanoliposomes. J. Food Saf. 2020, 40, e12753. [Google Scholar] [CrossRef]
- Jemaa, M.B.; Falleh, H.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Quality preservation of deliberately contaminated milk using thyme free and nanoemulsified essential oils. Food Chem. 2017, 217, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Tjia, J.Y.Y.; Zhou, Y.; Liu, Q.; Fu, C.; Yang, H. Effects of tocopherol nanoemulsion addition on fish sausage properties and fatty acid oxidation. LWT Food Sci. Technol. 2020, 118, 108737. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Mundra, S.; Ramalingam, C.; Kumar, A. Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int. J. Food Prop. 2016, 19, 700–708. [Google Scholar] [CrossRef]
- David, S.; Livney, Y.D. Potato protein based nanovehicles for health promoting hydrophobic bioactives in clear beverages. Food Hydrocoll. 2016, 57, 229–235. [Google Scholar] [CrossRef]
- Tang, D.W.; Yu, S.H.; Ho, Y.C.; Huang, B.Q.; Tsai, G.J.; Hsieh, H.Y.; Sung, H.W.; Mi, F.L. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll. 2013, 30, 33–41. [Google Scholar] [CrossRef]
- Rashidinejad, A.; John Birch, E.; Everett, D.W. A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: Manufacture and recovery following simulated digestion. Food Funct. 2016, 7, 3283–3294. [Google Scholar] [CrossRef]
- Alotaibi, A.; Bhatnagar, P.; Najafzadeh, M.; Gupta, K.C.; Anderson, D. Tea phenols in bulk and nanoparticle form modify DNA damage in human lymphocytes from colon cancer patients and healthy individuals treated in vitro with platinum-based chemotherapeutic drugs. Nanomedicine 2013, 8, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Puligundla, P.; Mok, C.; Ko, S.; Liang, J.; Recharla, N. Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols. J. Funct. Foods 2017, 34, 139–151. [Google Scholar] [CrossRef]
- Žugčić, T.; Abdelkebir, R.; Alcantara, C.; Collado, M.C.; García-Pérez, J.V.; Meléndez-Martínez, A.J.; Režek Jambrak, A.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol. 2019, 83, 63–77. [Google Scholar] [CrossRef]
- Kumar, A.; Kujur, A.; Singh, P.P.; Prakash, B. Nanoencapsulated plant-based bioactive formulation against food-borne molds and aflatoxin B1 contamination: Preparation, characterization and stability evaluation in the food system. Food Chem. 2019, 287, 139–150. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Teixeira, M.; Fernandes, A.; Borrás-Linares, I.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A.; Souto, E. Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. J. Drug Deliv. Sci. Technol. 2019, 49, 660–667. [Google Scholar] [CrossRef]
- Domínguez, R.; Bohrer, B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M. Recent discoveries in the field of lipid bio-based ingredients for meat processing. Molecules 2021, 26, 190. [Google Scholar] [CrossRef]
- Bezerra, P.Q.M.; de Matos, M.F.R.; Ramos, I.G.; Magalhães-Guedes, K.T.; Druzian, J.I.; Costa, J.A.V.; Nunes, I.L. Innovative functional nanodispersion: Combination of carotenoid from Spirulina and yellow passion fruit albedo. Food Chem. 2019, 285, 397–405. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release 2019, 298, 38–67. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Veiga, M.; Costa, E.M.; Oliveira, A.L.S.; Madureira, A.R.; Pintado, M. Nanoencapsulation of polyphenols towards dairy beverage incorporation. Beverages 2018, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.P.; Andrade, L.D.A.; Flôres, S.H.; Rios, A.D.O. Nanoencapsulation of carotenoids: A focus on different delivery systems and evaluation parameters. J. Food Sci. Technol. 2018, 55, 3851–3860. [Google Scholar] [CrossRef] [PubMed]
- Anandharamakrishnan, C.; Ishwarya, S.P. Encapsulation of bioactive ingredients by spray drying. In Spray Drying Techniques for Food Ingredient Encapsulation; Anandharamakrishnan, C., Ishwarya, S.P., Eds.; John Wiley & Sons Ltd.: Chicago, IL, USA, 2015; pp. 156–179. [Google Scholar]
- Kyriakoudi, A.; Tsimidou, M.Z. Properties of encapsulated saffron extracts in maltodextrin using the Büchi B-90 nano spray-dryer. Food Chem. 2018, 266, 458–465. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M.; Assadpour, E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem. 2017, 221, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Kavaz, D.; Idris, M.; Onyebuchi, C. Physiochemical characterization, antioxidative, anticancer cells proliferation and food pathogens antibacterial activity of chitosan nanoparticles loaded with Cyperus articulatus rhizome essential oils. Int. J. Biol. Macromol. 2019, 123, 837–845. [Google Scholar] [CrossRef]
- Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 2016, 53, 34–48. [Google Scholar] [CrossRef]
