Chalepin and Chalepensin: Occurrence, Biosynthesis and Therapeutic Potential
Abstract
:1. Introduction
2. Distribution
3. Biosynthesis
4. Bioactivity
4.1. Antidiabetic Activity
4.2. Antifertility Activity
4.3. Antimicrobial Property
4.4. Antiprotozoal Activity
4.5. Antiviral Activity
4.6. Cytotoxicity (Potential Anticancer and Antitumor Activity)
4.7. Miscellaneous Activities
5. Mutagenicity and Other Toxicities
6. Drugability’ of Chalepin (1) and Chalepensin (2)
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, B.S.; Gawad, D.H. Isolation of some furanocoumarins from Clausena indica and identity of chalepensin with xylotenin. Phytochemistry 1971, 10, 480–481. [Google Scholar] [CrossRef]
- Mohr, N.; Budzikiewicz, H.; El-Tawil, B.A.H.; El-Beih, F.K.A. Further furoquinoline alkaloids from Ruta chalepensis. Phytochemistry 1982, 21, 1838–1839. [Google Scholar] [CrossRef]
- Richardson, J.S.M.; Sethi, G.; Lee, G.S.; Malek, S.N.A. Chalepin: Isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. BMC Complementary Altern. Med. 2016, 16, 389. [Google Scholar] [CrossRef] [Green Version]
- Tamene, D.; Endale, M. Antibacterial activity of coumarins and carbazole alkaloids from roots of Clausena anisata. Adv. Pharmacol. Sci. 2019, 2019, 5419854. [Google Scholar] [CrossRef] [Green Version]
- Quintanilla-Licea, R.; Mata-Cardenas, B.D.; Vargas-Villarreal, J.; Bazaldua-Rodriguez, A.F.; Angeles-Hernandez, I.K.; Garza-Gonzalez, J.N.; Hernandez-Garcia, M.E. Antiprotozoal activity against Entamoeba histolytica of plants used in northeast Mexican traditional medicine. Bioactive compounds from Lippia graveolens and Ruta chalepensis. Molecules 2014, 19, 21044–21065. [Google Scholar] [CrossRef] [PubMed]
- Yamahara, J.; Miki, S.; Murakami, H.; Matsuda, H.; Fujimura, H. Screening test for calcium antagonists in natural products. The active principles of Boebminghausenia albiflora var. japonica. Yakuhaku Zasshi 1987, 107, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Guo, J.-M.; Zhang, W.-H.; Zhang, M.-M.; Liu, Y.-P.; Fu, Y.-H. Chemical constituents from stems and leaves of Clausena emarginata. China J. Chin. Mater. Med. 2019, 44, 2096–2101. [Google Scholar]
- Adebajo, A.C.; Iwalewa, E.O.; Obuotor, E.M.; Ibikunle, G.F.; Omisore, N.O.; Adewunmi, C.O.; Obaparusi, O.O.; Klaes, M.; Adetogun, G.E.; Schmidt, T.J.; et al. Pharmacological properties of the extract and some isolated compounds of Clausena lansium sten bark: Anti-trichomonal, antidiabetic, anti-inflammatory, hepatoprotective and antioxidant effects. J. Ethnopharmacol. 2009, 122, 10–19. [Google Scholar] [CrossRef]
- Garcia-Beltran, O.; Areche, C.; Cassels, B.K.; Suarez, L.E.C. Coumarins isolated from Esenbeckia alata (Rutaceae). Biochem. Syst. Ecol. 2014, 52, 39–40. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Santana, A.E.G.; Conserva, L.M.; Maia, J.G.S.; Guilhon, G.M.P. Alkaloids and coumarins from Esenbeckia species. Phytochemistry 1996, 41, 647–649. [Google Scholar] [CrossRef]
- Richardson, J.S.M.; Aminudin, N.; Malek, A.; Nurestri, S. A Compound from Ruta angustifolia L. Pers exhibits cell cycle arrest at s phase, suppresses nuclear factor-kappa B (NF-kappa B) pathway, signal transducer and activation of transcription 3 (STAT3) phosphorylation and extrinsic apoptotic pathway in non-small cell lung cancer carcinoma (A549). Pharmacogn. Mag. 2017, 13, S489–S498. [Google Scholar]
