The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Preparation
2.2.1. Collagen Solution Preparation
2.2.2. Willow Bark Solution Preparation
2.3. Film-Forming Process
2.4. Infrared Spectroscopy (IR)
2.5. Scanning Electron Microscopy (SEM)
2.6. Energy-Dispersive X-ray Spectroscopy (EDX)
2.7. Atomic Force Microscopy (AFM)
2.8. Contact Angle Measurements
2.9. Mechanical Properties
2.10. Steady Shear Flow Properties
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Morphological Properties
3.3. Atomic Force Microscopy (AFM)
3.4. Contact Angle Measurements
3.5. Mechanical Properties
3.6. Steady Shear Flow Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Miyata, T.; Taira, T.; Noishiki, Y. Collagen engineering for biomaterial use. Clin. Mater. 1992, 9, 139–148. [Google Scholar] [CrossRef]
- Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatr. Res. 2008, 63, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3, 1863–1887. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Sevukarajan, M.; Mohammed, T.; Badivaddin, C.K.; Kumar, A. Collagen based drug delivery systems: A review. J. Innov. Trends Pharm. Sci. 2010, 1, 288–304. [Google Scholar]
- Bhattacharjee, A.; Bansal, M. Collagen Structure: The Madras Triple Helix and the Current Scenario, critical review. IUBMB Life 2005, 57, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Klug, W.; Cummings, M. Concepts of Genetics, 5th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020, 161, 550–560. [Google Scholar] [CrossRef]
- Ramachandran, G.; Ramakrishnan, C. Biochemistry of Collagen, 1st ed.; Plenum Press: New York, NY, USA, 1976; pp. 45–84. [Google Scholar]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, 4978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Rest, M.; Garrone, R. Collagen family of proteins. FASEB J. 1991, 5, 2814–2823. [Google Scholar] [CrossRef] [Green Version]
- Ricard-Blum, S.; Ruggiero, F. The collagen superfamily: From the extracellular matrix to the cell membrane. Pathol. Biol. 2005, 53, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.K.; Hahn, R.A. Collagens. Cell. Tissue Res. 2010, 339, 247–257. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Singh, R.; Ramakrishna, S.; Pabla, B.S.; Puri, S.; Uddin, M.S. Biomanufacturing, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 1–34. [Google Scholar]
- Sigaroodi, F.; Shafaei, H.; Karimipour, M.; Dolatkhah, M.A.; Delazar, A. Aloe Vera/Collagen Mixture Induced Integrin α1β1 and PECAM-1 Genes Expression in Human Adiposed-Derived Stem Cells. Adv. Pharm. Bull. 2019, 9, 662–667. [Google Scholar] [CrossRef]
- Myllyharju, J.; Kivirikko, K.I. Collagens and collagen-related diseases. Ann. Med. 2001, 33, 7–21. [Google Scholar] [CrossRef]
- Aoki, K.; Saito, N. Biodegradable polymers as drug delivery systems for bone regeneration. Pharmaceutics 2020, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Naskar, A.; Kim, K. Recent advances in nanomaterial-based wound healing therapeutics. Pharmaceutics 2020, 12, 499. [Google Scholar] [CrossRef]
- Fratzl, P. Collagen: Structure and Mechanics; Springer: Boston, MA, USA, 2008; pp. 1–13. [Google Scholar]
- Chattopadhyay, S.; Raines, R. Collagen based biomaterials for wound healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extration, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [Green Version]
- Vlachojannis, J.; Cameron, M.; Chrubasik, S. A systematic review on the effectiveness of willow bark for musculoskeletal pain. Phytother. Res. 2009, 23, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Biegert, C.; Wagner, I.; Lüdtke, R.; Kötter, I.; Lohmüller, C.; Günaydin, I.; Taxis, K.; Heide, L. Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: Results of 2 randomized double-blind controlled trials. J. Rheumatol. 2004, 31, 2121–2130. [Google Scholar]
- Nahrstedt, A.; Schmidt, M.; Jäggi, R.; Metz, J.; Khayyal, M. Willow bark extract: The contribution of polyphenols to the overall effect. Wien. Med. Wochenschr. 2007, 157, 348–351. [Google Scholar] [CrossRef]
- Gao, F.; Zang, S. Salicin inhibits AGE-induced degradation of type II collagen and aggrecan in human SW1353 chondrocytes: Therapeutic potential in osteoarthritis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1043–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, B.; Lüdtke, R.; Selbmann, H.; Kötter, B.; Tschirdewahn, W.; Schaffner, L. Efficacy and tolerability of a standardized willow bark extract in patients with osteoarthritis: Randomized placebo-controlled, double blind clinical trial. Phytother. Res. 2000, 59, 314–320. [Google Scholar] [CrossRef]
- Shakibaei, M.; Allaway, D.; Nebrich, S.; Mobasheri, A. Botanical Extracts from Rosehip (Rosa canina), Willow Bark (Salix alba), and Nettle Leaf (Urtica dioica) Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes. Evid. Based Complement. Altern. Med. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Applequist, W. The Identification of Medicinal Plants: A Handbook of the Morphology of Botanicals in Commerce, 1st ed.; Botanical Garden Press: St. Louis, MO, USA, 2007. [Google Scholar]
