Comparison of Multiple Bioactive Constituents in the Corolla and Other Parts of Abelmoschus manihot
Abstract
:1. Introduction
2. Results
2.1. Optimization of Extraction Conditions
2.2. Optimization of UFLC and Mass Spectrometric Conditions
2.3. Method Validation
2.4. Quantitative Analysis of Samples
2.5. Distribution of Bioactive Constituents among AC and Other Parts of AM
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Chemicals and Reagents
4.3. Preparation of Standard Solutions
4.4. Preparation of Sample Solutions
4.5. Chromatographic and Mass Spectrometric Conditions
4.6. Validation of the Method
4.7. Multivariate Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State Pharmacopoeia Commission of P. R. China. Pharmacopoeia of the People’s Repulic of China; Part I; China Medical Science and Technology Press: Beijing, China, 2020; p. 319. [Google Scholar]
- Liu, B.Q.; Hu, Y.; Zhang, J.H.; Chen, Z.W. Total flavone of Abelmoschus manihot (L.) medic for prevention and treatment of adjuvant arthritis in rats. Chin. J. Clin. Rehabil. 2006, 10, 34–37. [Google Scholar]
- Zhang, L.; Li, P.; Xing, C.Y.; Zhao, J.Y.; He, Y.N.; Wang, J.Q.; Wu, X.F.; Liu, Z.S.; Zhang, A.P.; Lin, H.L.; et al. Efficacy and safety of Abelmoschus manihot for primary glomerular disease: A prospective, multicenter randomized controlled clinical trial. Am. J. Kidney Dis. 2014, 64, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Z.; Gong, Z.X.; Cai, G.Y.; Gao, Q.; Chen, X.M.; Tang, L.; Wei, R.B.; Zhou, J.H. Efficacy and safety of Flos Abelmoschus manihot (Malvaceae) on type 2 diabetic nephropathy: A systematic review. Chin. J. Integr. Med. 2015, 21, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Cho, S.E.; Hong, S.H.; Shin, H.D. Choanephora flower rot caused by Choanephora cucurbitarum on Abelmoschus manihot. Trop. Plant Pathol. 2015, 40, 147–149. [Google Scholar] [CrossRef]
- State Administration of Traditional Chinese Medicine. Chinese Materia Medica; Part 5; Shanghai Science and Technology Press: Shanghai, China, 1999; pp. 331–333. [Google Scholar]
- Pan, X.; Du, L.; Tao, J.; Jiang, S.; Qian, D.; Duan, J. Dynamic changes of flavonoids in Abelmoschus manihot different organs at different growth periods by UPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1059, 21–26. [Google Scholar] [CrossRef]
- Xia, K.Y.; Zhang, C.L.; Cao, Z.Y.; Ge, H.T.; Tang, H.T. Chemical constituents from Corolla abelmoschi. Strait Pharm. J. 2019, 31, 58–61. [Google Scholar]
- Du, L.Y.; Qian, D.W.; Jiang, S.; Shang, E.X.; Guo, J.M.; Liu, P.; Su, S.L.; Duan, J.A.; Zhao, M. Comparative characterization of nucleotides, nucleosides and nucleobases in Abelmoschus manihot roots, stems, leaves and flowers during different growth periods by UPLC-TQ-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1006, 130–137. [Google Scholar] [CrossRef]