- Fakai, M.I.; Malek, S.N.A.; Karsani, S.A. Induction of apoptosis by chalepin through phosphatidylserine externalisations and DNA fragmentation in breast cancer cells (MCF7). Life Sci. 2019, 220, 186–193. [Google Scholar] [CrossRef]
- Ulubelen, A.; Ertugrul, L.; Birman, H.; Yigit, R.; Erseven, G.; Olgac, V. Antifertility effects of some coumarins isolated from Ruta chalepensis and R. chalepensis var. latifolia in rodents. Phytother. Res. 1994, 8, 233–236. [Google Scholar] [CrossRef]
- Elbeih, F.K.; Eltawil, B.A.H.; Baghlaf, A.O. Constituents of local plants.12. Coumarin and chalepensin, a further constituent of Ruta chalepensis L. J. Chin. Chem. Soc. 1981, 28, 237–238. [Google Scholar] [CrossRef]
- Al-Majmaie, S.; Nahar, L.; Sharples, G.P.; Wadi, K.; Sarker, S.D. Isolation and antimicrobial activity of rutin and its derivatives from Ruta chalepensis (Rutaceae) growing in Iraq. Rec. Nat. Prod. 2019, 13, 64–70. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Paszkiewicz, M.; Malinski, E.; Mumirska, J.; Siedlecka, E.M.; Lojkowska, E.; Stepnowski, P. Application of chitin and chitosan as elicitors of coumarins and furoquinoline alkaloids in Ruta graveolens l. (Common rue). Biotechnol. Appl. Biochem. 2008, 51, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.S.; Shi, L.S.; Wang, J.J.; Iou, S.C.; Chang, H.C.; Chen, Y.P.; Kuo, Y.H.; Chang, Y.L.; Teng, C.M. Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. J. Chin. Chem. Soc. 2003, 50, 171–178. [Google Scholar] [CrossRef]
- Ulubelen, A.; Doganca, S. Constituents of the aerial parts of Ruta montana. Fitoterapia 1991, 62, 279. [Google Scholar]
- Anaya, A.L.; Macias-Rubalcava, M.; Cruz-Ortega, R.; Garcia-Santana, C.; Sanchez-Monterrubio, P.N.; Hernandez-Bautista, B.E.; Mata, R. Allelochemicals from Stauranthus perforatus, a Rutaceous tree of the Yucatan Peninsula, Mexico. Phytochemistry 2004, 66, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.-Y.; Tian, X.-Y.; Fang, W.-S. Bioactive coumarins from Boenninghausenia sessilicarpa. J. Asian Nat. Prod. Res. 2007, 9, 59–65. [Google Scholar] [CrossRef]
- Wei, L.; Xiang, X.-G.; Wang, Y.-Z.; Li, Z.-Y. Phylogenetic relationships and evolution of the Androecia in Ruteae (Rutaceae). PLoS ONE 2015, 10, e0137190. [Google Scholar] [CrossRef]
- Heinke, R.; Franke, K.; Porzel, A.; Wessjohann, L.A.; Ali, N.A.A.; Schmidt, J. Furanocoumarins from Dorstenia foetida. Phytochemistry 2011, 72, 929–934. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Progress in the chemistry of naturally occurring coumarins. Prog. Chem. Org. Nat. Prod. 2017, 106, 241–304. [Google Scholar] [PubMed]
- Nahar, L.; Sarker, S.D. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, 2nd ed.; Wiley and Sons: Chichester, UK, 2019. [Google Scholar]
- Sharma, R.B.; Raj, K.; Kapil, R.S. Biosynthesis of chalepin in Ruta graveolens. Indian J. Chem. Sect. B—Org. Chem. Incl. Med. Chem. 1998, 37, 247–251. [Google Scholar]
- Grundon, M.F. Biosynthesis of aromatic hemiterpenes. Tetrahedron 1978, 34, 143–161. [Google Scholar] [CrossRef]
- Gali, L.; Bedjou, F.; Velikov, K.P.; Ferrari, G.; Donsi, F. High-pressure homogenization-assisted extraction of bioactive compounds from Ruta chalepensis. J. Food Meas. Charact. 2020, 14, 2800–2809. [Google Scholar] [CrossRef]
