A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Acute Toxicity Protocol
2.4. Short-Term Toxicity Protocol
2.5. Measurement of Blood–Brain Barrier (BBB) Permeability
2.6. Measurement of Acetylcholinesterase (AChE) Inhibition in Brain Homogenate
2.7. Measurement of Malondialdehyde (MDA) Levels in Brain Homogenate
2.8. Measurement of Glutathione (GSH) Levels in Brain Homogenate
2.9. Measurement of Hematological and Serum Biochemical Data
2.10. Measurement of 2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.11. Measurement of 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Radical Scavenging Activity
2.12. Measurement of Ferric Reducing Antioxidant Power (FRAP)
2.13. Measurement of Inhibition of Lipid Peroxidation
2.14. Statistical Analysis
3. Results
3.1. Acute Toxicity in Mice
3.2. Short-Term Toxicity in Mice
3.3. Blood–Brain Barrier (BBB) Permeability
3.4. AChE Inhibition in Mice Brain Homogenate
3.5. Antioxidant Activity in Mice Brain Homogenate
3.6. Hematological and Serum Biochemical Data
3.7. Antioxidant Activity Measured In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gammon, K. Neurodegenerative disease: Brain windfall. Nature 2014, 515, 299–300. [Google Scholar] [CrossRef]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Kita, Y.; Ago, Y.; Higashino, K.; Asada, K.; Takino, E.; Takuma, K.; Matsuda, T. Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and α7 nicotinic receptors in mice. Int. J. Neuropsychopharmacol. 2014, 17, 1957–1968. [Google Scholar] [CrossRef] [Green Version]
- Dajas-Bailador, F.A.; Heimala, K.; Wonnacott, S. The allosteric potentiation of nicotinic acetylcholine receptors by galantamine is transduced into cellular responses in neurons: Ca2+ signals and neurotransmitter release. Mol. Pharmacol. 2003, 64, 1217–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takata, K.; Kitamura, Y.; Saeki, M.; Terada, M.; Kagitani, S.; Kitamura, R.; Fujikawa, Y.; Maelicke, A.; Tomimoto, H.; Taniguchi, T.; et al. Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J. Biol. Chem. 2010, 285, 40180–40191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsvetkova, D.; Obreshkova, D.; Zheleva-Dimitrova, D.; Saso, L. Antioxidant activity of galantamine and some of its derivatives. Curr. Med. Chem. 2013, 20, 4595–4608. [Google Scholar] [CrossRef] [PubMed]
- Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 1997, 23, 134–147. [Google Scholar] [CrossRef]
- Butterfield, D.A. b-Amyloid-associated free radical oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Chem. Res. Toxicol. 1997, 10, 495–506. [Google Scholar] [CrossRef]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef]
- Perkins, A.J.; Hendrie, H.C.; Callahan, C.M.; Gao, S.; Unverzagt, F.W.; Xu, Y.; Hall, K.S.; Hui, S.L. Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 1999, 150, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Masaki, K.H.; Losonczy, K.G.; Izmirlian, G.; Foley, D.J.; Ross, G.W.; Petrovitch, H.; Havlik, R.; White, L.R. Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology 2000, 54, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Wilson, R.S.; Scherr, P.A. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 2002, 287, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- Grodstein, F.; Chen, J.; Willett, W.C. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am. J. Clin. Nutr. 2003, 77, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Engelhart, M.J.; Geerlings, M.I.; Ruitenberg, A.; van Swieten, J.C.; Hofman, A.; Witteman, J.C.; Breteler, M.M. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002, 287, 3223–3229. [Google Scholar] [CrossRef] [Green Version]
- Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, C.W.; Pfeiffer, E.; et al. A controlled trial of seligiline, a-tocopherol, or both as treatment for Alzheimer’s disease. N. Engl. J. Med. 1997, 336, 1216–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar]
- Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer’ transgenic mouse. J. Neurosci. 2001, 21, 8370–8377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.N.; Chiu, S.W.; Benoit, J.; Chew, L.Y.; Mu, Y. The effect of curcumin on the stability of Aβ dimers. J. Phys. Chem. B 2012, 116, 7428–7435. [Google Scholar] [CrossRef]
- Stavrakov, G.; Philipova, I.; Lukarski, A.; Atanasova, M.; Zheleva, D.; Zhivkova, Z.D.; Ivanov, S.; Atanasova, T.; Konstantinov, S.; Doytchinova, I. Galantamine-curcumin hybrids as dual-site binding acetylcholinesterase inhibitors. Molecules 2020, 25, 3341. [Google Scholar] [CrossRef]
- Masuda, Y.; Fukuchi, M.; Yatagawa, T.; Tada, M.; Takeda, K.; Irie, K.; Akagi, K.; Monobe, Y.; Imazawa, T.; Takegoshi, K. Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid beta-protein fibrils. Bioorg. Med. Chem. 2011, 19, 5967–5974. [Google Scholar] [CrossRef]
- Nistico, S.; Tamburi, F.; Bennardo, L.; Dastoli, S.; Schipani, G.; Caro, G.; Fortuna, M.C.; Rossi, A. Treatment of telogen effluvium using a dietary supplement containing Boswellia serrata, Curcuma longa, and Vitis vinifera: Results of an observational study. Dermatol. Ther. 2019, 32, 12842. [Google Scholar] [CrossRef]
- Lestari, M.L.; Indrayanto, G. Curcumin. Profiles Drug Subst. Excip. Relat. Methodol. 2014, 39, 113–204. [Google Scholar]
- Mahady, G.B.; Pendland, S.L.; Yun, G.; Lu, Z.Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res. 2002, 22, 4179–4181. [Google Scholar]
- Reddy, R.C.; Vatsala, P.G.; Keshamouni, V.G.; Padmanaban, G.; Rangarajan, P.N. Curcumin for malaria therapy. Biochem. Biophys. Res. Commun. 2005, 326, 472–474. [Google Scholar] [CrossRef]
- Vera-Ramirez, L.; Perez-Lopez, P.; Varela-Lopez, A.; Ramirez-Tortosa, M.; Battino, M.; Quiles, J.L. Curcumin and liver disease. Biofactors 2013, 39, 88–100. [Google Scholar] [CrossRef]
- Wright, L.E.; Frye, J.B.; Gorti, B.; Timmermann, B.N.; Funk, J.L. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr. Pharm. Des. 2013, 19, 6218–6225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. OECD Test No. 425. Acute oral toxicity: Up-and-down procedure. In OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Sadigh-Eteghad, S.; Mahmoudi, J.; Babri, S.; Talebi, M. Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir. Bras. 2015, 30, 736–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinyemi, A.J.; Oboh, G.; Fadaka, A.O.; Olatunji, B.P.; Akomolafe, S. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats. Neurotoxicology 2017, 62, 75–79. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38, 223–232. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andre, J.V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Deby, C.; Goutier, R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem. Pharmacol. 1990, 39, 399–405. [Google Scholar] [CrossRef]
- Bump, E.A.; Taylor, Y.C.; Brown, J.M. Role of glutathione in the hypoxic cell cytotoxicity of misonidazole. Cancer Res. 1983, 43, 997–1002. [Google Scholar] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D. Antioxidant and acetylcholinesterase inhibition properties of Amorpha fruticosa L. and Phytolacca americana L. Pharmacogn. Mag. 2013, 9, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Stahl, F.R.; Jung, R.; Jazbutyte, V.; Ostermann, E.; Tödter, S.; Brixel, R.; Kemmer, A.; Halle, S.; Rose-John, S.; Messerle, M.; et al. Laboratory diagnostics of murine blood for detection of mouse cytomegalovirus (MCMV)-induced hepatitis. Sci. Rep. 2018, 8, 14823. [Google Scholar] [CrossRef]
- Otto, G.P.; Rathkolb, B.; Oestereicher, M.A.; Lengger, C.J.; Moerth, C.; Micklich, K.; Fuchs, H.; Gailus-Durner, V.; Wolf, E.; Hrabě de Angelis, M. Clinical chemistry reference intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ mice (Mus musculus). J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 375–386. [Google Scholar]
- Cayman Chemicals. Galantamine. Safety Data Sheet. Available online: https://caymanchem.com/msdss/17559m.pdf (accessed on 20 October 2020).
- Auro-Galantamine. Product Monograph; AuroPharma Inc.: Woodbridge, Canada, 2017. [Google Scholar]
- ChemlDpus Datadase, US National Library of Medicine. Available online: https://chem.nlm.nih.gov/chemidplus/ (accessed on 20 October 2020).