- Mahdi, J.G. Medicinal potential of willow: A chemical perspective of aspirin discovery. J. Saudi Chem. Soc. 2010, 14, 317–322. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Monographs on Selected Medicinal Plants; WHO: Geneva, Switzerland, 2009; Volume 4. [Google Scholar]
- Shao, Y. Phytochemischer Atlas der Schweizer Weiden. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1991. No. 9532. [Google Scholar]
- Jurgenliemk, G.; Petereit, F.; Nahrstedt, A. Flavan-3-ols and procyanidins from the bark of Salix purpurea L. Die Pharm. 2007, 62, 231–234. [Google Scholar]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. Herbal Medicines: A Guide for Healthcare Professionals, 2nd ed.; Pharmaceutical Press: London, UK, 2002. [Google Scholar]
- Schonrock, U.; Steckel, F.; Kux, U.; Inoue, K. Use of Salicin as an Anti-Irritative Active Compound in Cosmetic and Topical Dermatological Preparations. U.S. Patent 5,876,737A, 22 October 1997. [Google Scholar]
- Gopaul, R.; Knaggs, H.; Lephart, J.; Holley, K.; Gibson, E. Original Contribution: An evaluation of the effect of a topical product containing salicin on the visible signs of human skin aging. J. Cosmet. Dermatol. 2010, 9, 196–291. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, R.; Tian, Y.; Konno, K. Characterisation of acid-soluble collagen from skin of silver carp (Hypophthalmichthys molitrix). Food Chem. 2009, 116, 318–322. [Google Scholar] [CrossRef]
- Sionkowska, A.; Lewandowska, K.; Adamiak, K. The influence of UV light on rheological properties of collagen extracted from Silver Carp skin. Materials 2020, 13, 4453. [Google Scholar] [CrossRef] [PubMed]
- Bajer, D.; Janczak, K.; Bajer, K. Novel starch/chitosan/aloe vera composites as promising biopackaging materials. J. Polym. Environ. 2020, 28, 1021–1039. [Google Scholar] [CrossRef] [Green Version]
- Andonegi, M.; Irastorza, A.; Izeta, A.; Caba, K.; Guerrero, P. Physicochemical and Biological Performance of Aloe Vera-Incorporated Native Collagen Films. Pharmaceutics 2020, 12, 1173. [Google Scholar] [CrossRef]
- Ueno, K. Structure of salicin, C13H18O7. Acta Cryst. 1984, 40, 1726–1728. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Cui, S.W.; Ding, H. Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. Int. J. Biol. Macromol. 2016, 83, 142–151. [Google Scholar] [CrossRef]
- Bertolo, M.R.V.; Martins, V.C.A.; Horn, M.M.; Brenelli, L.B.; Plepis, A.M.G. Rheological and antioxidant properties of chitosan/gelatin-based materials functionalized by pomegranate peel extract. Carbohydr. Polym. 2020, 228, 115386. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.; Li, Y.; Li, G. Effect of concentration and temperature on the rheological behavior of collagen solution. Int. J. Biol. Macromol. 2008, 42, 285–291. [Google Scholar] [CrossRef]
- Yang, H.; Duan, L.; Li, Q.; Tian, Z.; Li, G. Experimental and modeling investigation on the rheological behavior of collagen solution as a function of acetic acid concentration. J. Mech. Behav. Biomed. Mater. 2018, 77, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Sionkowska, A. Current Research on the Blends of Natural and Synthetic Polymers as New Biomaterials: Review. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Lewandowska, K.; Sionkowska, A.; Grabska, S. Chitosan Blends Containing Hyaluronic Acid and Collagen. Compatibility Behaviour. J. Mol. Liq. 2015, 212, 879–888. [Google Scholar] [CrossRef]
- Sionkowska, A.; Skrzyński, S.; Śmiechowski, K.; Kołodziejczak, A. The review of versatile application of collagen. Polym. Adv. Technol. 2017, 28, 4–9. [Google Scholar] [CrossRef]
IR Band | Stretching | Band Position for Collagen (cm−1) | Band Position for Collagen/Salicin (cm−1) |
---|---|---|---|
amide A | N-H, OH | 3291 | 3297 |
amide I | C=O | 1631 | 1631 |
amide II | N-H | 1541 | 1540 |
amide III | C-N | 1233 | 1234 |
glucoside | C-O-C | - | 1027 |
Material | Fmax (MPa) | Emod (GPa) |
---|---|---|
Collagen | 41.7 | 0.627 |
Collagen/Salicin | 60.7 | 1.42 |
T (°C) | Ostwald de Waele Model | Cross Model | |||||||
---|---|---|---|---|---|---|---|---|---|
n | k (Pasn) | R2 | η0 (Pas) | η∞ (Pas) | λ (s) | m | R2 | ||
22 | 0.55 | 0.72 | 0.999 | Collagen | 0.369 | 0.00524 | 0.167 | 0.64 | 1.00 |
26 | 0.57 | 0.59 | 0.999 | 0.174 | 0.0321 | 0.00729 | 1.20 | 0.996 | |
22 | 0.58 | 0.74 | 0.999 | Coll/SL | 0.613 | 0.00572 | 0.443 | 0.49 | 0.999 |
26 | 0.61 | 0.62 | 0.999 | 0.496 | 9.54 × 10−4 | 0.390 | 0.50 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiak, K.; Lewandowska, K.; Sionkowska, A. The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen. Molecules 2021, 26, 1661. https://doi.org/10.3390/molecules26061661
Adamiak K, Lewandowska K, Sionkowska A. The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen. Molecules. 2021; 26(6):1661. https://doi.org/10.3390/molecules26061661
Chicago/Turabian StyleAdamiak, Katarzyna, Katarzyna Lewandowska, and Alina Sionkowska. 2021. "The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen" Molecules 26, no. 6: 1661. https://doi.org/10.3390/molecules26061661
APA StyleAdamiak, K., Lewandowska, K., & Sionkowska, A. (2021). The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen. Molecules, 26(6), 1661. https://doi.org/10.3390/molecules26061661