- Günaydin, K.; Savci, S. Phytochemical studies on Ruta chalepensis (LAM) Lamarck. Nat. Prod. Res. 2005, 19, 203–210. [Google Scholar] [CrossRef]
- Kong, Y.C.; Lau, C.P.; Wat, K.H.; Ng, K.H.; But, P.P.; Cheng, K.F.; Waterman, P.G. Antifertility principles of Ruta graveolens. Planta Med. 1989, 55, 176–178. [Google Scholar] [CrossRef]
- Orabi, K.Y.; El Sayed, K.A. Biocatalytic studies of the furanocoumarins angelicin and chalepensin. Nat. Prod. Commun. 2007, 2, 565–569. [Google Scholar] [CrossRef]
- Gomez-Flores, R.; Gloria-Garza, M.A.; de la Garza-Ramos, M.A.; Quintanilla-Licea, R.; Tamez-Guerra, P. Antimicrobial effect of chalepensin against Streptococcus mutans. J. Med. Plants Res. 2016, 10, 631–634. [Google Scholar]
- Al-Majmaie, S.; Nahar, L.; Rahman, M.M.; Nath, S.; Saha, P.; Talukdar, A.D.; Sharples, G.P.; Sarker, S.D. Anti-MRSA constituents from Ruta chalepensis, and in silico studies on two of most active compounds, chalepensin and 6-hydroxy-rutin 3′,7-dimethyl ether. Molecules 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Licea, R.; Mata-Cardenas, B.D.; Vargas-Villarreal, J.; Bazaldua-Rodriguez, A.F.; Verde-Star, M.J. Antiprotozoal activity against Entamoeba histolytica of furocoumarins isolated from Ruta chalepensis. Planta Med. 2016, 82, 424. [Google Scholar] [CrossRef]
- Kundu, S.; Roy, D. Computational study of glyceraldehyde-3-phosphate dehydrogenase of Entamoeba histolytica: Implications for structure-based drug design. J. Biomol. Struct. Dyn. 2007, 25, 25–33. [Google Scholar] [CrossRef] [PubMed]
- de Marchi, A.A.; Castilho, M.S.; Nascimento, P.G.B.; Archanjo, F.C.; Del Ponte, G.; Oliva, G.; Pupo, M.T. New 3-piperonylcoumarins as inhibitors of glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from Trypanosoma cruzi. Bioorg. Med. Chem. 2004, 12, 4823–4833. [Google Scholar] [CrossRef]
- Menzes, I.R.A.; Lopes, J.C.D.; Montanari, C.A.; Oliva, G.; Pavao, F.; Castilho, M.S.; Vieira, P.A.; Pupo, M.T. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi. J. Comput. Aided Mol. Des. 2003, 17, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Pavao, F.; Castilho, M.S.; Pupo, M.T.; Dias, R.L.A.; Correa, A.G.; Fernandes, J.B.; da Silva, M.F.G.F.; Mafezoli, J.; Vieira, P.C.; Oliva, G. Structure of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase complexed with chalepin, a natural inhibitor, at 1.95 angstrom resolution. FEBS Lett. 2002, 520, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Vieira, P.C.; Mafezoli, J.; Pupo, M.T.; Fernandez, J.B.; da Silva, M.F.G.F.; de Albuquerque, S.; Oliva, G.; Pavao, F. Strategies for the isolation and identification of trypanocidal compounds from the Rutales. Pure Appl. Chem. 2000, 73, 617–622. [Google Scholar] [CrossRef]
- Wahyuni, T.S.; Widyawaruyanti, A.; Lusida, M.; Fuad, A.; Soetjipto, A.; Fuchino, H.; Kawahara, N.; Hayashi, Y.; Aoki, C.; Hotta, H. Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia 2014, 99, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Wahyuni, T.S.; Permanasari, A.A.; Widyawaruyanti, A.; Hafid, A.F.; Fuchino, H.; Kawahara, N.; Hotta, H. Enhancement of anti-hepatitis C virus activity by the combination of chalepin from Ruta angustifolia and current antiviral drugs. Southeast. Asian J. Trop. Med. Public Health 2020, 51, 18–25. [Google Scholar]
