Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Location, Duration and Plant Materials
2.2. Treatments, Design and Experimentation
2.3. Data Recording
2.3.1. Water Potential Determination
2.3.2. Biochemical Parameter Assay
Soluble Proteins, Amino Acids, Sugars, and Proline
Total Soluble Protein (TSP)
- Reagents: For the preparation of phosphate buffer (0.2 M) solution, the following chemicals were used; a one-molar solution of NaH2PO4·2H2O (156.01 g L−1) was prepared as the stock and a one-molar solution of Di-sodium hydrogen phosphate (Na2HPO4·2H2O, 177.99 g L−1) was prepared as the stock.
- Copper Reagents: Solution A: Na2CO3 2.0 g, NaOH 0.2 g and Sodium potassium tartrate 1.0 g. All three chemicals were dissolved in distilled water and the volume was made to 100 mL. Solution B: CuSO4·5H2O solution: 0.5 g CuSO4·5H2O was dissolved in 100 mL distilled water. Solution C: Fifty mL of solution A and 1.0 mL of solution B were mixed to prepare the alkaline solution. This solution was always prepared fresh.
- Folin phenol reagent: One hundred g of sodium tungstate and 25 g of sodium molybdate were dissolved in 700 mL of distilled water. Fifty mL of 85% orthophosphoric acid and 100 mL of HCl were added and the mixture was refluxed for 10 h. Then 150 g of lithium sulfate was added along with 50 mL of distilled water. A few drops of Br2 were also added.
Total Free Amino Acids (TFA)
Total Soluble Sugars (TSS)
Proline Determination
Osmoprotectants and Total Phenolic
Assay of Antioxidant Enzyme Extraction
Catalase (CAT)
Peroxidase (POX)
Ascorbate Peroxidase
SPAD Value
Yield and Yield-Related Components
2.4. Statistical Analysis
3. Results
3.1. Physiological Attributes
3.2. Biochemical Attributes
3.2.1. Assay of Antioxidants
3.2.2. Osmoprotectants Characters
3.3. Yield Attributes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
APX | Ascorbate peroxidase |
CAT | Catalase |
Chl | Chlorophyll |
GB | Glycine betaine |
OP | Osmotic potential |
POD | Peroxidase |
Se | Selenium |
SOD | Superoxide dismutase |
SS | Soluble sugar |
TFAA | Total free amino acids |
TP | Turgor pressure |
TPC | Total phenolic contents |
TPr | Total proteins |
TSS | Total soluble sugars |
WP | water potential |
References
- Ahmad, Z.; Waraich, E.A.; Barutçular, C.; Hossain, A.; Erman, M.; ÇIĞ, F.; Gharib, H.; EL Sabagh, A. Enhancing drought tolerance in wheat through improving morpho-physiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton Int. J. Exp. Bot. 2020, 89, 529–539. [Google Scholar]
- Wang, L.; D’Odorico, P.; Evans, J.P.; Eldridge, D.J.; McCabe, M.F.; Caylor, K.K.; King, E.G. Dryland ecohydrology and climate change: Critical issues and technical advances. Hydrol. Earth Syst. Sci. 2012, 16, 2585–2603. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Kong, D.; Chen, X. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Glob. Planet Chang. 2015, 131, 63–72. [Google Scholar] [CrossRef]
- Miao, Y.; Zhu, Z.; Guo, Q.; Ma, H.; Zhu, L. Alternate wetting and drying irrigation-mediated changes in the growth, photosynthesis and yield of the medicinal plant Tulipa edulis. Ind. Crops Prod. 2015, 66, 81–88. [Google Scholar] [CrossRef]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 2017, 44, 7799–7807. [Google Scholar] [CrossRef]
- Filgueiras, L.; Silva, R.; Almeida, I.; Vidal, M.; Baldani, J.I.; Meneses, C.H.S.G. Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa. Plant Soil 2020, 451, 57–73. [Google Scholar] [CrossRef]
- Mohtashami, R.; Movahhedi, M.D.; Balouchi, H.; Faraji, H. Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agric. Water Manag. 2020, 232, 106046. [Google Scholar] [CrossRef]