- Abbasi, A.; Emam-Djomeh, Z.; Mousavi, M.A.E.; Davoodi, D. Stability of vitamin D3 encapsulated in nanoparticles of whey protein isolate. Food Chem. 2014, 143, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Chapeau, A.L.; Tavares, G.M.; Hamon, P.; Croguennec, T.; Poncelet, D.; Bouhallab, S. Spontaneous co-assembly of lactoferrin and β-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocoll. 2016, 57, 280–290. [Google Scholar] [CrossRef]
- Azevedo, M.A.; Bourbon, A.I.; Vicente, A.A.; Cerqueira, M.A. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int. J. Biol. Macromol. 2014, 71, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Hategekimana, J.; Chamba, M.V.; Shoemaker, C.F.; Majeed, H.; Zhong, F. Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 483, 70–80. [Google Scholar] [CrossRef]
- Hategekimana, J.; Masamba, K.G.; Ma, J.; Zhong, F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015, 124, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J. Food Eng. 2015, 165, 149–155. [Google Scholar] [CrossRef]
- Maherani, B.; Arab-Tehrany, E.; Kheirolomoom, A.; Cleymand, F.; Linder, M. Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant L-carnosine. Food Chem. 2012, 134, 632–640. [Google Scholar] [CrossRef]
- Wen, H.W.; Decory, T.R.; Borejsza-Wysocki, W.; Durst, R.A. Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays. Talanta 2006, 68, 1264–1272. [Google Scholar] [CrossRef]
- Imran, M.; Revol-Junelles, A.M.; René, N.; Jamshidian, M.; Akhtar, M.J.; Arab-Tehrany, E.; Jacquot, M.; Desobry, S. Micro-structure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll. 2012, 29, 407–419. [Google Scholar] [CrossRef]
- Janes, K.; Calvo, P.; Alonso, M. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 2001, 47, 83–97. [Google Scholar] [CrossRef]
- Alfadul, S.; Elneshwy, A. Use of nanotechnology in food processing, packaging and safety—Review. Afr. J. Food Agric. Nutr. Dev. 2010, 10, 10. [Google Scholar] [CrossRef]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Míguez, B.; Gómez, B.; Gullón, P.; Gullón, B.; Alonso, J.L. Pectic oligosaccharides and other emerging prebiotics. In Probiotics and Prebiotics in Human Nutrition and Health; Rao, V., Rao, L.G., Eds.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Gómez, B.; Míguez, B.; Yáñez, R.; Alonso, J.L. Extraction of oligosaccharides with prebiotic properties from agro-industrial wastes. In Water Extraction of Bioactive Compounds; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 131–161. [Google Scholar]
- Krasaekoopt, W.; Watcharapoka, S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT Food Sci. Technol. 2014, 57, 761–766. [Google Scholar] [CrossRef]
- Durazzo, A.; Nazhand, A.; Lucarini, M.; Atanasov, A.G.; Souto, E.B.; Novellino, E.; Capasso, R.; Santini, A. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int. J. Mol. Sci. 2020, 21, 2285. [Google Scholar] [CrossRef] [Green Version]
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Lett. 2020, 12, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Barabadi, H.; Najafi, M.; Samadian, H.; Azarnezhad, A.; Vahidi, H.; Mahjoub, M.A.; Koohiyan, M.; Ahmadi, A. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: Are green nanoparticles safe enough for clinical marketing? Medicina 2019, 55, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
BACs | Application/s of Their Encapsulation | Examples |
---|---|---|
Phenolic compounds | Protection, improvement of their antioxidant and other functional activities, incorporation of additional positive properties, target delivery | Quercetin, tea catechins, folic acid, thymol, resveratrol, anthocyanins |
Carotenoids | Stabilization, efficient controlled release, expansion of their industrial applications (as colorants and antioxidants) | Tomato lycopene, crocins |
Essential fatty acids | Stabilization, better solubility, decrease volatility, use of lower doses, favorable impact on the sensory quality of the final product | DHA, linolenic acid, |
Vitamins | Protection to oxidation | Vitamin D3, vitamin B9, vitamin B2, riboflavin, thiamine |
Peptides and enzymes | Improved antimicrobial and/or antioxidant activity, better absorption | natural dipeptides, nisin |
Probiotics and prebiotics | Increment of viability, promotion of gastrointestinal health, suitable inclusion in the food product | L. casei, L. reuteri, B. bifidum, B. breve, S. thermophilus, fructooligosaccharides galactooligosaccharides, lactulose |
Others | Stabilization, controlled release, improved homogeneity, flavor, taste and/or texture of the food system | Minerals, colorants, flavors, buffers, micronutrients |
Carbohydrates | Proteins | Fat and Waxes | Polymers |
---|---|---|---|
Chitosan | Whey protein | Hydrogenated vegetable oils | Polyglycolides |
Pectin | Sodium caseinate | Bee wax | Polylactides |
Maltodextrin | Soy proteins | Lecithin | Polyethylene glycol |