- Lin, Y.S.; Wang, Q.; Gu, Q.; Zhang, H.A.; Jiang, C.; Hu, J.Y.; Wang, Y.; Yan, Y.; Xu, J. Semisynthesis of (-)-rutamarin derivatives and their inhibitory activity against Esptein-Barr virus lytic replication. J. Nat. Prod. 2017, 80, 53–60. [Google Scholar] [CrossRef]
- Fakai, M.I.; Karsani, S.A.; Malek, S.N.A. Chalepin and rutamarin isolated from Ruta angustifolia inhibit cell growth in selected cancer cell lines (MCF7, MDA-MB-231, HT29, and HCT116). J. Inf. Syst. Technol. Manag. 2017, 2, 8–17. [Google Scholar]
- Rizvi, S.H.; Shoeb, A.; Kapil, R.S.; Popli, S.P. Medicinal plants 7. Spasmolytic coumarins from Boenninghausenia Albiflora. Indian J. Pharm. Sci. 1979, 41, 205–206. [Google Scholar]
- Lo, W.S.; Lim, Y.P.; Chen, C.C.; Hsu, C.C.; Soucek, P.; Yun, C.H.; Xie, W.; Ueng, Y.F. A dual function of the furanocoumarin chalepensin in inhibiting CYP2a and inducing CYP2b in mice: The protein stabilization and receptor-mediated activation. Arch. Toxicol. 2012, 86, 1927–1938. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.-S.; Chang, Y.-P.; Chen, C.-C.; Chung, Y.-T.; Liu, T.-Y.; Murayama, N.; Yamazaki, H.; Soucek, P.; Chai, G.Y.; Chi, C.W. Metabolism-enhanced inhibition of human and mouse cytochrome P4502A enzymes by chalepensin in vitro and in vivo. Drug Metab. Rev. 2011, 43, 44–45. [Google Scholar]
- Ueng, Y.-F.; Chen, C.-C.; Chung, Y.-T.; Liu, T.-Y.; Chang, Y.-P.; Lo, W.-S.; Murayama, N.; Yamazaki, H.; Soucek, P.; Chau, G.-Y. Mechanism-based inhibition of cytochrome P450 (CYP)2A6 by chalepensin in recombinant systems, in human liver microsomes and in mice in vivo. Br. J. Pharmacol. 2011, 163, 1250–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueng, Y.-F.; Chen, C.-C.; Chung, Y.-T.; Liu, T.-Y.; Chang, Y.-P.; Lo, W.-S. Corrigendum. Br. J. Pharmacol. 2012, 165, 2808. [Google Scholar]
- Ueng, Y.-F.; Chen, C.-C.; Yamazaki, H.; Kiyotani, K.; Chang, Y.P.; Lo, W.S.; Li, D.T.; Tsai, P.L. Mechanism-based inhibition of CYP1A1 and CYP3A4 by the furanocoumarin chalepensin. Drug Metab. Pharmacokinet. 2013, 28, 229–238. [Google Scholar] [CrossRef]
- Ueng, Y.-F.; Chen, C.-C.; Huang, Y.-L.; Lee, I.-J.; Yun, C.-H.; Chen, Y.-H.; Huang, C.-C. Effects of aqueous extracts of Ruta graveolens and its ingredients in cytochrome P450, uridine diphosphate (UDP)-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)-quinone oxidoreductase in mice. J. Food Drug Anal. 2015, 23, 516–528. [Google Scholar] [CrossRef] [Green Version]
- Uwaifo, A.O. Analysis of structure activity relationship in the mutagenicity of aflatoxin B-1 and 4 other furocoumarins in Chinese hamster V-9 cells. Life Sci. Adv. 1984, 3, 62–70. [Google Scholar]
- Emerole, G.; Thabrew, M.I.; Anosa, V.; Okorie, D.A. Structure-activity-relationship in the toxicity of some naturally occurring coumarins-chalepin, imperatorin and oxypeucedanine. Toxicology 1981, 20, 71–80. [Google Scholar] [CrossRef]
- El Sayed, K.; Al-Said, M.S.; El-Feraly, F.S.; Ross, S.A. New quinoline alkaloids from Ruta chalepensis. J. Nat. Prod. 2000, 63, 995–997. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Hepatitis C. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 30 January 2021).
- Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon 2020, 6, e03217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, S.D.; Nahar, L.; Miron, A.; Guo, M. Medicinal Natural Products—A Disease-focused Approach; Sarker, S.D., Nahar, L., Eds.; Elsevier: London, UK, 2020; Volume 55, pp. 45–75. [Google Scholar]
- Vicahi, V.; Kanyawim, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
Plant Names | Family | Chalepin (1) | Chalepensin (2) | References |
---|---|---|---|---|
Boenminghausenia albiflora var. japonica (Hook.) Rchb. Ex Meisn. | Rutaceae | − | + | [6] |
Boenminghausenia sessilicarpa H. Lev. | Rutaceae | − | + | [20] |
Clausena anisata (Willd.) Hook. F. ex Benth. | Rutaceae | + | − | [4,7] |
Clausena emarginata C. C. Huang | Rutaceae | + | − | [4,7] |
Clausena indica (Dalz.) Oliver | Rutaceae | + | + | [1] |
Clausena lansium (Lour.) Skeels | Rutaceae | + | + | [8] |
Esenbeckia alata (Karst & Triana) Tr. & Pl. | Rutaceae | − | + | [9] |
Esenbeckia grandiflora Mart. | Rutaceae | + | − | [10] |
Ruta angustifolia L. Pers | Rutaceae | + | − | [3,11,12] |
Ruta chalepensis L. | Rutaceae | + | + | [5,13,14,15] |
Ruta graveolens L. | Rutaceae | + | + | [16,17] |
Ruta montana L. | Rutaceae | − | + | [18] |
Stauranthus perforatus Liebm. | Rutaceae | + | + | [19] |
Bioactivity | Chalepin (1) | Chalepensin (2) | References |
---|---|---|---|
Antidiabetic | + | NR | [8] |
Antifertility | + | + | [13,29] |
Antimicrobial | + | + | [4,30,31,32] |
Antiplatelet aggregation | NR | + | [17] |
Antiprotozoal | + | + | [5,33,34,35,36,37,38] |
Antiviral | + | NR | [39,40,41] |
Calcium antagonist | NR | + | [6] |
Cytotoxicity (potential anticancer and antitumor) | + | + | [3,7,11,12,42] |
Spasmolytic | + | NR | [43] |
Effect on drug metabolizing enzymes | NR | + | [44,45,46,47,48,49] |
Mutagenicity and other toxicities | + | NR | [50,51] |
Criteria | Chalepin (1) | Chalepensin (2) |
---|---|---|
Molar mass | 314 | 254 |
Hydrogen bond donor | 1 | 0 |
Hydrogen bond acceptors | 4 | 3 |
Log P | 3.72 | 4.32 |
Molar refractivity | 86.6 cm3 | 72.5 cm3 |
Lipinski rule of 5 violation | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahar, L.; Al-Majmaie, S.; Al-Groshi, A.; Rasul, A.; Sarker, S.D. Chalepin and Chalepensin: Occurrence, Biosynthesis and Therapeutic Potential. Molecules 2021, 26, 1609. https://doi.org/10.3390/molecules26061609
Nahar L, Al-Majmaie S, Al-Groshi A, Rasul A, Sarker SD. Chalepin and Chalepensin: Occurrence, Biosynthesis and Therapeutic Potential. Molecules. 2021; 26(6):1609. https://doi.org/10.3390/molecules26061609
Chicago/Turabian StyleNahar, Lutfun, Shaymaa Al-Majmaie, Afaf Al-Groshi, Azhar Rasul, and Satyajit D. Sarker. 2021. "Chalepin and Chalepensin: Occurrence, Biosynthesis and Therapeutic Potential" Molecules 26, no. 6: 1609. https://doi.org/10.3390/molecules26061609
APA StyleNahar, L., Al-Majmaie, S., Al-Groshi, A., Rasul, A., & Sarker, S. D. (2021). Chalepin and Chalepensin: Occurrence, Biosynthesis and Therapeutic Potential. Molecules, 26(6), 1609. https://doi.org/10.3390/molecules26061609