- Boldrin, P.F.; Faquin, V.; Ramos, S.J.; Boldrin, K.V.F.; Ávila, F.W.; Guilherme, L.R.G. Soil and foliar application of selenium in rice biofortification. J. Food Compos. Anal. 2013, 31, 238–244. [Google Scholar] [CrossRef]
- Kápolna, E.; Hillestrøm, P.R.; Laursen, K.H.; Husted, S.; Larsen, E.H. Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem. 2009, 115, 1357–1363. [Google Scholar] [CrossRef]
- Kápolna, E.; Laursen, K.H.; Husted, S.; Larsen, E.H. Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. Food Chem. 2012, 133, 650–657. [Google Scholar] [CrossRef]
- Põldma, P.; Tõnutare, T.; Viitak, A.; Luik, A.; Moor, U. Effect of selenium treatment on mineral nutrition, bulbsize, and antioxidant properties of garlic (Allium sativum L.). Agric. Food Chem. 2011, 59, 5498–5503. [Google Scholar] [CrossRef] [PubMed]
- Šindelářová, K.; Száková, J.; Tremlová, J.; Mestek, O.; Praus, L.; Kaňa, A.; Najmanová, J.T.P. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: Uptake, translocation, and speciation. Food Addit. Contam. Part A 2015, 32, 2027–2038. [Google Scholar] [CrossRef]
- Mozafariyan, M.; Pessarakli, M.; Saghafi, K. Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. J. Plant Nutr. 2017, 40, 139–144. [Google Scholar] [CrossRef]
- Helaly, M.N.; El-Hoseiny, H.; El-Sheery, N.I.; Rastogi, A.; Kalaji, H.M. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol. Biochem. 2017, 118, 31–44. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol. Trace Elem. Res. 2011, 143, 1704–1721. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol. Trace Elem. Res. 2012, 149, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Lyons, G.H.; Genc, Y.; Soole, K.; Stangoulis, J.C.R.; Liu, F.; Graham, R.D. Selenium increases seed production in Brassica. Plant Soil 2009, 318, 73–80. [Google Scholar] [CrossRef]
- Száková, J.; Praus, L.; Tremlová, J.; Kulhánek, M.; Tlustoš, P. Efficiency of foliar selenium application on oilseed rape (Brassica napus L.) as influenced by rainfall and soil characteristics. Arch. Agron. Soil Sci. 2017, 63, 1240–1254. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010, 48, 999–1007. [Google Scholar] [CrossRef]
- Ellis, D.R.; Salt, D.E. Plants, selenium and human health. Curr. Opin. Plant Biol. 2003, 6, 273–279. [Google Scholar] [CrossRef]
- Klognerová, K.; Vosmanská, M.; Száková, J.; Mestek, O. Effect of growing conditions on selenium speciation in rapeseed (Brassica napus) tissue. Chem. List 2015, 109, 216–222. [Google Scholar]
- Seppänen, M.M.; Kontturi, J.; Heras, I.L.; Madrid, Y.; Cámara, C.; Hartikainen, H. Agronomic biofortification of Brassica with selenium-enrichment of SeMet and its identification in Brassica seeds and meal. Plant Soil 2010, 337, 273–283. [Google Scholar] [CrossRef]
- Feng, J.; Shi, Q.; Wang, X.; Wei, M.; Yang, F.; Xu, H. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci. Hortic. 2010, 123, 521–530. [Google Scholar] [CrossRef]
- Kaur, N.; Sharma, S.; Kaur, S.; Nayyar, H. Selenium in agriculture: A nutrient or contaminant for crops? Arch. Agron. Soil Sci. 2014, 60, 1593–1624. [Google Scholar] [CrossRef]
- Drahoňovský, J.; Száková, J.; Mestek, O.; Tremlová, J.; Kaňa, A.; Najmanová, J.; Tlustoš, P. Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ. Exp. Bot. 2016, 125, 12–19. [Google Scholar] [CrossRef]