- Du, L.Y.; Qian, D.W.; Jiang, S.; Guo, J.M.; Su, S.L.; Duan, J.A. Comparative characterization of amino acids in Abelmoschus manihot roots, stems and leaves during different growth periods by UPLC-TQ-MS/MS. Anal. Methods 2015, 7, 10280–10290. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother. Res. 2015, 29, 323–331. [Google Scholar] [CrossRef]
- Hosseini, F.; Mahdian-Shakib, A.; Jadidi-Niaragh, F.; Enderami, S.E.; Mohammadi, H.; Hemmatzadeh, M.; Mohammed, H.A.; Anissian, A.; Kokhaei, P.; Mirshafiey, A.; et al. Anti-inflammatory and anti-tumor effects of α-l-guluronic acid (G2013) on cancer-related inflammation in a murine breast cancer model. Biomed. Pharmacother. 2018, 98, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Heitman, E.; Ingram, D.K. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 2017, 20, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.T.; Choi, R.C.; Xie, H.Q.; Zheng, K.Y.; Guo, A.J.; Bi, C.W.; Lau, D.T.; Li, J.; Dong, T.T.; Lau, B.W. Hibifolin, a flavonol glycoside, prevents beta-amyloid-induced neurotoxicity in cultured cortical neurons. Neurosci. Lett. 2009, 461, 172–176. [Google Scholar] [CrossRef]
- Qiu, L.; Patterson, S.E.; Bonnac, L.F.; Geraghty, R.J. Nucleobases and corresponding nucleosides display potent antiviral activities against dengue virus possibly through viral lethal mutagenesis. PLoS Negl. Trop. Dis. 2018, 12, e0006421. [Google Scholar] [CrossRef]
- Tessari, P. Nonessential amino acid usage for protein replenishment in humans: A method of estimation. Am. J. Clin. Nutr. 2019, 110, 255–264. [Google Scholar] [CrossRef]
- Ferraro, V.; Sousa, S.C.; Marques, C.; Calhau, C.; Pintado, M.E. Antioxidant and anti-hypertensive activity, and cytotoxicity of amino acids-enriched salt recovered from codfish (Gadus morhua L.) salting wastewater. Waste Biomass Valoriz. 2015, 6, 1115–1124. [Google Scholar] [CrossRef]
- Jain, P.S.; Bari, S.B. Evaluation of wound healing effect of petroleum ether and methanolic extract of Abelmoschus manihot (L.) Medik., Malvaceae, and Wrightia tinctoria R. Br., Apocynaceae, in rats. Rev. Bras. Pharmacogn. 2010, 20, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Pritam, S.J.; Amol, A.T.; Sanjay, B.B.; Sanjay, J.S. Analgesic activity of Abelmoschus manihot Extracts. Int. J. Pharmacol. 2011, 7, 716–720. [Google Scholar] [CrossRef]
- Mei, Y.; Wei, L.; Chai, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Wang, C.; Cai, Z.; Zhang, F.; et al. A method to study the distribution patterns for metabolites in xylem and phloem of Spatholobi Caulis. Molecules 2019, 25, 167. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Mei, Y.; Zou, L.; Chen, J.; Tan, M.; Wang, C.; Cai, Z.; Lin, L.; Chai, C.; Yin, S.; et al. Distribution patterns for bioactive constituents in, pericarp, stalk and seed of Forsythiae Fructus. Molecules 2020, 25, 340. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Liao, H.; Wang, C.; Chen, J.; Tan, M.; Mei, Y.; Wei, L.; Chen, H.; Yang, R.; Liu, X. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. Phytochem. Anal. 2020, 31, 786–800. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, H.; Chen, C.; Zou, L.; Liu, X.; Chai, C.; Wang, C.; Shi, J.; Chen, S. Comparison of multiple bioactive constituents in different parts of Eucommia ulmoides based on UFLC-QTRAP-MS/MS combined with PCA. Molecules 2018, 23, 643. [Google Scholar] [CrossRef] [Green Version]
- The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). Guidelines, Q2 (R1): Validation of Analytical Procedures (Text and Methodology); ICH: Geneva, Switzerland, 2005. [Google Scholar]
No. | Compounds | tR (min) | MRM Transitions (m/z) | DP(V) | CE(eV) | Ion Mode |
---|---|---|---|---|---|---|
1 | L-Lysine | 1.77 | 147.1/83.9 | 100 | 14 | ESI+ |
2 | L-Serine | 1.90 | 106.1/60.0 | 100 | 8 | ESI+ |
3 | L-Threonine | 1.97 | 120.1/74.0 | 100 | 20 | ESI+ |
4 | L-Glutamic acid | 1.99 | 148.1/83.9 | 12 | 14 | ESI+ |
5 | L-Proline | 2.13 | 116.1/70.0 | 68 | 10 | ESI+ |
6 | L-Valine | 2.66 | 118.1/72.1 | 100 | 10 | ESI+ |
7 | L-Tyrosine | 4.02 | 182.1/136.0 | 16 | 16 | ESI+ |
8 | Adenosine | 4.17 | 268.1/136.1 | 86 | 23 | ESI+ |
9 | L-Isoleucine | 4.33 | 132.1/86.1 | 100 | 16 | ESI+ |
10 | Guanosine | 4.40 | 284.3/152.1 | 42 | 16 | ESI+ |
11 | Inosine | 4.41 | 269.0/137.0 | 46 | 15 | ESI+ |
12 | L-Leucine | 4.60 | 132.2/86.0 | 64 | 10 | ESI+ |
13 | 3,4,5-Trihydroxybenzoic acid | 4.70 | 169.0/125.0 | −33 | −13 | ESI− |
14 | 5-(Hydroxymethyl)-2-furancarboxylic acid | 5.92 | 141.0/97.0 | −35 | −12 | ESI− |
15 | L-Phenylalanine | 5.94 | 166.1/120.1 | 100 | 14 | ESI+ |
16 | 3,4-Dihydroxybenzoic acid | 6.84 | 152.9/109.0 | −85 | −16 | ESI− |
17 | Chlorogenic acid | 8.30 | 353.1/190.9 | −35 | −20 | ESI− |
18 | Caffeic acid | 9.87 | 174.0/134.9 | −125 | −20 | ESI− |
19 | Dihydromyricetin | 10.48 | 319.0/193.0 | −44 | −10 | ESI− |
20 | Myricetin 3-O-glucoside | 12.71 | 479.0/316.0 | −155 | −36 | ESI− |
21 | Quercetin 3-O-robinobioside | 15.92 | 609.0/299.9 | −170 | −48 | ESI− |
22 | Quercetin 7-O-glucoside | 15.93 | 463.1/301.0 | −38 | −28 | ESI− |
23 | Rutin | 16.33 | 609.0/299.9 | −170 | −48 | ESI− |
24 | Hyperin | 16.58 | 462.9/300.0 | −155 | −36 | ESI− |
25 | Isoquercetin | 17.25 | 462.9/300.0 | −155 | −36 | ESI− |
26 | Myricetin 3′-O-glucoside | 17.80 | 479.0/317.0 | −90 | −36 | ESI− |
27 | 3,4-Dicaffeoylquinic acid | 19.04 | 515.0/353.0 | −80 | −26 | ESI− |
28 | 3,5-Dicaffeoylquinic acid | 19.35 | 515.0/353.0 | −75 | −24 | ESI− |
29 | Hibifolin | 22.40 | 493.2/317.0 | −155 | −30 | ESI− |
30 | Quercetin 3-O-(6-acetylglucoside) | 22.80 | 505.0/300.0 | −75 | −38 | ESI− |
31 | Myricetin | 23.03 | 317.2/179.0 | −24 | −24 | ESI− |
32 | 4,5-Dicaffeoylquinic acid | 24.36 | 515.0/353.0 | −75 | −24 | ESI− |
33 | Quercetin 3′-O-glucoside | 27.50 | 463.1/301.0 | −38 | −28 | ESI− |