- Srimal, R.C.; Dhawan, B.N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J. Pharm. Pharmacol. 1973, 25, 447–452. [Google Scholar] [CrossRef]
- Chambers, H.W.; Boone, J.S.; Carr, R.L.; Chanbers, J.E. Chemistry of organophosphorus insecticides. In Handbook of Pesticide Toxicology, 2nd ed.; Robert, I.K., Ed.; Academic Press: Riverside, CA, USA, 2001; pp. 913–917. [Google Scholar]
- Dembélè, K.; Haubruge, E.; Gaspar, C. Concentration effects of selected insecticides on brain acetylcholinesterase in the common carp (Cyprinus carpio L.). Ecotoxicol. Environ. Saf. 2000, 45, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karasová, J.Z.; Korábečný, J.; Zemek, F.; Šepsová, V.; Kuča, K. Acetylcholinesterase inhibitors used or tested in Alzheimer’s disease therapy; their passive diffusion through blood brain barrier: In vitro study. Afr. J. Pharm. Pharmacol. 2013, 7, 1471–1480. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.Y.; Kang, Y.S. The inhibitory effect of rivastigmine and galantamine on choline transport in brain capillary endothelian cells. Biomol. Ther. 2010, 18, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Tata, A.M.; Velluto, L.; D’Angelo, C.; Reale, M. Cholinergic system dysfunction and neurodegenerative diseases: Cause or effect? CNS Neurol. Disord. Drug Targets 2014, 13, 1294–1303. [Google Scholar] [CrossRef]
- Manap, A.S.A.; Tan, A.C.W.; Leong, W.H.; Chia, A.Y.Y.; Vijayabalan, S.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S.; et al. Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay. Front. Aging Neurosci. 2019, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Dhir, A. Curcumin in neurological disorders: An overview. In Curcumin for Neurological and Psychiatric Disorders; Farooqui, T., Farooqui, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 63–84. [Google Scholar]
- Blaber, L.C.; Creasey, N.H. The mode of recovery of cholinesterase activity in vivo after organophosphorus poisoning. Biochem. J. 1960, 77, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Milatovic, D.; Gupta, R.C.; Aschner, M. Anticholinesterase toxicity and oxidative stress. Sci. World J. 2006, 6, 295–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Moreno, D.; Soler, F.; Míguez, M.P.; Pérez-López, M. Brain acetylcholinesterase, malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, Tinca tinca, to carbofuran or deltamethrin. Sci. Total Environ. 2010, 408, 4976–4983. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Sandhir, R. Comparative effects of acute and chronic carbofuran exposure on oxidative stress and drug-metabolizing enzymes in liver. Drug Chem. Toxicol. 2008, 29, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Naguib, S.; Bernardo-Colón, A.; Cencer, C.; Gandra, N.; Rex, T.S. Galantamine protects against synaptic, axonal, and vision deficits in experimental neurotrauma. Neurobiol. Dis. 2020, 134, 104695. [Google Scholar] [CrossRef]