- Filek, M.; Zembala, M.; Kornaś, A.; Walas, S.; Mrowiec, H.; Hartikainen, H. The uptake and translocation of macro- and microelements in rape and wheat seedlings as affected by selenium supply level. Plant Soil 2010, 336, 303–312. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Taha, H.S.T.; Alshaal, A.; El-Henawy, S.E.D.A.; Faizy, M.S.; Shams, S.M.; Youssef, T.; Shalaby, Y.; Bayoumi, N.; et al. Selenium and NanoSelenium in Plant Nutrition. Environ. Chem. Lett. 2016, 14, 123–147. [Google Scholar] [CrossRef]
- FAO. Food Outlook; Global Information and Early Warning System; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar] [CrossRef]
- Habibi, G. Contrastive response of Brassica napus L. to exogenous salicylic acid, selenium and silicon supplementation under water stress. Arch. Biol. Sci. 2015, 67, 397–404. [Google Scholar] [CrossRef]
- Kerr, C.; Walker, E.; Booth, J. Agricultural aspects of rape and other Brassica products. Eur. J. Lipid Sci. Technol. 2001, 103, 441–446. [Google Scholar] [CrossRef]
- Jahangir, M.; Abdel-Farid, I.B.; Simoh, S.; Kim, H.K.; Verpoorte, R.C.Y. Investigation of Brassica biochemical status by NMR-based metabolomics. Acta Hortic. 2012, 936, 163–172. [Google Scholar] [CrossRef]
- Murphy, E.J. Camelina (Camelina sativa). In Industrial Oil Crops; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 207–230. [Google Scholar]
- Ahmad, Z.; Waraich, E.A.; Ahmad, R.; Shahbaz, M. Modulation in water relations, chlorophyll contents and antioxidants activity of maize by foliar phosphorus application under drought stress. Pak. J. Bot. 2017, 49, 11–19. [Google Scholar]
- Latef, A.A.A.; Tran, L.-S.P. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front. Plant Sci. 2016, 7, 243. [Google Scholar] [CrossRef] [Green Version]
- Mohd, R.S.; Fisal, A.; Azwan, A.; Chye, F.Y.; Matanjun, P. Crude proteins, total soluble proteins, total phenolic contents and SDS-PAGE profile of fifteen varieties of seaweed from Semporna, Sabah, Malaysia. Int. Food Res. J. 2015, 22, 1483–1493. [Google Scholar]
- Sood, V.; Rawat, D.; Khanna, R.; Sharma, S.; Gupta, P.K.; Alam, S.; Sarin, S.K. Study of carnitine/acylcarnitine and amino acid profile in children and adults with acute liver failure. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Sinay, H.; Karuwal, R.L. Proline and total soluble sugar content at the vegetative phase of six corn cultivars from Kisar Island Maluku, grown under drought stress conditions. IJAAR 2014, 2, 77–82. [Google Scholar]
- Cao, B.; Li, W.L.; Gao, S.; Xia, J.; Xu, K. Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. Protoplasma 2017, 254, 2295–2304. [Google Scholar] [CrossRef]
- Ribera-Fonseca, A.; Rumpel, C.; Mora, M.D.L.L.; Nikolic, M.; Cartes, P. Sodium silicate and calcium silicate differentially affect silicon and aluminium uptake, antioxidant performance and phenolics metabolism of ryegrass in an acid Andisol. Crop Pasture Sci. 2018, 69, 205–215. [Google Scholar] [CrossRef]
- Zhao, L.; Temelli, F.; Chen, L. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods 2017, 34, 159–167. [Google Scholar] [CrossRef]
- Wang, J.Y.; Xiong, Y.C.; Li, F.M.; Siddique, K.H.; Turner, N.C. Effects of drought stress on morphophysiological traits, biochemical characteristics, yield, and yield components in different ploidy wheat: A meta-analysis. Adv. Agron. 2017, 143, 139–173. [Google Scholar] [CrossRef]
- Salama, K.H.A.; Mansour, M.M.F.; Al-Malawi, H.A. Glycinebetaine priming improves salt tolerance of wheat. Biologia 2015, 70, 1334–1339. [Google Scholar] [CrossRef]
- Tale, A.S.; Haddad, R. Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech J. Genet. Plant Breed. 2011, 47, 17–27. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http//www.R-project.org/ (accessed on 31 January 2021).