34 | Quercetin | 29.81 | 301.1/151.0 | −62 | −28 | ESI− |
35 | Tiliroside | 29.89 | 593.0/284.9 | −175 | −38 | ESI− |
No. | Compounds | Regression Equation | r | Linear Range (ng/mL) | LOD (ng/mL) | LOQ (ng/mL) | Precision(RSD,%) | Repeatability (RSD, %) (n = 6) | Stability (RSD, %) (n = 6) | Recovery(%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 9) | Mean | RSD | |||||||||
1 | L-Lysine | Y = 1310X − 35,500 | 0.9994 | 50.30–2515 | 7.86 | 26.20 | 2.7 | 4.9 | 4.9 | 2.8 | 104.4 | 4.2 |
2 | L-Serine | Y = 788X − 27,600 | 0.9991 | 51.20–10,240 | 9.85 | 32.82 | 2.8 | 4.1 | 2.0 | 2.4 | 101.1 | 1.3 |
3 | L-Threonine | Y = 853X − 17,100 | 0.9992 | 51.60–5160 | 12.48 | 41.61 | 4.8 | 4.3 | 3.3 | 3.0 | 100.3 | 4.0 |
4 | L-Glutamic acid | Y = 2470X − 116,000 | 0.9998 | 51.40–5140 | 10.42 | 34.73 | 4.3 | 4.3 | 4.8 | 3.8 | 101.1 | 3.7 |
5 | L-Proline | Y = 3720X + 66,700 | 0.9999 | 25.20–10,080 | 2.04 | 6.81 | 3.7 | 4.8 | 2.9 | 3.4 | 100.3 | 1.1 |
6 | L-Valine | Y = 8050X − 312,000 | 0.9996 | 49.90–9980 | 14.39 | 47.98 | 3.8 | 4.9 | 2.7 | 2.1 | 104.4 | 2.3 |
7 | L-Tyrosine | Y = 4610X + 22,500 | 0.9994 | 12.43–4970 | 1.55 | 5.18 | 2.9 | 4.1 | 3.6 | 4.7 | 99.04 | 4.6 |
8 | Adenosine | Y = 18,100X + 212,000 | 0.9997 | 1.00–2500 | 0.22 | 0.74 | 3.3 | 4.9 | 3.6 | 3.2 | 99.64 | 0.22 |
9 | L-Isoleucine | Y = 14,100X + 199,000 | 0.9990 | 25.00–5000 | 5.07 | 16.89 | 2.8 | 4.9 | 3.2 | 3.3 | 101.7 | 4.4 |
10 | Guanosine | Y = 7050X + 94,000 | 0.9994 | 1.03–2560 | 0.15 | 0.51 | 2.6 | 4.5 | 4.6 | 4.5 | 100.2 | 0.38 |
11 | Inosine | Y = 6560X + 99,300 | 0.9994 | 4.96–1240 | 1.24 | 4.13 | 2.9 | 4.0 | 3.2 | 3.4 | 100.0 | 0.44 |
12 | L-Leucine | Y = 8810X + 397,000 | 0.9993 | 12.63–2520 | 1.84 | 6.13 | 1.1 | 4.2 | 2.9 | 3.8 | 98.43 | 4.3 |
13 | 3,4,5-Trihydroxybenzoic acid | Y = 4330X + 49,300 | 0.9997 | 13.31–532 | 3.73 | 12.44 | 4.7 | 4.3 | 4.9 | 4.9 | 99.43 | 2.1 |
14 | 5-(Hydroxymethyl)-2-furancarboxylic acid | Y = 2400X − 20,200 | 0.9992 | 5.07–5070 | 1.36 | 4.53 | 4.6 | 4.9 | 4.9 | 4.3 | 103.3 | 2.6 |
15 | L-Phenylalanine | Y = 17,900X + 779,000 | 0.9997 | 0.50–2480 | 0.14 | 0.46 | 3.9 | 4.8 | 1.9 | 4.9 | 99.53 | 3.2 |
16 | 3,4-Dihydroxybenzoic acid | Y = 12,400X + 78,100 | 0.9996 | 5.21–261 | 1.09 | 3.62 | 3.7 | 4.3 | 3.4 | 2.8 | 99.46 | 1.7 |
17 | Chlorogenic acid | Y = 6400X + 97,400 | 0.9994 | 2.48–2480 | 0.41 | 1.38 | 4.6 | 4.3 | 2.1 | 4.9 | 100.4 | 4.3 |
18 | Caffeic acid | Y = 17,400X + 200,000 | 0.9990 | 2.48–1238 | 0.73 | 2.43 | 3.6 | 4.8 | 4.6 | 4.3 | 99.41 | 2.0 |
19 | Dihydromyricetin | Y = 5250X + 68,800 | 0.9991 | 2.54–1268 | 0.51 | 1.71 | 4.4 | 4.8 | 3.4 | 4.5 | 100.8 | 4.9 |
20 | Myricetin 3-O-glucoside | Y = 4650X + 155,000 | 0.9999 | 5.03–10,050 | 0.37 | 1.23 | 4.7 | 4.8 | 2.5 | 4.2 | 100.0 | 4.9 |
21 | Quercetin 3-O-robinobioside | Y = 2630X − 20,500 | 0.9999 | 5.03–10,100 | 0.70 | 2.34 | 2.5 | 4.2 | 1.0 | 4.2 | 101.5 | 2.8 |
