Synthesis and Biological Activity Evaluation of Coumarin-3-Carboxamide Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity
2.3. Anticancer Activity
2.4. Molecular Docking
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of 2,4-Dihydroxy-5-(3-methylbut-2-en-1-yl)-benzaldehyde 7
3.1.2. Synthesis of 7-Hydroxy-2,2-dimethyl-2H-chromene-6-carbaldehyde 8
3.1.3. Synthesis of 8,8-Dimethyl-2-oxo-2H,8H-pyrano[3,2-g]chromene-3-carboxylic acid 10
3.1.4. Synthesis of 8,8-Dimethyl-2-oxo-N-phenyl-2H,8H-pyrano[3,2-g]chromene-3-carboxamide 12
3.1.5. Synthesis of 3-Carboxy-6-(3-methyl-2-butenyl)-7-hydroxy-coumarin 13
3.1.6. General Procedure of Coumarin-3-carboxamides Preparation (14a–g)
3.1.7. Synthesis of 8,8-Dimethyl-2-oxo-N-phenyl-2H,8H-pyrano[3,2-g]chromene-3-carboxamide 12
3.1.8. Synthesis of 6-(3-Methyl-2-buteny1)-7-hydroxycoumarin 15
3.2. Determination of Antibacterial Activity
3.3. Cell Viability Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, R.D.H. Coumarins. Nat. Prod. Rep. 1995, 12, 477–505. [Google Scholar] [CrossRef]
- Xu, J.; Kjer, J.; Sendker, J.; Wray, V.; Guan, H.; Edrada, R.; Muller, W.E.; Bayer, M.; Lin, W.; Wu, J.; et al. Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophoramucronata. Bioorg. Med. Chem. 2009, 17, 7362–7367. [Google Scholar] [CrossRef]
- Do Nascimento, J.S.; Conceição, J.C.S.; de Oliveira Silva, E. Biotransformation of Coumarins by Filamentous Fungi: An Alternative Way for Achievement of Bioactive Analogs. Mini. Rev. Org. Chem. 2019, 16, 568–577. [Google Scholar] [CrossRef]
- Penta, S. Introduction to Coumarin and SAR. In Advances in Structure and Activity Relationship of Coumarin Derivatives; Academic Press: Cambridge, MA, USA, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Shehzad, A.; Parveen, S.; Qureshi, M.; Subhan, F.; Lee, Y.S. Decursin and decursinol angelate: Molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm. Res. 2018, 67, 209–218. [Google Scholar] [CrossRef]
- Chun-Ching, C.; Ming-Jen, C.; Peng, C.F.; Huang, H.Y.; Chen, I.S. A Novel Dimeric Coumarin Analog and Antimycobacterial Constituents from Fatoua pilosa. Chem. Biodivers. 2010, 7, 1728–1736. [Google Scholar] [CrossRef] [PubMed]
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds. Molecules 2018, 23, 250. [Google Scholar] [CrossRef] [Green Version]
- Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The Antimicrobial agents. Sys. Rev. Pharm. 2017, 8, 62–70. [Google Scholar] [CrossRef]
- Montagner, C.; de Souza, S.M.; Groposoa, C.; Delle Monache, F.; Smania, E.F.; Smania, A., Jr. Antifungal activity of coumarins. Z. Naturforsch. C J. Biosci. 2008, 63, 21–28. [Google Scholar] [CrossRef]
- Kadhum, A.A.; Al-Amiery, A.A.; Musa, A.Y.; Mohamad, A.B. The antioxidant activity of new coumarin derivatives. Int. J. Mol. Sci. 2011, 12, 5747–5761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsch, G.; Abdelwahab, A.B.; Chaimbault, P. Natural and Synthetic Coumarins with Effects on Inflammation. Molecules 2016, 21, 1322. [Google Scholar] [CrossRef] [PubMed]
- Song, X.F.; Fan, J.; Liu, L.; Liu, X.F.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm. (Weinheim) 2020, 353, e2000025. [Google Scholar] [CrossRef]