- Kuznetsov, V. Selenium regulates the water status of plants exposed to drought. Dokl. Biol. Sci. 2003, 390, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Shabbir, R.N.; Bukhari, M.A. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem. 2015, 175, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Waraich, E.A.; Nawaz, F.; Ashraf, M.Y.; Khalid, M. Selenium (Se) improves drought tolerance in crop plants—A myth or fact? J. Sci. Food Agric. 2016, 96, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Chu, J.; Wang, G. Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 2009, 130, 283–290. [Google Scholar] [CrossRef]
- Ahmad, Z.; Waraich, E.A.; Akhtar, S.; Anjum, S.; Ahmad, T.; Mahboob, W.; Hafeez, O.B.A.; Tapera, T.; Labuschagne, M.; Rizwan, M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol. Plant. 2018, 40, 80. [Google Scholar] [CrossRef]
- Nageswara, R.R.C.; Talwar, H.S.; Wright, G.C. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J. Agron. Crop Sci. 2001, 186, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Iturbe-Ormaetxe, I.; Escuredo, P.R.; Arrese-Igor, C.; Becana, M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 1998, 116, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Waraich, E.A.; Rashid, F.; Ahmad, Z.; Ahmad, R.; Ahmad, M. Foliar applied potassium stimulate drought tolerance in canola under water deficit conditions. J. Plant Nutr. 2020, 43, 1923–1934. [Google Scholar] [CrossRef]
- Manivannan, P.; Jaleel, C.A.; Sankar, B.; Kishorekumar, A.; Somasundaram, R.; Lakshmanan, G.A.; Panneerselvam, R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf. B Biointerfaces 2007, 59, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Fotovat, R.; Valizadeh, M.; Toorchi, M. Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J. Food Agric. Environ. 2007, 5, 225–227. [Google Scholar]
- Khayatnezhad, M.; Gholamin, R.; Jamaati-e-Somarin, S.; Zabihi-e-Mahmoodabad, R. The leaf chlorophyll content and stress resistance relationship considering in corn cultivars (Zea mays). Adv. Environ. Biol. 2011, 5, 118–122. [Google Scholar]
- EL Sabagh, A.; Hossain, A.; Barutçular, C.; Khaled, A.A.; Fahad, S.; Anjorin, F.B.; Islam, M.S.; Ratnasekera, D.; Kizilgeçi, F.; Singh, G.; et al. Sustainable maize (Zea mays L.) production under drought stress by understanding its adverse effect, survival mechanism and drought tolerance indices. J. Exp. Biol. Agric. Sci. 2018, 6, 282–295. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Hossain, A.; Barutçular, C.; Gormus, O.; Ahmad, Z.; Hussain, S.; Islam, M.S.; Alharby, H.; Bamagoos, A.; Kumar, N.; et al. Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—A review. Appl. Ecol. Environ. Res. 2019, 17, 4019–4043. [Google Scholar] [CrossRef]
- Ahmadizadeh, M. Physiological and agro-morphological response to drought stress. Middle East J. Sci. Res. 2013, 13, 998–1009. [Google Scholar] [CrossRef]
- Shabbir, R.N.; Waraich, E.A.; Ali, H.; Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Awan, M.I.; Ahmad, S.; Irfan, M.; Hussain, S.; et al. Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 2015, 23, 2651–2662. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, P.; Wang, Y.; Feng, H. Different approaches for selenium biofortification of pear-jujube (Zizyphus jujuba M. cv. Lizao) and associated effects on fruit quality. J. Food Agric. Environ. 2013, 225, 1–5. [Google Scholar]
- Silva, R.; Filgueiras, L.; Santos, B.; Coelho, M.; Silva, M.; Estrada-Bonilla, G.; Vidal, M.; Baldani, J.I.; Meneses, C. Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa growing under water stress. Int. J. Mol. Sci. 2020, 21, 333. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, M.; Pilon-Smits, E.A.H. The fascinating facets of plant selenium accumulation—Biochemistry, physiology, evolution and ecology. New Phytol. 2017, 213, 1582–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, X.; Chu, J.; Liang, L.; Geng, W.; Li, J.; Hou, G. Selenium improves recovery of wheat seedlings at rewatering after drought stress. Russ. J. Plant Physiol. 2012, 59, 701–707. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 2009, 132, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.M. Low levels of selenium application attenuate low temperature stress in Sorghum [Sorghum bicolor (L.) moench.] seedlings. Pak. J. Bot. 2013, 45, 1597–1604. [Google Scholar]
- Akbulut, M.; Çakir, S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol. Biochem. 2009, 48, 160–166. [Google Scholar] [CrossRef]