- Koola, M.M.; Praharaj, S.K.; Pillai, A. Galantamine-memantine combination as an antioxidant treatment for schizophrenia. Curr. Behav. Neurosci. Rep. 2019, 6, 37–50. [Google Scholar] [CrossRef]
- Castillo, W.O.; Aristizabal-Pachon, A.F. Galantamine protects against beta amyloid peptide-induced DNA damage in a model for Alzheimer’s disease. Neural Regen. Res. 2017, 12, 916–917. [Google Scholar] [CrossRef]
- Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol. 2007, 595, 197–212. [Google Scholar]
- Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience 2019, 406, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nery-Flores, S.D.; Mendoza-Magaña, M.L.; Ramírez-Herrera, M.A.; Ramírez-Vázquez, J.J.; Romero-Prado, M.; Cortez-Álvarez, C.R.; Ramírez-Mendoza, A.A. Curcumin exerted neuroprotection against ozone-induced oxidative damage and decreased NF-κB activation in rat hippocampus and serum levels of inflammatory cytokines. Oxid. Med. Cell Longev. 2018, 2018, 9620684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bupparenoo, P.; Pakchotanon, R.; Narongroeknawin, P.; Asavatanabodee, P.; Chaiamnuay, S. Effect of curcumin on serum urate in asymptomatic hyperuricemia: A randomized placebo-controlled trial. J. Diet. Suppl. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: A randomized controlled trial. J. Cardiovasc. Pharmacol. 2016, 68, 223–229. [Google Scholar] [CrossRef]
Complete Blood Count | Control | GAL | CU | 4b 2.5 mg/kg | 4b 5 mg/kg | Mice Reference Range |
---|---|---|---|---|---|---|
WBC × 109/L | 4.8 ± 0.62 | 3.9 ± 0.43 | 2.9 ± 0.22 | 5.4 ± 0.37 | 4.1 ± 0.2 | 2.9–15.3 |
LYM × 109/L | 3.4 ± 0.56 | 2.6 ± 0.72 | 2.6 ± 0.66 | 3.9 ± 0.5 | 3.0 ± 0.7 | 2.6–13.5 |
MO × 109/L | 0.7 ± 0.04 | 0.7 ± 0.05 | 0.5 ± 0.08 | 0.8 ± 0.04 | 0.6 ± 0.03 | up to 0.8 |
GRA × 109/L | 0.6 ± 0.03 | 0.5 ± 0.04 | 0.4 ± 0.02 | 0.5 ± 0.03 | 0.5 ± 0.03 | 0.4–3.2 |
LYM % | 71.6 ± 2.3 | 67.7 ± 2.8 | 68.9 ± 3.2 | 73.1 ± 3.6 | 70.1 ± 2.6 | 63.7–90.1 |
MID % (Mo + Eo + Ba) | 15.5 ± 1.2 | 16.9 ± 1.4 | 14.2 ± 1.6 | 16.2 ± 1.3 | 17.4 ± 1.6 | 10–20 |
GRA % | 12.9 ± 1.6 | 15.4 ± 1.8 | 16.9 ± 1.2 | 10.7 ± 1.4 | 12.7 ± 1.8 | 7.3–30.1 |
RBC × 1012/L | 7.79 ± 0.3 | 7.45 ± 0.3 | 7.14 ± 0.2 | 7.77± 0.26 | 7.42 ±0.13 | 5.6–7.89 |
Hgb g/L | 144 ± 7.8 | 139 ± 8.2 | 147 ± 5.4 | 150 ± 4.8 | 138 ± 5.8 | 120–150 |
HCT % | 40.4 ± 1.8 | 37.7 ± 2.1 | 42.2 ± 1.6 | 40.2 ± 1.2 | 42.2 ± 2.2 | 36–46 |
MCV fl | 53.2 ± 1.2 | 54.6 ± 0.9 | 53.8 ± 1.1 | 53.8 ± 1.4 | 63.8 ± 3.4 | 53.0–68.8 |
MCH pg | 19.5 ± 1.3 | 18.6 ± 1.2 | 19.2 ± 1.2 | 18.9 ± 0.9 | 17.6 ± 1 | 16.0–23.1 |
MCHC g/L | 341 ± 5.4 | 338 ± 5.8 | 332 ± 4.2 | 323 ± 3.8 | 340 ± 2.2 | 300–341 |
RDW % | 14.7 ± 1.1 | 13.6 ± 1.2 | 12.6 ± 1.4 | 12.4 ± 1.1 | 11.4 ± 2.1 | 11.0–15.5 |
PLT 109/L | 736 ± 159 | 589 ± 143 | 430 ± 136 | 538 ± 151 | 632 ± 161 | 100–1610 |
PCT % | 0.256 ± 0.06 | 0.272 ± 0.07 | 0.258 ± 0.1 | 0.267 ± 0.04 | 0.233 ± 0.06 | 0.1–0.48 |