- Golfakhrabadi, F.; Abdollahi, M.; Ardakani, M.R.; Saeidnia, S.; Akbarzadeh, T.; Ahmadabadi, A.N.; Ebrahimi, A.; Yousefbeyk, F.; Hassanzadeh, A.; Khanavi, M. Anticoagulant activity of isolated coumarins (suberosin and suberenol) and toxicity evaluation of Ferulago carduchorum in rats. Pharm. Biol. 2014, 52, 1335–1340. [Google Scholar] [CrossRef]
- Neyts, J.; Cleucq, E.; Singha, R.; Chang, Y.H.; Das, A.R.; Chakraborty, S.K.; Hong, S.C.; Tsay, S.C.; Hsu, M.H.; Hwu, J.R. Structure-Activity Relationship of New Anti-Hepatitis C Virus Agents: Heterobicycle-Coumarin Conjugates. J. Med. Chem. 2009, 52, 1486–1490. [Google Scholar] [CrossRef]
- Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Carradori, S.; Granese, A.; Rivanera, D.; Lilli, D.; Scaltrito, M.M.; et al. Synthesis and in vitro selective anti-Helicobacter pylori activity of N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Eur. J. Med. Chem. 2006, 41, 208–212. [Google Scholar] [CrossRef]
- Reddy, N.S.; Gumireddy, K.; Mallireddigari, M.R.; Cosenza, S.C.; Venkatapuram, P.; Bell, S.C.; Reddy, E.P.; Reddy, M.V. Novel coumarin-3-(N-aryl)carboxamides arrest breast cancer cell growth by inhibiting ErbB-2 and ERK1. Bioorg. Med. Chem. 2005, 13, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.H.; Zhi, J.S.; Hong, L.Z.; Li, S.; Xiao, Y.Z. Study on the Anticancer Activity of Coumarin Derivatives by Molecular Modeling. Chem. Biol. Drug Des. 2011, 78, 651–658. [Google Scholar] [CrossRef]
- Faulques, M.; Rene, L.; Royer, R.; Averbeck, D.; Moradi, M. Synthesis and photo induced biological properties of demethyl derivatives of natural pyranocoumarins xanthyletin or seselin. Eur. J. Med. Chem. 1983, 18, 9–14. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, Y.; Paudel, S.; Yoon, G.; Cheon, S.H. Concise synthesis of licochalcone C and its regioisomer, licochalcone H. Arch. Pharm. Res. 2013, 36, 1432–1436. [Google Scholar] [CrossRef]
- Steck, W. New Syntheses of Demethylsuberosin, Xanthyletin, ( ± )-Decursinol, (+)-Marmesin, ( - )-Nodakenetin, ( L- )-Decursin, and ( + )-Prantschimginl. Can. J. Chem. 1971, 49, 2297–2301. [Google Scholar] [CrossRef]
- Trembley, J.H.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Protein kinase CK2 in health and disease: CK2: A key player in cancer biology. Cell Mol. Life Sci. 2009, 66, 1858–1867. [Google Scholar] [CrossRef] [Green Version]
- Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.; Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; et al. Coumarin as Attractive Casein Kinase 2 (CK2) Inhibitor Scaffold: An Integrate Approach To Elucidate the Putative Binding Motif and Explain Structure–Activity Relationships. J. Med. Chem. 2008, 51, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-C.; Chen, Y.-F.; Lin, S.-R.; Yang, J.-M. iGEMDOCK: A graphical environment of enh ancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform. 2011, 12, S33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trumble, J.T.; Millar, J.G. Biological Activity of Marmesin and Demethylsuberosin against a Generalist Herbivore, Spodoptera exigua (Lepidoptera: Noctuidae). J. Agric. Food Chem. 1996, 44, 2859–2864. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Ngameni, B.; Kuete, V.; Simo, I.K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F.X.; Ngadjui, B.T.; Abegaz, B.M.; et al. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol. 2008, 116, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Tim, M. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. lmmunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Compounds | R | MIC (µg/mL) | ||||