- Cechin, I.; Corniani, N.; De Fátima, F.T.; Cataneo, A.C. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants. Radiat. Environ. Biophys. 2008, 47, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, H.; Rad, A.H.S.; Moghadam, H.R.T. Effects of zeolite and selenium applications on some agronomic traits of three Canola cultivars under drought stress. Pesqui. Agropecuária Trop. 2011, 41, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Pazoki, A.R.; Rad, A.H.S.; Habibi, D.; Paknejad, F.; Kobraee, S.; Hadayat, N. Effect of drought stress and selenium spraying on superoxide dismotase activity of winter rapeseed (Brassica napus L.) cultivars. Int. J. Agric. Biosyst. Eng. 2010, 4, 655–658. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Yang, X.; Xia, Z. Effects of sodium selenite and germination on the sprouting of chickpeas (Cicer arietinum L.) and its content of selenium, formononetin and biochanin A in the sprouts. Biol. Trace Elem. Res. 2011, 146, 376–380. [Google Scholar] [CrossRef]
- Germ, M.; Stibilj, V.; Osvald, J.; Kreft, I. Effect of selenium foliar application on chicory (Cichorium intybus L). J. Agric. Food Chem. 2007, 55, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Caldwell, C.D.; Jiang, Y. Photosynthesis and growth of Camelina and Canola in response to water deficit and applied nitrogen. Crop Sci. 2018, 58, 393–401. [Google Scholar] [CrossRef]
- Ahmad, Z.; Waraich, E.A.; Barutçular, C.; Alharby, H.; Bamagoos, A.; Kizilgeci, F.; Öztürk, F.; Hossain, A.; Bayoumi, Y.; EL Sabagh, A. Enhancing drought tolerance in Camelina sativa L. and Canola napus L. through application of selenium. Pak. J. Bot. 2020, 52. [Google Scholar] [CrossRef]
- Curtin, D.; Hanson, R.; Van Der Weerden, T.J. Effect of selenium fertiliser formulation and rate of application on selenium concentrations in irrigated and dryland wheat (Triticum aestivum). N. Z. J. Crop Hortic. Sci. 2008, 36, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Proietti, P.; Nasini, L.; Del Buono, D.; D’Amato, R.; Tedeschini, E.; Businelli, D. Selenium protects olive (Olea europaea L.) from drought stress. Sci. Hortic. 2013, 164, 165–171. [Google Scholar] [CrossRef]
Traits | Treatments | Varieties | Treatment × Varieties |
---|---|---|---|
Total Chlorophyll Contents (SPAD) | *** | ** | ** |
Water Potential (−MPa) | ** | ** | ** |
Osmotic Potential (−MPa) | ** | ** | ** |
Turgor Pressure (MPa) | *** | ** | * |
Total Proline (µmol/g DW) | *** | ** | NS |
Total Soluble Sugars (µmol/g FW) | *** | ** | NS |
Total Free Amino Acids (mg/g) | *** | ** | NS |
Total Soluble Proteins (mg/g) | ** | * | NS |
Total Phenolic Contents (mg/g DW) | *** | ** | NS |
Anthocyanin (mg/g DW) | *** | ** | NS |
Flavonoids (mg/g DW) | *** | ** | NS |
Glycine betaine (µmol/g FW) | *** | ** | NS |
Ascorbic peroxidase (units’ min−1 g−1 FW) | *** | ** | NS |
Superoxide Dismutase (units’ min−1 g−1 FW) | *** | ** | NS |
Peroxidase (units’ min−1 g−1 FW) | *** | ** | NS |
Catalase (units’ min−1 g−1 FW) | *** | ** | NS |
Number of branches per plant | ** | * | NS |
Thousand seed weight (g) | ** | * | NS |
Seed yield (t/ha) | *** | ** | NS |
Biological yield (t/ha) | ** | ** | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, Z.; Anjum, S.; Skalicky, M.; Waraich, E.A.; Muhammad Sabir Tariq, R.; Ayub, M.A.; Hossain, A.; Hassan, M.M.; Brestic, M.; Sohidul Islam, M.; et al. Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.). Molecules 2021, 26, 1699. https://doi.org/10.3390/molecules26061699
Ahmad Z, Anjum S, Skalicky M, Waraich EA, Muhammad Sabir Tariq R, Ayub MA, Hossain A, Hassan MM, Brestic M, Sohidul Islam M, et al. Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.). Molecules. 2021; 26(6):1699. https://doi.org/10.3390/molecules26061699
Chicago/Turabian StyleAhmad, Zahoor, Shazia Anjum, Milan Skalicky, Ejaz Ahmad Waraich, Rana Muhammad Sabir Tariq, Muhammad Ashar Ayub, Akbar Hossain, Mohamed M. Hassan, Marian Brestic, Mohammad Sohidul Islam, and et al. 2021. "Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.)" Molecules 26, no. 6: 1699. https://doi.org/10.3390/molecules26061699
APA StyleAhmad, Z., Anjum, S., Skalicky, M., Waraich, E. A., Muhammad Sabir Tariq, R., Ayub, M. A., Hossain, A., Hassan, M. M., Brestic, M., Sohidul Islam, M., Habib-Ur-Rahman, M., Wasaya, A., Aamir Iqbal, M., & EL Sabagh, A. (2021). Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.). Molecules, 26(6), 1699. https://doi.org/10.3390/molecules26061699