Alginates | Gelatin | Medium chain triglycerides | Polyorthoesters |
Cyclodextrins | Caseins | Polyanhydrides | |
Gum Arabic | Zein | Polyacrylamide | |
Cellulose derivatives | Polycaprolactone | ||
Modified starches | Polyacrylic acid | ||
Carrageenan | Polyvinyl alcohol | ||
Properties that should be considered: | Solubility, edibility, film-forming ability, emulsification, viscosity, degree of crystallinity, compatibility with the core compounds, cost, taste and flavor |
BACs | Nanocarriers | Technique | Goal | Food Product | Dose Used | Storage | Main Effects | Ref. |
---|---|---|---|---|---|---|---|---|
Chlorogenic acids | β-cyclodextrin | Nano-complexation | Phenolic compounds Supplementation on aroma volatile profile | Bread, cookies, caramel cottage cheese, nutty filling, and mushroom or meat stuffing | 237.7 mg/g | – | Limited formation of preferred aroma volatiles | [74] |
Fish oils | Lecithin sunflower oil | Nanoliposomes | Improvement of the nutritional value | Bread | 5% (w/w) | 25 days | Oxidative stability against lipid oxidation. Positive effects on technological and sensory properties | [75] |
Nanoliposomes Mozafari method | Fortification | Yogurt | 15 mL/100 g | 21 days | High DHA and EPA contents. Avoid strong odors and rapid deterioration. Good sensory attributes. ↓ acidity, peroxide values and syneresis | [54] | ||
Fish skin peptide | Lecithin | Nanoliposomes Ultrasonication | Preservative and vehicle for entrapping fishy smell | Pork patties | 0.1%, 0.5%, 1%, 2%, and 3% (w/w) | 14 days at 4 °C | Inhibitory effect on lipid oxidation Dose dependent effect | [76] |
Lupulon xanthohumol | Nanoliposomes Ultrasonication | Replacement of nitrite | Cooked beef-sausage | 50, 100, 150 and 200 ppm | 30 days at 4 °C | Prevention of microbial growth and lipid oxidation. Addition of nanoliposomes has not impaired sensory properties | [68] | |
Nisin and garlic extract | Phosphatidylcholine and oleic acid | Nanoliposomes Thin-film hydration/Ultrasound | Antimicrobial agent | Whole UHT milk | – | 25 days at 7 °C | Improved the activity of nisin against Gram-negative bacteria. Protected the antioxidant activity and masked undesirable odors | [77] |
Nisin and lysozyme | Phosphatidylcholine-pectin/polygalacturonic acid | Nanoliposomes | Natural antimicrobials | Whole or skim UHT milk | 0.05–0.1% | 25 days | Inhibition of Listeria monocytogens and Salmonella Enteritidis | [50] |
Olive leaf phenolics-oleuropein | Lecithin cholesterol | Nanoliposomes Ethanol injection | Functional food product | Yogurt | 0.7% phenolics/g nanoliposome | 21 days | Antioxidant activity. Good sensory attributes and syneresis | [78] |
Prickly pears peel fruit | Sodium alginate-chitosan | Nanoencapsulates | Preservative | Guava juice | 0.1% | 120 days | Ability to withstand the high temperatures and pasteurization | [13] |
Quinoa peptide | Soy phosphatidylcholine and cholesterol | Nanoliposomes | Natural food preservative | Fresh beef burgers | 3 and 5 mg/mL | 12 days at 2–4 °C | Antimicrobial and antioxidant properties | [79] |
Thymus capitatus EO | Aqueous SDS/soybean oil | Nanoemulsion Microfluidizer | Antimicrobial agent | Semi skimmed UHT milk | 2 mg/mL | 24 h at 37 °C | Improving physicochemical and microbial (S. aureus) quality of milk | [80] |
α-Tocopherol | Canola oil and Tween 80 | Nanoliposomes Magnetic stirring/Ultrasound | Antioxidant agent | Fish sausages | 250, 500 mg/kg | 16 days at 4 °C | Lower spoilage rate. Delayed lipid oxidation during storage | [81] |
Vitamin E | Edible mustard oil-surfactant Tween-80 | Nanoemulsion Wash-out method | Health supplement. Antioxidant | Mango juice | 1:9, 2:8, 3:7, 4:6 and 5:5 | 24 h at 37 °C | Reduction in microbial growth | [82] |
Vitamin D3 | Lecithin | Phase-inversion temperature method | Fortification | Milk | 4% and 8% (w/w) | – | Protect vitamin against acidic conditions. Good acceptability | [67] |
Potato proteins | Protein nanocomplexes | Promotion of human health | Clear beverages solutions | 10, 25, 50, 75 and 100 μg/mL | Three weeks | Protection during pasteurization and shelf life | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. https://doi.org/10.3390/molecules26061547
Pateiro M, Gómez B, Munekata PES, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules. 2021; 26(6):1547. https://doi.org/10.3390/molecules26061547
Chicago/Turabian StylePateiro, Mirian, Belén Gómez, Paulo E. S. Munekata, Francisco J. Barba, Predrag Putnik, Danijela Bursać Kovačević, and José M. Lorenzo. 2021. "Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products" Molecules 26, no. 6: 1547. https://doi.org/10.3390/molecules26061547
APA StylePateiro, M., Gómez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules, 26(6), 1547. https://doi.org/10.3390/molecules26061547