---|---|---|---|---|---|---|
Gram-Positive | Gram-Negative | |||||
B. cereus | B. subtilis | S. aureus | E. coli | S. typhimurium | ||
10 | - | 128 | 128 | 64 | >128 | > 128 |
12 | 4-H | > 128 | > 128 | > 128 | >128 | > 128 |
13 | - | 32 | 128 | 64 | >128 | > 128 |
14a | 4-H | > 128 | > 128 | > 128 | >128 | > 128 |
14b | 4-F | > 128 | > 128 | > 128 | >128 | > 128 |
14c | 4-Cl | > 128 | > 128 | > 128 | >128 | > 128 |
14d | 4-Br | > 128 | > 128 | > 128 | >128 | > 128 |
14e | 2,5-diF | > 128 | > 128 | > 128 | >128 | > 128 |
14f | 4-CH3 | > 128 | > 128 | > 128 | >128 | > 128 |
14g | 4-OCH3 | > 128 | > 128 | > 128 | >128 | > 128 |
15 | - | > 128 | > 128 | > 128 | >128 | > 128 |
penicillin G | - | 16 | 2 | 16 | 32 | 64 |
Compounds | R | IC50 (µM) | ||
---|---|---|---|---|
Cancer Cell Line | Normal Cell Line | |||
HepG2 | HeLa | LLC-MK2 | ||
10 | - | > 100 | 80.38 | > 100 |
12 | 4-H | 2.35 | > 100 | > 100 |
13 | - | 81.73 | 26.42 | 37.95 |
14a | 4-H | 4.33 | 10.40 | 0.48 |
14b | 4-F | 4.85 | 0.75 | >100 |
14c | 4-Cl | 30.28 | 14.04 | 66.80 |
14d | 4-Br | 45.76 | 37.36 | > 100 |
14e | 2,5-diF | 2.62 | 0.39 | 1.33 |
14f | 4-CH3 | > 100 | > 100 | 85.31 |
14g | 4-OCH3 | > 100 | > 100 | > 100 |
15 | - | 9.13 | 13.47 | 6.87 |
Doxorubicin | - | 1.91 | 1.18 | 63.47 |
Acridine orange | - | 5.72 | 6.59 | 82.30 |
Compounds | Total Energy (kcal/mol) | Amino Acid Residue | Hydrogen Bond Length (Å) |
---|---|---|---|
10 | −89.19 | LYS68, ASP175 | 2.44, 2.34 |
12 | −100.88 | ASP175 | 2.91 |
13 | −91.13 | LYS68 | 1.92 |
14a | −108.21 | ASN118, ASN117, ASP175 | 2.19, 2.99,2.51 |
14b | −107.08 | ASN117, LYS68, ASP175 | 2.93, 2.42, 2.74 |
14c | −106.07 | ASN117 | 2.94 |
14d | −105.91 | ASN117 | 2.95 |
14e | −111.19 | ASN118, LYS68 | 2.27, 2.44 |
14f | −105.53 | ASN117 | 2.93 |
14g | −118.99 | ASN117, LYS68, GLU81 | 2.74, 1.90, 2.72 |
15 | −86.27 | LYS68, GLU114, ASP175, | 2.08, 1.99, 2.42 |
G12 | −79.10 | ASP175 | 2.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phutdhawong, W.; Chuenchid, A.; Taechowisan, T.; Sirirak, J.; Phutdhawong, W.S. Synthesis and Biological Activity Evaluation of Coumarin-3-Carboxamide Derivatives. Molecules 2021, 26, 1653. https://doi.org/10.3390/molecules26061653
Phutdhawong W, Chuenchid A, Taechowisan T, Sirirak J, Phutdhawong WS. Synthesis and Biological Activity Evaluation of Coumarin-3-Carboxamide Derivatives. Molecules. 2021; 26(6):1653. https://doi.org/10.3390/molecules26061653
Chicago/Turabian StylePhutdhawong, Weerachai, Apiwat Chuenchid, Thongchai Taechowisan, Jitnapa Sirirak, and Waya S. Phutdhawong. 2021. "Synthesis and Biological Activity Evaluation of Coumarin-3-Carboxamide Derivatives" Molecules 26, no. 6: 1653. https://doi.org/10.3390/molecules26061653
APA StylePhutdhawong, W., Chuenchid, A., Taechowisan, T., Sirirak, J., & Phutdhawong, W. S. (2021). Synthesis and Biological Activity Evaluation of Coumarin-3-Carboxamide Derivatives. Molecules, 26(6), 1653. https://doi.org/10.3390/molecules26061653