MPV fl | 6.2 ± 1.2 | 6.2 ± 1.6 | 6.0 ± 1.0 | 6.1 ± 1.4 | 6.0 ± 0.4 | 3.8–6.2 |
PDW fl | 7.7 ± 1.5 | 9.2 ± 1.6 | 7.8 ± 1.2 | 8.3 ± 1.1 | 7.3 ± 1.6 | 7–23 |
Serum Biochemical Data | Control | GAL | CU | 4b 2.5 mg/kg | 4b 5 mg/kg | Mice Reference Range |
---|---|---|---|---|---|---|
GLU mmol/L | 6.2 ± 0.82 | 6.1 ± 0.77 | 5.,3 ± 0.76 | 6.1 ± 0.84 | 6.0 ± 0.36 | 4.2–7.5 |
UREA mmol/L | 5.1 ± 0.32 | 4.0 ± 0.36 | 3.8 ± 0.28 | 4.5 ± 0.22 | 4.2 ± 0.32 | 3.27–12.1 |
CREAT µmol/L | 68 ± 2.3 | 62 ± 28.8 | 65 ± 6.6 | 46 ± 5.6 | 56 ± 4.6 | 35–120 |
TP g/L | 58 ± 2.2 | 53 ± 3.1 | 54 ± 2.6 | 53 ± 3.6 | 54 ± 2.6 | 53–63 |
ALB g/L | 27 ± 1.8 | 26 ± 1.7 | 26 ± 2.2 | 26 ± 3.1 | 27 ± 2.3 | 26–29 |
ASAT U/L | 83 ± 4.5 | 96 ± 5.2 | 102 ± 3.6* | 123 ± 4.1 ** | 123 ± 5.3 ** | 65–122 |
ALAT U/L | 58 ± 2.2 | 56.6 ± 3.1 | 62.2 ± 3.3 | 81.4 ± 3.4 ** | 96 ± 4.7 ** | 55–80 |
T-Bil µmol/L | 5.6 ± 0.42 | 6.0 ± 0.38 | 5.6 ± 0.44 | 6.3 ± 0.28 | 7.2 ± 0.18 | 3.9–9.6 |
D-Bil µmol/L | 2.4 ± 0.32 | 2.5 ± 0.44 | 2.4 ± 0.46 | 2.9 ± 0.34 | 3.6 ± 0.24 | 0–6.8 |
Ca mmol/L | 2.04 ± 0.11 | 2.14 ± 0.15 | 2.04 ± 0.21 | 2.1 ± 0.2 | 2.2 ± 0.1 | 2.0–2.8 |
Uric acid µmol/L | 195 ± 18.4 | 196 ± 20.3 | 133 ± 23.7 * | 94 ± 16.7 * | 104 ± 26.7 * | 0–300 |
CHOL mmol/L | 2.3 ± 0.35 | 2.61 ± 0.28 | 2.6 ± 0.44 | 2.16 ± 0.36 | 2.11 ± 0.23 | 1.77–2.9 |
TRIG mmol/L | 1.04 ± 0.12 | 1.29 ± 0.18 | 1.02 ± 0.2 | 1.14 ± 0.22 | 1.04 ± 0.32 | 0.85–2.23 |
ALP U/L | 148 ± 12.9 | 131 ± 13.6 | 122 ± 14.9 | 113 ± 13.8 * | 123 ± 11.6 | 80–168 |
GGT U/L | 13 ± 2.1 | 10 ± 2.6 | 10 ± 1.8 | 6 ± 3.2 * | 8 ± 4.4 | 6–14 |
AMYL U/L | 1021 ± 86.2 | 1179 ± 74.6 | 1036 ± 64.3 | 1263 ± 66.7 * | 1068 ± 53.4 | 512–1312 |
Assay | GAL | CU | 4b | BHT |
---|---|---|---|---|
DPPH | 4.63 ± 0.08 | 10.03 ± 0.17 | 7.34 ± 0.43 | 46.37 ± 0.67 |
ABTS | 5.87 ± 0.06 | 17.71 ± 0.58 | 101.22 ± 0.28 | 94.83 ± 0.26 |
FRAP | 5.69 ± 0.46 | 8.70 ± 0.33 | 7.31 ± 0.32 | 10.55 ± 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeonova, R.; Zheleva, D.; Valkova, I.; Stavrakov, G.; Philipova, I.; Atanasova, M.; Doytchinova, I. A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders. Molecules 2021, 26, 1865. https://doi.org/10.3390/molecules26071865
Simeonova R, Zheleva D, Valkova I, Stavrakov G, Philipova I, Atanasova M, Doytchinova I. A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders. Molecules. 2021; 26(7):1865. https://doi.org/10.3390/molecules26071865
Chicago/Turabian StyleSimeonova, Rumyana, Dimitrina Zheleva, Iva Valkova, Georgi Stavrakov, Irena Philipova, Mariyana Atanasova, and Irini Doytchinova. 2021. "A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders" Molecules 26, no. 7: 1865. https://doi.org/10.3390/molecules26071865
APA StyleSimeonova, R., Zheleva, D., Valkova, I., Stavrakov, G., Philipova, I., Atanasova, M., & Doytchinova, I. (2021). A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders. Molecules, 26(7), 1865. https://doi.org/10.3390/molecules26071865