22 | Quercetin 7-O-glucoside | Y = 7500X + 79,400 | 0.9992 | 2.55–1273 | 0.37 | 1.24 | 4.2 | 4.5 | 2.9 | 4.8 | 103.3 | 4.2 |
23 | Rutin | Y = 3110X − 33,100 | 0.9999 | 2.51–5020 | 0.22 | 0.72 | 3.5 | 4.9 | 2.3 | 4.4 | 100.9 | 1.0 |
24 | Hyperin | Y = 5790X + 318,000 | 0.9997 | 5.05–20,200 | 0.20 | 0.67 | 4.5 | 4.9 | 1.1 | 4.7 | 99.84 | 1.2 |
25 | Isoquercetin | Y = 5230X − 6260 | 0.9999 | 5.05–20,200 | 0.92 | 3.06 | 4.6 | 4.2 | 1.0 | 4.5 | 100.4 | 1.2 |
26 | Myricetin 3′-O-glucoside | Y = 6460X − 104,000 | 0.9997 | 5.25–10.500 | 1.23 | 4.10 | 2.7 | 4.9 | 1.8 | 4.2 | 100.2 | 1.4 |
27 | 3,4-Dicaffeoylquinic acid | Y = 3300X − 153,000 | 0.9998 | 12.63–1263 | 3.01 | 10.03 | 4.9 | 4.8 | 3.8 | 3.9 | 101.7 | 1.2 |
28 | 3,5-Dicaffeoylquinic acid | Y = 2760X − 19,000 | 0.9993 | 5.02–1255 | 1.47 | 4.90 | 2.4 | 3.6 | 3.2 | 4.8 | 98.06 | 1.8 |
29 | Hibifolin | Y = 1620X − 1320,000 | 0.9991 | 253.00–50,600 | 66.00 | 220.00 | 4.2 | 4.8 | 4.6 | 4.4 | 100.6 | 1.2 |
30 | Quercetin 3-O-(6-acetylglucoside) | Y = 7120X + 122,000 | 0.9998 | 2.56–5125 | 0.17 | 0.56 | 4.6 | 4.8 | 3.8 | 4.3 | 99.41 | 2.1 |
31 | Myricetin | Y = 4150X − 22,300 | 0.9990 | 5.01–5010 | 1.25 | 4.18 | 4.7 | 4.9 | 3.4 | 2.8 | 101.9 | 2.6 |
32 | 4,5-Dicaffeoylquinic acid | Y = 4410X − 101,000 | 0.9998 | 12.43–2490 | 1.61 | 5.36 | 4.5 | 4.8 | 4.7 | 4.3 | 101.0 | 2.7 |
33 | Quercetin 3′-O-glucoside | Y = 7930X + 503,000 | 0.9993 | 5.00–10,000 | 0.32 | 1.07 | 3.9 | 4.4 | 1.8 | 4.2 | 99.86 | 1.3 |
34 | Quercetin | Y = 9450X − 17,300 | 1.0000 | 0.51–2-560 | 0.08 | 0.27 | 3.9 | 4.7 | 4.9 | 3.8 | 102.1 | 1.6 |
35 | Tiliroside | Y = 9040X + 18,100 | 0.9999 | 0.51–256 | 0.07 | 0.22 | 4.1 | 4.4 | 3.7 | 4.0 | 101.0 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Mei, Y.; Wei, L.; Zou, L.; Cai, Z.; Wu, N.; Yuan, J.; Liu, X.; Ge, H.; Wang, D.; et al. Comparison of Multiple Bioactive Constituents in the Corolla and Other Parts of Abelmoschus manihot. Molecules 2021, 26, 1864. https://doi.org/10.3390/molecules26071864
Yin S, Mei Y, Wei L, Zou L, Cai Z, Wu N, Yuan J, Liu X, Ge H, Wang D, et al. Comparison of Multiple Bioactive Constituents in the Corolla and Other Parts of Abelmoschus manihot. Molecules. 2021; 26(7):1864. https://doi.org/10.3390/molecules26071864
Chicago/Turabian StyleYin, Shengxin, Yuqi Mei, Lifang Wei, Lisi Zou, Zhichen Cai, Nan Wu, Jiahuan Yuan, Xunhong Liu, Haitao Ge, Dianguang Wang, and et al. 2021. "Comparison of Multiple Bioactive Constituents in the Corolla and Other Parts of Abelmoschus manihot" Molecules 26, no. 7: 1864. https://doi.org/10.3390/molecules26071864
APA StyleYin, S., Mei, Y., Wei, L., Zou, L., Cai, Z., Wu, N., Yuan, J., Liu, X., Ge, H., Wang, D., & Wang, D. (2021). Comparison of Multiple Bioactive Constituents in the Corolla and Other Parts of Abelmoschus manihot. Molecules, 26(7), 1864. https://doi.org/10.3390/molecules26071864